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Preface

Radiation therapy (RT) continues to evolve rapidly as a result of improvements in 
imaging, advances in patient immobilization and treatment delivery technologies, 
and our understanding of radiobiology. There are currently two major trends in RT, 
shortening treatment (hypofractionation) and use of stereotactic radiosurgery and 
stereotactic body radiotherapy technologies. As published data continue to rapidly 
accumulate, these treatments are no longer exclusive to specialized centers. 
Shortening treatment is also appealing to patients because of increased convenience, 
less interference with planned systemic therapy, and is often less costly than con-
ventionally fractionated (longer) RT courses. Radiation therapy continues to be, and 
is increasingly so, an effective and cost-effective cancer treatment that reduces can-
cer-specific mortality (CSM) and overall mortality for many cancers.

This handbook was developed to summarize the data and techniques for hypo-
fractionation and stereotactic radiation in a clinically accessible way, providing con-
cise information ranging from commonly used dose-fractionation schemes to 
simulation and treatment specifications to published safety and efficacy data. While 
hypofractionation and stereotactic radiation are used in almost all cancer sites, we 
note where there are strong supportive data including randomized trials, and other 
areas where relatively little data are available to guide treatments. Further, we want 
to highlight that the development of a stereotactic radiotherapy program requires 
specialized expertise and quality assurance procedures, which are described in 
Chap. 3.

We hope that you will enjoy the book as much as we enjoyed the process of 
developing it. This handbook was written to be practical, with usable information 
relevant for the clinician. We want to thank all the contributors of this book for their 
hard work and expertise.

Ramat Gan, Israel Orit Kaidar-Person  
Kansas City, KS, USA  Ronald Chen   
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Chapter 1
The History and Radiobiology 
of Hypofractionation

Elaine M. Zeman

1.1  Introduction

The use of hypofractionation in radiation therapy is not a new concept. In fact, it is 
a very old one, dating back to the first third of the twentieth century, the earliest days 
of the field that would evolve into today’s specialty of radiation oncology. Since its 
earliest incarnation, however, hypofractionation has been “repurposed” for today’s 
use, thanks to more than a century of advances in physics and imaging that now 
allow most normal tissue to be excluded from the radiation field, something argu-
ably inconceivable in 1900.

To better understand why hypofractionation was largely abandoned by the late 
1920s, only to re-emerge at the beginning of the twenty-first century, an overview of 
the histories of both radiation therapy and radiation biology is in order. In many 
ways, these two disciplines evolved in parallel. With a few notable exceptions, for 
nearly 60 years advances in radiation therapy were empirically based, and advances 
in radiobiology were seldom of clinical utility. This began to change during 
the 1950s.
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1.2  Historical Context

1.2.1  The Early History of Fractionation in Radiotherapy

At the turn of the twentieth century, X-rays were discovered by German physicist 
Wilhelm Röntgen, who described them as invisible, “mysterious” emissions from 
energized vacuum tubes that were capable of producing fluorescence in platinocya-
nide salts [1]. The following year, French physicist Henri Becquerel identified simi-
lar emanations from natural substances—compounds of the element uranium—that 
didn’t require an external energy source, yet like visible light, could expose photo-
graphic film [2]. Another year later, Pierre and Marie Curie identified and isolated 
some of the elements responsible for this “radioactivity” phenomenon, including 
radium, thorium, and polonium [3]. That X-rays and radioactive sources (emitting 
γ-rays) had potential medical applications for both imaging and cancer treatment 
was immediately obvious, and between 1896 and 1900, the nascent field of radia-
tion therapy, as practiced by dermatologists and surgeons of the day, had already 
claimed cures of both benign and malignant skin conditions [4–6].

In the earliest days of radiotherapy, both X-ray machines and radium applicators 
were used for cancer treatment, although the greater availability, convenience, and 
portability of X-ray tubes afforded them a distinct advantage. Add to this the fact 
that X-ray machines offered, as the technology improved, much higher intensities of 
radiation output than low-activity radium sources, radiotherapy using X-rays 
(termed teletherapy) quickly became the international standard. Nevertheless, the 
use of radioactive sources continued to be developed and refined by the French, a 
practice that evolved into modern day brachytherapy.

Lacking an understanding at the time of the physical nature of ionizing radiation 
and how to quantify radiation dose, let alone an understanding of its biological 
effects, various “philosophies” developed as how best to treat patients. One funda-
mental radiotherapy principle was recognized early on: the concept of the therapeu-
tic ratio, a risk-versus-benefit approach applied to treatment planning (Fig. 1.1).

In theory, any malignancy could be eradicated simply by delivering a sufficiently 
high radiation dose. However, in practice, injury to normal tissues that were neces-
sarily irradiated along with the tumor limited the total dose that could be adminis-
tered safely. Therefore, a balance had to be struck between what was considered an 
acceptable probability of radiation-induced damage to normal tissue, and the prob-
ability of tumor destruction.

Because surgeons were among the early practitioners of radiation therapy, from 
about 1900 into the 1920s, a prevailing strategy was to view radiotherapy as akin to 
surgery; that is, to attempt to eradicate the tumor in a single procedure using a large, 
“tumoricidal” dose. This massive dose technique [7, 8] became a common way of 
administering radiation therapy, and a (somewhat arbitrary) biological interpreta-
tion was also provided: tumors would become increasingly resistant to radiotherapy 
if too many doses were given, and normal tissues would be preferentially damaged 
due to “cumulative injury,” so it would be preferable to deliver the radiation therapy 
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Fig. 1.1 The therapeutic ratio concept, depicted graphically. A favorable therapeutic ratio implies 
that the radiation response of the tumor is greater than that of the surrounding normal tissue (left 
panel). In the case of an unfavorable therapeutic ratio (right panel), there is no possibility of obtain-
ing good tumor control without significantly damaging the normal tissue(s) at risk. (Adapted from 
Bernier et al. [7])

as one or a few large doses over no more than a few days [9]. However, it soon 
became obvious that this approach did not optimize the therapeutic ratio and that the 
biological rationale was incorrect; normal tissue complications were typically quite 
severe, and to make matters worse, the rate of local tumor recurrence was unaccept-
ably high. An early example, in this case involving treatment of a benign hairy 
nevus, is shown in Fig. 1.2.

As mentioned previously, radium therapy was used more extensively in France. 
Radium applications involved longer overall treatment times in order to reach total 
doses comparable to those achieved with X-rays because of the low activity sources. 
Although multi-day treatments were less convenient in terms of patient throughput, 
clinical outcomes were often superior for skin and cervix cancers than for X-ray 
therapy. Brachytherapy proponents also offered a biological rationale, one that was 
better based on laboratory research than on theory or conjecture. As early as 1906, 
two French radiation biologists, Bergonié and Tribondeau, observed histologically 
that undifferentiated, rapidly dividing spermatogonia of the rat testis showed evi-
dence of damage at lower radiation doses than well-differentiated, non-dividing 
cells of the testicular stroma. Based on these observations, they put forth some basic 
“laws” stating that radiotherapy was selective for cells that were (1) actively divid-
ing; (2) capable of dividing for extended periods; and (3) poorly or undifferentiated 
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Fig. 1.2 Time course for radiation effects in the skin of a child treated during the “massive dose” 
era for an extensive hairy nevus before treatment (left), a week after the end of treatment (middle) 
and 75 years later (right). Acutely, the skin injury consisted of a large area of confluent moist des-
quamation, but over time, fibrosis, necrosis, and poor wound healing was observed and persisted 
over the patient’s lifetime. Few patients were cured using this large dose, large volume technique, 
and typically died long before normal tissue damage became manifest. In this particular case, 
however, the (benign) hairy nevus was eradicated. (Adapted from Kogelnik [5])

[10]. Some tumors were already known at that time to contain cells that were less 
differentiated and more proliferative than most normal tissues. Accordingly, 
Bergonié and Tribondeau reasoned that multiple radiation exposures would prefer-
entially kill these tumor cells, while preserving their slowly proliferating, differenti-
ated counterparts in the normal tissues included in the radiation field.

During the 1920s, the massive dose technique began to fall out of favor, par-
ticularly in light of the pioneering experiments of Claude Regaud and colleagues, 
who built on Bergonié and Tribondeau’s earlier work [11]. Regaud cleverly used 
the testes of the rabbit as a model system, reasoning that the process of sperm 
production (i.e., relatively undifferentiated cells proliferating rapidly and indefi-
nitely) mimicked to a first approximation the behavior of tumors, and that the 
scrotum could be used as a representative dose-limiting normal tissue. Regaud 
showed that only through the use of multiple, smaller radiation doses could ani-
mals be completely sterilized without producing severe injury to the scro-
tum [12].

These principles were soon tested in the clinic by French physician Henri 
Coutard, who used multiple small x-ray doses delivered over extended periods in 
human patients [13]. Clinical outcomes for patients with head and neck cancer were 
improved to such an extent that fractionated radiation therapy using many small 
dose increments spread over several weeks’ time soon became the standard of care 
[13, 14], and has largely remained so to the present day.

E. M. Zeman
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Summary: relevance to today’s use of hypofractionation

• During the early days of radiotherapy—the first 30 years of the twentieth cen-
tury—extreme hypofractionation using one or a few very large doses was a treat-
ment standard.

• It was subsequently abandoned when it became clear that tumor control was poor 
and normal tissue complications severe.

• Early research in radiation biology determined that the best way to optimize the 
therapeutic ratio was to deliver many small dose fractions over a period of weeks.

• Translating this information into the clinic, fractionated radiotherapy using small 
doses delivered over several weeks provided much improved outcomes, and 
became the new standard of care.

1.2.2  Isoeffect Relationships

Once fractionated radiotherapy became the new standard of care a different problem 
emerged, namely how different practitioners with somewhat different approaches to 
fractionation, e.g., how many fractions delivered, time between fractions, total dose, 
overall treatment time, etc., could be inter-compared in terms of tumor control and 
normal tissue complication probabilities. One approach was to determine “equiva-
lents,” that is, treatment combinations that yielded similar outcomes. Time- dose equiv-
alents for skin erythema were published by several investigators [15–18] and these 
formed the basis for the calculation of equivalents for other normal tissue and tumor 
responses. By plotting the total dose required for a particular equivalent in a particular 
tissue, as a function of one of the variable treatment parameters (overall treatment 
time, number of fractions or dose per fraction), a so-called isoeffect curve could be 
derived. All time and dose combinations that comprised an isoeffect curve for a certain 
endpoint would, theoretically, produce tissue or tumor responses of equal magnitude.

Also better appreciated during the 1930s was how and when normal tissue com-
plications occurred after treatment, and their severity as a function of total dose. 
Presumably, these complications were the result (directly or indirectly) of the kill-
ing of critical cells within the tissue, so the higher the radiation dose, the more cells 
were killed and the more severe the complication. It was also clear that skin, the 
dose-limiting normal tissue in most cases, could manifest more than one complica-
tion and that each seemed to have its own threshold or tolerance dose before the 
complication occurred, a reflection of the tissue’s radiosensitivity. However, the 
“earliness” or “lateness” of the clinical manifestation of that injury was a separate 
phenomenon more related to the cellular renewal pattern of the tissue.

The first published isoeffect curves were produced by Strandqvist in 1944 [19], 
and shown in Fig. 1.3. When plotted on a log–log scale of total dose versus overall 
treatment time, isoeffect curves for a variety of skin reactions, and the cure of skin 
cancer, were drawn as parallel lines.

As drawn, Stranqvist’s isoeffect curves suggested that there would be no thera-
peutic advantage to using prolonged treatment times and multiple small dose 
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Fig. 1.3 Strandqvist’s isoeffect curves, first published in 1944, plotted the log of the total dose to 
achieve the measured isoeffect as a function of the overall treatment time. The shorter the overall 
treatment time, the more hypofractionated the schedule, and the lower the dose required to produce 
the isoeffect. (Modified from Strandqvist [19])

fractions for the preferential eradication of tumors while staying within the toler-
ance of the normal tissue [20]. Ironically however, it was already known that the 
therapeutic ratio did increase with prolonged, as opposed to very short, overall treat-
ment times. Nevertheless, the reliability of these curves at predicting skin reactions, 
which were the dose limiting at the time, made them quite popular.

Nearly 25 years after Strandqvist, Ellis [21, 22] revisited his popular isoeffect 
curves, and armed with new knowledge about the radiobiology underlying fraction-
ation effects in pig skin [23, 24], formulated the NSD concept in 1969. The NSD 
equation,

 D N T= ( )NSD 0 24 0 11. .
, 

where D is the total dose delivered, N the number of fractions used, T the overall 
treatment time, and NSD the nominal standard dose (a proportionality constant 
related to the tissue’s tolerance), became widely used, particularly once mathemati-
cally simplified derivatives, such as the TDF equation [25] became available. The 
major innovation of the NSD model was that the influence of the fraction number 
had been separated from the influence of the overall treatment time, and in fact, the 
fraction number (and therefore, size) was the more important of the two.

The introduction of the NSD equation allowed radiotherapy treatment practices 
world-wide to be compared with respect to putative “biological equivalence,” pro-
vided it was not used for treatments involving extremes of fraction number or over-
all time outside the range of the data upon which the model was based (i.e., 
Strandqvist’s curves). It also provided a means of revising treatment prescriptions in 
the event of unforeseen treatment interruptions. However, the NSD formula was ill-
equipped to deal with some clinical issues, in particular the prediction of late effects 
in normal tissues, which, with the advent of megavoltage linear accelerators capable 
of treating deep-seated tumors, replaced skin as being dose- limiting [26]. In light of 
the emerging limitations of the NSD model, there was a need for new, radiobiologi-
cally based approaches to isoeffect modeling.
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Summary: relevance to today’s use of hypofractionation

• Isoeffect curves plot the total dose required for a particular tumor or normal 
tissue endpoint as a function of one of the variable treatment parameters, 
such as overall treatment time or number of fractions. All time-dose combi-
nations that fell on a particular isoeffect curve were considered biologically 
equivalent.

• Isoeffects of interest included tumor control and various normal tissue complica-
tions, typically in skin, such as desquamation, necrosis, or fibrosis.

• Some complications occurred during or soon after the completion of radiother-
apy, “early effects,” and others took months or years to manifest, “late effects.”

• The total dose required to cause a particular complication was a reflection of the 
tissue’s radiosensitivity, but the time it took for the complication to appear was 
related to the tissue’s natural cell renewal process.

• A mathematical model derived from isoeffect curves, the NSD equation, allowed 
the calculation of biological equivalents for different treatment schedules. Yet 
because the model was based on early skin reactions, it was poorly equipped to 
model late complications in normal tissues. With the advent of megavoltage 
radiotherapy equipment that allowed treatment of deep-seated tumors, damage to 
internal organs rather than skin became dose-limiting, and many of these 
expressed their injuries as late effects.

1.2.3  Tumor Hypoxia

As early as 1909, it was recognized that decreasing blood flow during radiotherapy 
leads to a reduction in the prevalence or severity of radiation-induced skin reactions 
[7, 8], although at the time, the mechanism for this effect was unclear. Decades later, 
chemists and biologists determined that the presence or absence of oxygen was the 
key, and that the mechanism of oxygen’s action was to interact with free radicals 
produced during irradiation, thereby enhancing the damage to cellular macromole-
cules. In other words, oxygen acted as a radiation sensitizer. Thus, the relative 
absence of oxygen in an irradiated system meant less molecular damage, and there-
fore, greater radioresistance.

In 1955, however, Thomlinson and Gray [27] brought this idea to the forefront of 
radiation biology and radiation therapy by proposing that tumors contained a frac-
tion of oxygen-starved yet still reproductively viable (i.e., “clonogenic”) hypoxic 
cells and that if these persisted throughout the course of fractionated radiotherapy, 
they would adversely affect the therapeutic ratio. The oxygen enhancement ratio 
(OER) is a metric developed to quantify how much more radioresistant hypoxic 
cells were than well-aerated ones. For large, single radiation doses, OER values of 
2.5–3.0 were typical, but for conventional radiotherapy using repeated, small dose 
fractions delivered over several weeks, the OER was lower, typically in the range of 
1.5–2.0 [28].
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Accordingly, if human tumors contained even a tiny fraction of clonogenic hypoxic 
cells, simple calculations suggested that tumor control would be nearly impossible 
[29], even for high doses. The total dose needed to control such tumors would become 
prohibitive because normal tissues are not hypoxic and therefore would experience 
higher complication rates if the total dose were increased. In fact, the only way that 
hypoxic tumor cells would not constitute a treatment impediment was if extended 
periods of hypoxia eventually led to their deaths, that these cells “reoxygenated” dur-
ing the course of treatment and/or that they were not clonogenic to begin with.

Hypoxia is a consequence of the abnormal vasculature characteristic of tumors. 
Such blood vessels are the product of abnormal angiogenesis and often are structur-
ally, functionally, physiologically, and/or spatially aberrant which, when combined 
with the tumor’s high oxygen demand and tendency to outgrow its own blood sup-
ply, leads to both micro- and macro-regions of hypoxia.

Summary: relevance to today’s use of hypofractionation

• Molecular oxygen interacts with free radicals produced during irradiation, 
enhancing cellular damage. Hypoxic cells that are low in oxygen, but not so low 
as to result in lethality, can be up to three times more radioresistant than well- 
aerated ones.

• Vascular abnormalities characteristic of tumors lead to both micro- and macro- 
regions of hypoxia. Hypoxia is largely absent in normal tissues.

• Simple calculations suggest that tumor control would be impossible—even for 
the high doses used today in extreme hypofractionation—if human tumors con-
tained even a tiny fraction of clonogenic hypoxic cells, provided they persisted 
throughout the course of radiotherapy.

1.2.4  The Four R’s of Radiotherapy

What was largely lacking during radiotherapy’s first half-century was a biologi-
cal basis for why dose fractionation spared normal tissue complications, and 
without this information, it was very difficult to determine which biological 
characteristics of normal or tumor tissues might be exploited to improve the 
therapeutic ratio. This began to change with the publication in 1975 of a seminal 
paper entitled “The Four R’s of Radiotherapy” [30]. The paper was an attempt 
to explain the biological basis of fractionation by describing in simple terms key 
radiobiological phenomena thought to affect radiotherapy outcome: Repair, 
Repopulation, Reoxygenation, and Redistribution. In the ensuing years, a fifth 
“R” was added, Radiosensitivity [31], although in some respects, it is inextrica-
bly linked to repair. (Redistribution is difficult to measure, yet is assumed to 
occur in vivo during conventional fractionation. However, it is thought to play 
only a minor role in treatment outcome and likely has even less of a role for 
hypofractionation, so will not be discussed further.)
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1.2.4.1  Repair and Radiosensitivity

The surviving fraction of cells following a moderate-to-high radiation dose is higher 
if that dose is split into two increments separated by a time interval than delivered 
as a single dose, suggesting that cells surviving the initial dose had repaired some of 
the damage during the radiation-free interval [32]. As such, this damage was no 
longer available to interact with the damage inflicted by the second dose, so a higher 
cell surviving fraction resulted. This phenomenon is termed sublethal damage 
recovery (SLDR). These “split-dose” experiments turned out to be crucial to the 
understanding of why and how fractionated radiation therapy works, that is, that 
SLDR was responsible for the greater radiation tolerance of tissues when a large 
total dose was divided into small dose fractions and protracted over time.

However, this sparing effect of dose fractionation does not continue indefinitely 
as smaller and smaller (and more numerous) doses are delivered. Instead, a limit is 
reached where further lowering of the dose per fraction does not produce a further 
decrease in toxicity. This finding is consistent with the idea that survival and dose 
response curves have negative initial slopes [33, 34], and that after many, suffi-
ciently small dose fractions are delivered, a “trace” of this initial slope would be 
obtained.

One important clinical implication of repair and radiosensitivity phenomena is 
that small differences in shoulder regions of dose response curves for different dose- 
limiting normal tissues and tumors could be magnified into large differences when 
many small dose fractions are used compared to a single or a few large fractions. A 
tissue’s radiosensitivity and repair capacity are critically important to the selection 
of the total dose, dose per fraction and interfraction interval used for radiation ther-
apy, as they govern both the tumor control and normal tissue complication 
probabilities.

1.2.4.2  Repopulation

Repopulation is defined as an increase in cell proliferation in tissues in response to 
an injury that produces cell killing. Normal tissues and tumors containing stem or 
stem-like cells can begin to proliferate during and after a course of radiation ther-
apy, with the timing of this response a function of the proliferation kinetics of the 
tissue [35, 36], typically during or within 3  months of treatment for “early- 
responding” normal tissues and most tumors, and more than 6–9 months (if at all) 
for “late-responding” tissues.

Repopulation is desirable in normal tissues because it facilitates the healing of 
common radiotherapy complications that develop during or soon after treatment, 
such as oral mucositis, for example. On the other hand, repopulation of tumor cells 
is undesirable because it would have the net effect of counteracting ongoing radia-
tion therapy, which in turn would lead to the appearance of tumor “radioresistance” 
and accordingly, the attendant risk of recurrence. For tumors capable of rapid repop-
ulation that begins during conventional radiotherapy, estimates are that as much as 
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