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Preface

This book is devoted to the study of scalar and asymptotic scalar derivatives
and their applications to the study of some problems considered in nonlinear
analysis, in geometry, and in applied mathematics.

The notion of a scalar derivative is due to S. Z. Németh, and the notion of
an asymptotic scalar derivative is due to G. Isac. Both notions are recent, never
considered in a book, and have interesting applications. About applications,
we cite applications to the study of complementarity problems, to the study
of fixed points of nonlinear mappings, to spectral nonlinear analysis, and to
the study of some interesting problems considered in differential geometry and
other applications.

A new characterization of monotonicity of nonlinear mappings is another
remarkable application of scalar derivatives.

A relation between scalar derivatives and asymptotic scalar derivatives, re-
alized by an inversion operator is also presented in this book. This relation
has important consequences in the theory of scalar derivatives, and in some
applications. For example, this relation permitted us a new development of the
method of exceptional family of elements, introduced and used by G. Isac in
complementarity theory.

Now, we present a brief description of the contents of this book.
Chapter 1 is dedicated to the study of scalar derivatives in Euclidean spaces.

In this chapter we explain the reason for introducing scalar derivatives as good
mathematical tools for characterizing important properties of functions from
R

n to R
n. In order to avoid some difficulties, we consider only upper and lower

scalar derivatives which are extensions to vector functions of Dini derivatives.
We consider also the case when lower and upper scalar derivatives coincide.
This is a strong restriction and we show that for n = 2 the existence of a single-
valued scalar derivative is strongly related to complex differentiability. The
lower and upper scalar derivatives are also used to characterize convexity like
notions.
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Chapter 2 essentially has two parts. In the first part we present the notion of
the asymptotic derivative and some results related to this notion and in the second
part we introduce the notion of the asymptotic scalar derivative. The results
presented in the first part are necessary for understanding the notions given in
the second part. It is known that the notion of the asymptotic derivative was
introduced by the Russian school, in particular by M. A. Krasnoselskii, under
the name of asymptotic linearity. The main goal of this chapter is to present the
notion of the asymptotic scalar derivative and some of its applications.

Chapter 3 presents the scalar derivatives in Hilbert spaces and several results
and properties are given. We note that in this chapter we give the definitions
of scalar derivatives of rank p, named briefly for p = 2, scalar derivatives. We
also put in evidence the fact that the case p = 1 is strongly related to the notion
of submonotone mapping, introduced in 1981 by J. E. Spingarn and studied in
1997 by P. Georgiev. Several new results related to computation of the scalar
derivative and some interesting relations with skew-adjoint operators are also
presented. The scalar derivatives are used to characterize the monotonicity of
mappings in Hilbert spaces. Many of the formulae presented in this chapter arise
from applications such as fixed point theorems, surjectivity theorems, integral
equations, and complementarity problems, among others.

Chapter 4 contains the extension of the theory of scalar derivatives to Banach
spaces. This extension is based on the notion of the semi-inner product in
Lumer’s sense. The notion of scalar derivatives defined in this case is applied to
fixed point theory, to the study of solvability of integral equations, of variational
inequalities, and of complementarity problems.

Chapter 5 is dedicated to a generalization of the notion of Kachurovskii–
Minty–Browder monotonicity to Riemannian manifolds and to realize this we
introduce the notion of the geodesic monotone vector field. The geodesic con-
vexity for mappings is also considered. For a global example of monotone
vector fields we consider Hadamard manifolds (complete, simply connected
Riemannian manifolds with nonpositive sectional curvature). Analyzing the
existence of geodesic monotone vector fields, we prove that there are no strictly
geodesic monotone vector fields on a Riemannian manifold that contain a closed
geodesic. We note that many results presented in this chapter are based on a
generalization to Riemannian manifolds of scalar derivatives studied in the pre-
vious chapters. The nongradient type monotonicity on Riemannian manifolds
is considered for the first time in a book.

This book is the first book dedicated to the study of scalar and asymptotic
scalar derivatives and certainly new developments related to these notions are
possible.

It is impossible to finish this preface without giving many thanks to the
people who spent their time developing the open source tools (operating sys-
tem, window manager, and software) that were essential for writing this book,
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greately reducing the time and energy spent in word processing. These open
source tools are: the Linux and FreeBSD operating systems, the Ratpoison win-
dow manager, the LaTeX word processing language, and the VIM and Bluefish
editors.

We are grateful to the reviewers for their valuable comments and sugges-
tions. Taking them into consideration has greately improved the quality and
presentation of the book.

To conclude, we would like to say that we very much appreciated the excellent
assistance offered to us by the staff of Springer Publishers.

Canada George Isac
Birmingham, UK Sándor Zoltán Németh
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Chapter 1

Scalar Derivatives in Euclidean Spaces

1.1 Scalar Derivatives of Mappings in Euclidean Spaces
The behaviour of the scalar product 〈f(x)− f(y), x− y〉 (with f : R

n → R
n

and 〈 . , . 〉 the usual scalar product in R
n) whenx andy run over R

n is a good tool
in characterizing important properties of f . If f is bounded, then this product
converges to 0 for x → y. Therefore it cannot be used in obtaining a local
characterization. Hence it is natural to consider at y limits of the expressions
of the form 〈f(x) − f(y), x − y〉/〈x − y, x − y〉 for x → y. Thus we
arrive naturally at a notion that we call the scalar derivative. It is in general a
multivalued mapping from R

n to R even if f is linear.
In order to avoid the difficulties in considering multifunctions we only con-

sider so-called upper and lower scalar derivatives, which are extensions to vector
functions of the Dini derivatives.

We consider mostly the case when lower and upper scalar derivatives coin-
cide. This restriction is a very strong one. In Section 1.1.3 it is shown that
for n = 2 the existence of a single-valued scalar derivative is strongly related
to the complex differentiability. In Section 1.1.4 we consider various exam-
ples and counterexamples. Lower and upper scalar derivatives can be used in
characterizing the monotone operators in the way this is done in Section 1.1.5.

Convex functionals have as gradients monotone operators. Hence the scalar
derivative can also be used to characterize convexity like notions. Thus Propo-
sitions 2.1 and 2.2 in Karamardian and Schaible [1990] together with the results
in our Section 1.1.5 give some characterizations of convex and strictly convex
functionals.

We have defined the notion of scalar derivative having in mind Minty’s mono-
tonicity notion [Minty, 1962]. To simplify the notations, in this chapter a mono-
tone mapping (strictly monotone mapping) f will be called increasing (strictly
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increasing). If −f is monotone (strictly monotone), then f will be called de-
creasing (strictly decreasing).

1.1.1 Some Basic Results Concerning Skew-Adjoint
Operators

Definition 1.1 Consider the operator f : R
n → R

n. It is called increasing
(decreasing) if for any x and y in R

n one has

〈f(x) − f(y), x − y〉 ≥ 0 (≤ 0).

If
〈f(x) − f(y), x − y〉 > 0 (< 0)

whenever x �= y, then f is called strictly increasing (strictly decreasing).
Definition 1.2 The linear operator A : R

n → R
n is called skew-adjoint if

for any x and y in R
n the relation 〈Ax, y〉 + 〈Ay, x〉 = 0 holds.

Theorem 1.3 If A : R
n → R

n is linear, then the following statements are
equivalent.

1. A is skew-adjoint.
2. 〈Ax − Ay, x − y〉 = 0 for any x, y ∈ R

n.
3. Taking an arbitrary orthonormal basis in R

n, A can be represented by a
matrix A = (aij)i,j=1,...,n such that aij = −aji ∀i, j ∈ {1, 2, . . . , n}.

Proof. 1 ⇒ 2 Take x and y arbitrarily in R
n. By the definition of the

skew-adjoint operator A we have 〈Ax, y〉 + 〈Ay, x〉 = 0. Put y = x. Then
〈Ax, x〉 = 0 for arbitrary x in R

n. Whence we also have 〈Ax−Ay, x−y〉 = 0
by the linearity of A. The implication 2 ⇒ 1 can be shown similarly.

The equivalence 1 ⇔ 3 is obvious. �
Remark 1.1

1. There exist injective skew-adjoint operators. For instance, the operators
represented by the matrices

A =

(
0 1

−1 0

)
for n = 2

and

A =

⎛
⎜⎜⎝

0 −1 0 −1
1 0 1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎟⎠ for n = 4

are injective.
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2. If n is odd, then there is no injective skew-adjoint operator in R
n. Indeed

let A be the matrix corresponding to an skew-adjoint operator. Let the
superscript T denote transposition. Then AT = −A and hence det A =
−det A this means that det A = 0.

Theorem 1.4 Consider the operator F : R
n → R

n. The following asser-
tions are equivalent.

1. 〈F (x) − F (y), x − y〉 = 0, ∀x, y ∈ R
n.

2. F is an affine operator with a skew-adjoint linear term.

Proof. Suppose that 1 holds. Put f(x) = F (x) − F (0) for x in R
n. Then

f(0) = 0 and 〈f(x)− f(y), x− y〉 = 0 ∀x, y ∈ R
n. Let x be arbitrary in R

n

and y = 0. Then 〈f(x), x〉 = 0 ∀x ∈ R
n. The above relation also yields

〈f(x), x〉 − 〈f(x), y〉 − 〈f(y), x〉 + 〈f(y), y〉 = 0, ∀x, y ∈ R
n

and hence
〈f(x), y〉 + 〈f(y), x〉 = 0, ∀x, y ∈ R

n.

Put x = λx1 + μx2 with arbitrary x1 and x2 in R
n. Then

〈f(λx1 + μx2), y〉 = −〈f(y), λx1 + μx2〉 = −λ〈f(y), x1〉 − μ〈f(y), x2〉
= λ〈f(x1), y〉 + μ〈f(x2), y〉,

wherefrom
〈f(λx1 + μx2) − λf(x1) − μf(x2), y〉 = 0

for any x1, x2 and y in R
n and any λ, μ in R, wherefrom we have the linearity of

f . Because 〈f(x)−f(y), x−y〉 = 0, for any x, y in R
n, f is also skew-adjoint.

Thus F (x) = f(x) + F (0) and hence it is indeed affine with a skew-adjoint
linear term.

The implication 2 ⇒ 1 is obvious. �

1.1.2 The Scalar Derivative and its Fundamental
Properties

Definition 1.5 Consider the operator f : R
n → R

n. If the limit

lim
x→x0

〈f(x) − f(x0), x − x0〉
‖x − x0‖2

=: f#(x0) ∈ R

exists (here ‖x−x0‖2 = 〈x−x0, x−x0〉), then it is called the scalar derivative
of the operator f in x0. In this case f is said to be scalarly differentiable at x0.
If f#(x) exists for every x in R

n, then f is said to be scalarly differentiable on
R

n, with the scalar derivative f#.
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It follows from this definition that both the set of operators scalarly differentiable
in x0, and the set of operators scalarly differentiable on R

n form linear spaces.

Definition 1.6 Consider the operator f : R
n → R

n. The limit

f#(x0) := lim inf
x→x0

〈f(x) − f(x0), x − x0〉
‖x − x0‖2

is called the lower scalar derivative of f at x0. Taking lim sup in place of

lim inf we can define the upper scalar derivative f
#(x0) of f at x0 similarly.

Theorem 1.7 The linear operator A : R
n → R

n is scalarly differentiable
on R

n if and only if it is of the form A = B + cIn with B skew-adjoint linear
operator, In the identity of R

n, and c a real number.

Proof. Let us suppose that A is scalarly differentiable in x0 ∈ R
n. Then

A#(x0) = lim inf
x→x0

〈Ax − Ax0, x − x0〉
‖x − x0‖2

= lim inf
h→0

〈Ah, h〉
‖h‖2

= A#(0).

Take h = λx with x ∈ R
n and λ > 0. Then

A#(0) = lim inf
λ↓0

〈Aλx, λx〉
‖λx‖2

=
〈Ax, x〉
‖x‖2

.

That is, 〈Ax, x〉/‖x‖2 = c = A#(0). Accordingly,

〈(A − cIn)x, x〉 = 0, ∀x ∈ R
n.

This means that B = A − cIn is a skew-adjoint linear operator and hence A
has the representation given in the theorem. Obviously, every A = B + cIn

with B a skew-adjoint linear operator has the scalar derivative c at every point
of R

n. �

Theorem 1.8 Suppose that f : R
n → R

n, f = (f1, · · · , fn) is scalarly
differentiable in x0. Then for every i ∈ {1, . . . , n} there exists the partial
derivative

∂fi(x0)
∂xi

and
∂f1(x0)

∂x1
= · · · =

∂fn(x0)
∂xn

= f#(x0).

Proof. If we consider x = (x1
0, . . . , xi, . . . , xn

0 ) and x0 = (x1
0, . . . , xn

0 ),
by letting x → x0, we obtain that

∂fi(x0)
∂xi

= f#(x0).

�
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Theorem 1.9 Suppose that f : R
n → R

n is differentiable in x0 and scalarly
differentiable in x0. Then we have for the differential df(x0) of f at x0 the
relation

df(x0) = B + f#(x0)In,

with B : R
n → R

n linear and skew-adjoint .

Proof. Let t ∈ R
n be given. Then

f#(x0) =
1

‖t‖2
lim inf

λ↓0

〈
f(x0 + λt) − f(x0)

λ
, t

〉
=

1
‖t‖2

〈df(x0)(t), t〉,

wherefrom 〈(df(x0) − f#(x0)In)(t), t〉 = 0, ∀t ∈ R
n, that is,

B = df(x0) − f#(x0)In

is linear and skew-adjoint. �

Remark 1.2

1. The theorem holds for the Gateaux differential δf(x0) in place of df(x0).
The differentiability condition is often used next and hence we state the
theorem for this stronger condition.

2. If we denote by f ′(x0) the Jacobi matrix of f at x0 in some coordinate repre-
sentation and the symbols B and In stand for matrices of the corresponding
operators, then our relation becomes

f ′(x0) = B + f#(x0)In.

Theorem 1.10 Suppose that f : R
n → R

n, f = (f1, . . . , fn) is differen-
tiable in x0. Then the following statements are equivalent.

1. f is scalarly differentiable in x0;

2. (a)
∂f1(x0)

∂x1
= · · · =

∂fn(x0)
∂xn

;

(b)
∂fi(x0)

∂xj
= −∂fj(x0)

∂xi
, ∀i, j ∈ {1, . . . , n}, i �= j.

Condition 2 is called the Cauchy–Riemann relation at x0.

Proof. 1 ⇒ 2 By Remark 2 one has

f ′(x0) = B + f#(x0)In,
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where B is a skew-symmetric matrix and f ′(x0) is the Jacobi matrix of f at x0.
Because from the above relation

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f1(x0)

∂x1
− f

#
(x0)

∂f1(x0)

∂x2
. . .

∂f1(x0)

∂xn

∂f2(x0)

∂x1

∂f2(x0)

∂x2
− f

#
(x0) . . .

∂f2(x0)

∂xn

.

.

.
.
.
.

.

.

.
.
.
.

∂fn(x0)

∂x1

∂fn(x0)

∂x2
. . .

∂fn(x0)

∂xn
− f

#
(x0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and because B is a skew-symmetric matrix, we must have the relations at 2 of
the theorem.

2 ⇒ 1 Consider the Taylor expansions of f1, . . . , fn around x0:

f1(x) = f1(x0) +
n∑

i=1

∂f1(x0)
∂xi

(xi − xi
0) + u1(x)‖x − x0‖

...

fn(x) = fn(x0) +
n∑

i=1

∂fn(x0)
∂xi

(xi − xi
0) + un(x)‖x − x0‖,

where lim inf
x→x0

ui(x) = 0, ∀i ∈ {1, . . . , n}. Usage of the above formulae gives

〈f(x) − f(x0), x − x0〉
‖x − x0‖2

=
1

‖x − x0‖2

⎡
⎣ n∑

i,j=1

∂fi(x0)
∂xj

(xi − xi
0)(x

j − xj
0)

+
n∑

i=1

ui(x)‖x − x0‖(xi − xi
0)

]
.

By the relations (a) and (b) one obtains

〈f(x) − f(x0), x − x0〉
‖x − x0‖2

=
1

‖x − x0‖2

[
∂f1(x0)

∂x1
‖x − x0‖2

+
n∑

i=1

ui(x)‖x − x0‖(xi − xi
0)

]
=

∂f1(x0)
∂x1

+
n∑

i=1

ui(x)(xi − xi
0)

‖x − x0‖
,

wherefrom, because −1 ≤ xi − xi
0/‖x − x0‖ ≤ 1 and lim inf

x→x0

ui(x) = 0, it

follows that

f#(x0) = lim inf
x→x0

〈f(x) − f(x0), x − x0〉
‖x − x0‖2

=
∂f1(x0)

∂x1
= · · · =

∂fn(x0)
∂xn

.

�
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1.1.3 Case n = 2. The Relation of the Scalar Derivative
with the Complex Derivative

We identify in this chapter the complex numbers with points in R
2. The scalar

product of these numbers means the scalar product of the vectors representing
them in R

2.

Theorem 1.11 Let f : C → C be a complex function. The following
statements are equivalent.

1. f is differentiable in z0 as a complex function.

2. f is differentiable in z0 as a mapping f : R
2 → R

2 and is scalarly differ-
entiable in this point.

Proof. Follows directly from Theorem 1.10. �
The differentiability condition of f at z0 in 2. is essential. In examples 2

and 3. of Section 1.1.4 we construct two discontinuous mappings at 0, which
are scalarly differentiable in this point.

Remark 1.3

1. Let G be an open subset of C. Then f is holomorphic on G if and only if it
is differentiable as a vector function and scalarly differentiable on G. As is
well known, the set of holomorphic functions on C is closed with respect to
the compositions of functions.

2. The above remark justifies the following generalization of a holomorphic
function.

Definition 1.12 Let G be open in R
n. The mapping f : R

n → R
n is called

R-holomorphic on G if and only if it is differentiable and scalarly differentiable
on G. The set of R-holomorphic mappings on G is denoted by H(G).

Theorem 1.13 For the complex function f : C → C the following state-
ments are equivalent

1. f is differentiable in z0 ∈ C as a complex function.

2. f and if are scalarly differentiable in z0.
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Proof. Let us denote f = u + iv, z = x + iy, z0 = x0 + iy0. Then

f(z) − f(z0)
z − z0

=
u(z) − u(z0) + i(v(z) − v(z0))

x − x0 + i(y − y0)
=

=
[u(z) − u(z0) + i(v(z) − v(z0)][x − x0 − i(y − y0)]

(x − x0)2 + (y − y0)2

=
[u(z) − u(z0)](x − x0) + [v(z) − v(z0)](y − y0)

(x − x0)2 + (y − y0)2

+ i
[v(z) − v(z0)](x − x0) − [u(z) − u(z0)](y − y0)

(x − x0)2 + (y − y0)2

=
〈f(z) − f(z0), z − z0〉

|z − z0|2
− i

〈(if)(z) − (if)(z0), z − z0〉
|z − z0|2

.

From the obtained relation it follows that

lim
z→z0

f(z) − f(z0)
z − z0

exists; that is, f is differentiable in z0 as a complex function if and only if the
limits

lim
z→z0

〈f(z) − f(z0), z − z0〉
|z − z0|2

and

lim
z→z0

〈(if)(z) − (if)(z0), z − z0〉
|z − z0|2

exist. �

Remark 1.4 The function f is holomorphic on the open set G ⊂ C if and
only if f and if are scalarly differentiable on G.

Theorem 1.14 If f : C → C is differentiable in z0 as a complex function
then f and if are scalarly differentiable in z0 and the relation

f ′(z0) = f#(z0) − i(if)#(z0)

holds. This relation is equivalent with the relations
⎧⎨
⎩

Re f ′(z0) = f#(z0),

Im f ′(z0) = −(if)#(z0).

Proof. It is indeed contained in the proof of Theorem 1.13. �
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1.1.4 Miscellanea Concerning Scalar Differentiability
Examples and counterexamples

1. Let n ∈ N; n > 2. Then the set H(Rn) of the holomorphic functions on
R

n is not closed under compositions of functions.

Indeed consider A : R
n → R

n represented by the matrix A = (aij)i,j =
1, . . . , n, where

aij =

⎧⎨
⎩

1 if i < j,
0 if i = j,

−1 if i > j.

Obviously, A is a skew-adjoint operator. Hence A is holomorphic on R
n.

Consider A2 = A ◦A and assume that it is holomorphic. Then by Theorem
1.7 it must be of the form A2 = B + cIn with B a skew-adjoint linear
operator, c a real number, and In the identical map. Let us denote the
matrix representing A2 by D = (dij)i,j=1,...,n, then d12 + d21 = 0. That is

(a11a12 + · · · + a1nan2) + (a21a11 + · · · + a2nan1) = 0.

From the definition of A it follows that 2(n − 2) = 0 and hence n = 2,
contradicting the hypothesis on n.

From this example and the results in Section 1.1.3 the next assertion
follows.

Theorem 1.15 The set of scalarly differentiable linear mappings in R
n

is closed under composition if and only if n ≤ 2.

From the definition of the scalar derivative the next assertion follows
easily.

Lemma 1.16 Let 0 = (0, . . . , 0) ∈ R
n and let f : R

n → R
n be a

mapping having the properties:

(a) f(0) = 0.

(b) 〈f(x), x〉 = 0, ∀x ∈ R
n.

Then f is scalarly differentiable in 0 and f#(0) = 0.

Usage of this lemma allows us to construct the following two examples of
discontinuous mappings at 0, which are scalarly differentiable in this point.
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2. f : R
2 → R

2 with

f(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

(
y

x2 + y2
,

−x

x2 + y2

)
if x2 + y2 �= 0

(0, 0) if x = y = 0.

3. f : R
n → R

n (n ≥ 2), with

f(x) =

⎧⎪⎨
⎪⎩

1
‖x‖2

Ax if x �= 0,

0 if x = 0,

where A is a nonzero, linear, skew-adjoint operator.

In fact, Example 3 generalizes Example 2. Both mappings satisfy the con-
ditions of the above lemma and hence they are scalarly differentiable in 0.
Let us show that f in 3. is not continuous at 0. Because A �= 0, there exists
some t in R

n with At �= 0. Put x = λt, λ > 0. Then the relation

lim inf
λ↓0

A(λt)
λ2‖t‖2

= lim inf
λ↓0

1
λ

At

‖t‖2
�= 0

shows that f is not continuous at 0.

4. Example of a mapping f : R
2 → R

2 which is continuous at 0, scalarly
differentiable in this point, but not differentiable as a vector function.

Consider f given by

f(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

(
xy2

x2 + y2
,
−x2y

x2 + y2

)
if x2 + y2 �= 0,

(0, 0) if x = y = 0.

Then f fulfills the conditions of the lemma; hence it is scalarly differentiable
in 0.

The continuity of the two components of f is a standard exercise in calculus.

If f is differentiable in 0, then its components f1 and f2 are differentiable
real-valued functions. Because

∂f1(0, 0)
∂x

=
∂f1(0, 0)

∂y
= 0,
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then df1(0, 0) = 0. Hence we cannot have

lim inf
x→0
y→0

|f1(x, y) − f1(0, 0) − df1(0, 0)(x, y)|√
x2 + y2

�= 0.

Taking for instance x = y > 0 the above limit will be 1/(2
√

2).

5. Example of a mapping f : R
2 → R

2 which is continuous at 0, possesses
partial derivatives at 0, does not satisfy the Cauchy–Riemann conditions at
0, but is scalarly differentiable in 0.

Take ⎧⎪⎪⎨
⎪⎪⎩

(
−y3

x2 + y2
,

xy2

x2 + y2

)
if x2 + y2 �= 0,

(0, 0) if x = y = 0.

The continuity of f at 0 can be verified passing to polar coordinates. By
direct verification

∂f1(0, 0)
∂x

=
∂f2(0, 0)

∂x
=

∂f2(0, 0)
∂y

= 0,

∂f1(0, 0)
∂y

= −1;

that is, the Cauchy–Riemann conditions do not hold at 0.

The scalar differentiability of f at 0 follows from the fact that it satisfies
the conditions of the lemma.

6. Example of a mapping f : R
2 → R

2 which is continuous at 0, satisfies the
Cauchy–Riemann conditions at 0, but is not scalarly differentiable at this
point.

Take ⎧⎪⎪⎨
⎪⎪⎩

(
x2y

x2 + y2
,

x2y

x2 + y2

)
if x2 + y2 �= 0,

(0, 0) if x = y = 0.

As in the above examples, the components of f are continuous at 0. Fur-
thermore,

∂f1(0, 0)
∂x

=
∂f1(0, 0)

∂y
=

∂f2(0, 0)
∂x

=
∂f2(0, 0)

∂y
= 0,

that is, the Cauchy–Riemann conditions are satisfied at 0.
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Assume that f is scalarly differentiable in 0. Then the limit

lim inf
x→0
y→0

f1(x, y)x + f2(x, y)y
x2 + y2

= lim inf
x→0
y→0

x2y(x + y)
(x2 + y2)2

must exist. Put x = 0 and y → 0. Then this limit will be 0. Put x = y �= 0,
x → 0. Then this limit will be 1/2. That is, the limit does not exist.

7. Example of a nonlinear R-holomorphic mapping f : R
n → R

n for arbitrary
n (n > 2).

By direct verification it can be seen that

f(x1, x2, . . . , xn) =
(
(x1)2 − (x2)2 − · · · − (xn)2, 2x1x2, . . . , 2x1xn

)
has scalar derivative f#(x1, x2, . . . , xn) = 2x1 and satisfies the Cauchy–
Riemann conditions at every point.

Remark 1.5 In Ahlfors [1981] it is proved that there are no nonlinear
mappings of other type as that in 7. which satisfies the Cauchy–Riemann
equations at every point (i.e., there are no nonlinear R-holomorphic map-
pings of other type). Because H(Rn) for n > 2 is not closed with respect to
the composition (see Example 1 and Theorem 1.15), we cannot derive other
holomorphic mappings in this way.

1.1.5 Characterization of Monotonicity by Scalar
Derivatives

By using the notion of an upper (lower) scalar derivative we obtain the following
assertion

Theorem 1.17 Let G be an open convex set in R
n. Then the following

statements are equivalent.

1. f : G → R
n is an increasing (decreasing) mapping.

2. f#(x) ≥ 0 (f#(x) ≤ 0) for each x in G.

Proof.. The implication 1 ⇒ 2 is obvious.

2 ⇒ 1 Take ε > 0 arbitrarily and put g = f + εIn. Then

g#(x) = f#(x) + ε > 0, ∀x ∈ G.

Take a, b in G; a �= b. For x in the line segment [a, b] determined by a and b,
one has by hypothesis:

lim inf
y→x

〈g(y) − g(x), y − x〉
‖y − x‖2

> 0,
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and hence there exists δ(x) > 0 such that for any y in Ix =]x−δ(x)(b−a), x+
δ(x)(b− a)[⊂ G, 〈g(y)− g(x), y − x〉 > 0 holds as far as y �= x. Obviously,

[a, b] ⊂
⋃

x∈[a,b]

Ix;

that is, {Ix : x ∈ [a, b]} is an open cover of the compact set [a, b]. Hence

[a, b] ⊂ Iy1 ∪ Iy2 ∪ · · · ∪ Iym−1

for an appropriate set y1, . . . , ym−1 of points in ]a, b[. We can suppose that
y1, . . . , ym−1 are ordered from a to b. Hence a = y0 ∈ Iy1 , b = ym ∈ Iym−1 .
We can also consider that no interval Iyi is contained in any other. Take ξi ∈
Iyi−1 ∩ Iyi∩]yi−1, yi[. Then by the construction of these intervals

〈g(ξi) − g(yi−1), ξi − yi−1〉 > 0,

〈g(yi) − g(ξi), yi − ξi〉 > 0

and because ξi is in ]yi−1, yi[,

yi − ξi = α(yi − yi−1),

ξi − yi−1 = β(yi − yi−1),

for appropriate positive α and β. Hence

〈g(ξi) − g(yi−1), yi − yi−1〉 > 0,

〈g(yi) − g(ξi), yi − yi−1〉,
wherefrom

〈g(yi) − g(yi−1), yi − yi−1〉 > 0.

But yi − yi−1 = λi(b − a) for some positive λi, and then we must also have

〈g(yi) − g(yi−1), b − a〉 > 0.

By summing the above relations from i = 1 to i = m, we obtain

〈g(b) − g(a), b − a〉 > 0.

Rewriting this relation using the definition of g we have

〈f(b) − f(a), b − a〉 + ε‖b − a‖2 > 0.

By letting ε → 0 we conclude that

〈f(b) − f(a), b − a〉 ≥ 0.
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The case f
#(x) ≤ 0, ∀x ∈ G can be handled similarly. �

Theorem 1.18 Let G be an open convex set in R
n and suppose that

f : G → R
n satisfies

f#(x) > 0 (f#(x) < 0), ∀x ∈ G.

Then f is strictly increasing (strictly decreasing) on G.

The proof of this theorem is in fact contained in the proof of Theorem 1.17.

Corollary 1.19 Let f : R
n → R

n be given. The following statements are
equivalent.

1. f#(x) = 0, ∀x ∈ R
n.

2. f is an affine mapping with a skew-adjoint linear part.

Proof. The implication 2 ⇒ 1 is trivial.

To show that 1 ⇒ 2 we apply Theorem 1.17 to conclude that

〈f(y) − f(x), y − x〉 = 0,

∀x, y ∈ R
n, and then by usage of Theorem 1.4 we conclude Assertion 2. �

Theorem 1.20 Let G be convex and open in R
n and let f : G → R

n be
a Gateaux differentiable mapping on G. Then the following statements are
equivalent.

1. f is increasing (decreasing) on G.

2. The Gateaux differential of f is positive (negative) semi-definite in every
point of G.

Proof. 1 ⇒ 2 Suppose that 〈f(y) − f(x), y − x〉 ≥ 0 ∀x, y ∈ R
n. Take

y = x + λt with λ ∈ R, λ > 0, and t ∈ R
n arbitrarily. Then〈

f(x + λt) − f(x)
λ

, t

〉
≥ 0

and lettingλ → 0we obtain for the Gateaux differential δf(x) that 〈δf(x)t, t〉 ≥
0.

2 ⇒ 1 Suppose that the Gateaux differential is positive semi-definite at each
point of G. Take a, b in G, a �= b and x ∈ [a, b]. Then 〈δf(x)t, t〉 ≥ 0 for
every t ∈ R

n; that is,

lim inf
λ↓0

〈
f(x + λt) − f(x)

λ
, t

〉
≥ 0, ∀t ∈ R

n.


