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Preface

Biomolecular computing was invented by Leonard Adleman, who made head-
lines in 1994 demonstrating that DNA – the double-stranded helical molecule
that holds life’s genetic code – could be used to carry out computations. DNA
computing takes advantage of DNA or related molecules for storing infor-
mation and biotechnological operations for manipulating this information.
A DNA computer has extremely dense information storage capacity, pro-
vides tremendous parallelism, and exhibits extraordinary energy efficiency.
Biomolecular computing has an enormous potential for in vitro analysis of
DNA, assembly of nanostructures, and in vivo calculations.

The aim of this book is to introduce the beginner to DNA computing,
an emerging field of nanotechnology based on the hybridization of DNA
molecules. The book grew out of a research cooperation between the authors
and a graduate-level course and several seminars in the master’s program
in Computer Engineering taught by the third author at the Hamburg Uni-
versity of Technology during the last few years. The book is also accessible
to advanced undergraduate students and practitioners in computer science,
while students, researchers, and practitioners with background in life science
may feel the need to catch up on some undergraduate computer science and
mathematics. The book can be used as a text for a two-hour course on DNA
computing with emphasis on mathematical modelling.

This book is designed not as a comprehensive reference work, but rather
as a broad selective textbook. The first two chapters form a self-contained
introduction to the foundations of DNA computing: theoretical computer
science and molecular biology. Chapter 2 concisely describes the abstract,
logical, and mathematical aspects of computing. Chapter 3 briefly summa-
rizes basic terms and principles of the transfer of the genetic information
in living cells. The remaining chapters contain material that for the most
part has not previously appeared in textbook form. Chapter 4 addresses the
problem of word design for DNA computing. Proper word design is crucial in
order to successfully conduct DNA computations. Chapter 5 surveys the first
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generation of DNA computing. The DNA models are laboratory-scaled and
human-operated, and basically aim at solving complex computational prob-
lems. Chapter 6 addresses the second generation of DNA computing. The
DNA models are molecular-scaled, autonomous, and partially programmable,
and essentially target the in vitro analysis or synthesis of DNA. Chapter 7
is devoted to the newest generation of DNA computing. The DNA models
mainly aim at performing logical calculations under constraints found in liv-
ing cells.

We have not tried to trace the full history of the subjects treated – this
is beyond our scope. However, we have assigned credits to the sources that
are as readable as possible for one knowing what is written here. A good sys-
tematic reference for the material covered are the Proceedings of the Annual
International Workshop on DNA Based Computers.

First of all, we would like to thank Professor Volker Kasche and Professor
Rudi Müller for valuable support and for providing laboratory facilities for
our experimental work. We are grateful to Dr. Boris Galunsky, Stefan Goltz,
Margaret Parks, and Svetlana Torgasin for proofreading, and we express our
thanks to Wolfgang Brandt and Stefan Just for technical support. Finally,
we thank our students for their attention, their stimulating questions, and
their dedicated work, in particular, Atil Akkoyun, Gopinandan Chekrigari,
Zhang Gong, Sezin Nargül, Lena Sandmann, Oliver Scharrenberg, Tina Stehr,
Benjamin Thielmann, Ming Wei, and Michael Wild.

Hamburg, Munich Zoya Ignatova
December, 2007 Israel Mart́ınez-Pérez

Karl-Heinz Zimmermann
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Dipole moment 1 D = 3.34 · 10−30 Cm
Electron charge e = 1.602 · 10−19 C
Electron mass me = 9.109 · 10−31 kg
Gas constant R = 1.987 cal/(K mol)
Planck constant h = 6.626 · 10−34 Js
Reduced Planck constant � = h/(2π) Js
Mole 1 mol = 6.022 · 1023 molecules
Molarity 1 M = 6.022 · 1023 mol/l



Acronyms xiii

Chemical Notation

H hydrogen atom
O oxygen atom
C carbon atom
N nitrogen atom
S sulfur atom
P phosphor atom
A adenine
C cytosine
G guanine
T thymine
U uracil



Chapter 1

Introduction

Abstract This introductory chapter envisions DNA computing from the
perspective of molecular information technology, which is brought into focus
by three confluent research directions. First, the size of semiconductor devices
approaches the scale of large macromolecules. Second, the enviable compu-
tational capabilities of living organisms are increasingly traced to molecular
mechanisms. Third, techniques for engineering molecular control structures
into living cells start to emerge.

Nanotechnology

Nanotechnology focuses on the design, synthesis, characterization, and appli-
cation of materials and devices at the nanoscale. Nanotechnology comprises
near-term and molecular nanotechnology. Near-term nanotechnology aims at
developing new materials and devices taking advantage of the properties oper-
ating at the nanoscale. For instance, nanolithography is a top-down technique
aiming at fabricating nanometer-scale structures. The most common nano-
lithography technique is electron-beam-directed-write (EBDW) lithography
in which a beam of electrons is used to generate a pattern on a surface.

Molecular nanotechnology aims at building materials and devices with
atomic precision by using a molecular machine system. Nobel Prize-winner
R. Feynman in 1959 was the first who pointed towards molecular manufactur-
ing in his talk ”There’s plenty of room at the bottom,” in which he discussed
the prospect of maneuvering things around atom by atom without violat-
ing physical laws. The term nanonechnology was coined by N. Taniguchi in
1974, while in the 1980s E. Drexler popularized the modelling and design
of nanomachines, emphasizing the constraints of precision, parsimony, and
controllability, performing tasks with minimum effort. Eric Drexler’s nanoma-
chines include nano-scale manipulators to build objects atom by atom, bear-
ings and axles built of diamond-like lattices of carbon, waterwheel-like pumps

Z. Ignatova et al., DNA Computing Models, 1
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to extract and purify molecules, and tiny computers with moving parts whose
size is within atomic scale.

Nanotechnology relies on the fact that material at the nanoscale exhibits
quantum phenomena, which yield some extraordinary bonuses. This is due
to the effects of quantum confinement that take place when the material
size becomes comparable to the de Broglie wavelength of the carries (elec-
trons and holes behaving as positively charged particles), leading to dis-
crete energy levels. For instance, quantum dots are semiconductors at the
nanoscale consisting of 100 to 100,000 atoms. Quantum dots confine the
motion of (conduction band) electrons and (valency band) holes in all three
spatial directions. Quantum dots are particularly useful for optical appli-
cations due to their theoretically high quantum yield (i.e., the efficiency
with which absorbed light produces some effect). When a quantum dot
is excited, the smaller the dot, the higher the energy and intensity of its
emitted light. These optical features make quantum dots useful in biotech-
nological developments as well. Recently, D. Lidke and colleagues (2004)
successfully employed quantum dots to visualize the movement of individual
receptors on the surface of living cells with unmatched spatial and temporal
resolution.

Biotechnology

Modern biotechnology in the strong sense refers to recombinant DNA technol-
ogy, the engineering technology for bio-nanotechnology. Recombinant DNA
technology allows the manipulation of the genetic information of the genome
of a living cell. It facilitates the alteration of bio-nanomachines within the liv-
ing cells and leads to genetically modified organisms. Manipulation of DNA
mimics the horizonal gene transfer (HGT) in the test tube.

HGT played a major role in bacterial evolution. It is thought to be a sig-
nificant technique to confer drug-resistant genes. Common mechanisms for
HGT between bacterial cells are transformation, the genetic alteration of a
cell resulting from introducing foreign gene material, transduction, in which
genetic material is introduced via bacterial viruses (bacteriophages), and bac-
terial conjugation, which enables transfer of genetic material via cell-to-cell
contact. HGT appears to have some significance for unicellular eukaryotes,
especially for protists, while its prevalence and importance in the evolution
of multicellular eukaryotes remains unclear. Today, the HGT mechanisms are
used to alter the genome of an organism by exposing cells to fragments of
foreign DNA encoding desirable genes, including those from another species.
This DNA can be either transiently internalized into the cell or integrated
into the recipient’s chromosomes. Thus, it can be replicated and inherited like
any other part of the genome. HGT holds promising applications in health
care and in industrial and environmental processing.
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Bio-Nanotechnology

Nanotechnology was invented more than three billion years ago. Indeed,
nanoscale manipulators for building molecule-sized objects were required in
the earliest living cells. Today, many working examples of bio-nanomachines
exist within living cells. Cells contain molecular computers, which recognize
the concentration of surrounding molecules and compute the proper func-
tional output. Cells also host a large collection of molecule-selective pumps
that import ions, amino acids, sugars, vitamins and all of the other nutri-
ents needed for living. By evolutionary search and modification over tril-
lions of generations, living organisms have perfected a plethora of molecular
machines, structures, and processes (Fig. 1.1).

Bio-nanomachines are the same size as the nanomachines that are designed
today. But they hardly resemble the machines of our macroscopic world and
they are less familiar than E. Drexler’s manipulators built along familiar
rigid, rectilinear designs. D. Goodsell recently claimed that the organic, flex-
ible forms of bio-nanomachines can only be understood by looking at the
forces that made possible the evolution of life. The process of evolution by
natural selection places strong constraints on biological molecules, their struc-
ture and their function. As a consequence of the evolution of life, all living
organisms on earth are made of four basic molecular building blocks: pro-
teins, nucleic acids, polysaccharides, and lipids. Proteins and nucleic acids
are built in modular form by stringing subunits (monomers) together based
on genetic information. These polymers may be formed in any size and with
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monomers in any order so that they are remarkably flexible in structure and
function. On the other hand, lipids and polysaccharides are built by ded-
icated bio-machines. Each type of new lipid or polysaccharide requires an
entirely new suite of synthetic machines. Consequently, lipids and polysac-
charides are less diverse in structure and more limited in function than
proteins are.

The principles of protein structure and function may yield insight into
nanotechnological design and fabrication. Proteins are synthesized in a mod-
ular and information-driven manner by the translation machinery of the cell,
and the design of proteins is limited by a dedicated modular plan given by
the genetic code. Proteins can aggregate in larger complexes due to errors
in the protein-synthetic machinery or changes in the environmental condi-
tions, so the size of proteins that may be consistently synthesized is limited.
These aggregates can be built accurately and economically by protein-protein
interactions based on many weak interactions (hydrogen bonds) and highly
complementary shapes of interacting surfaces. Proteins are synthesized in
cells and are transported to their ultimate destinations or diffuse freely in a
crowded collection of competitors. A typical protein will come into partial
contact with many other types of proteins and must be able to discriminate
its unique target from all others. Proteins constantly flex at physiological tem-
peratures, with covalent bonds remaining connected, and reshaped hydrogen
bonds and salt bridges linking portions of the molecule or aggregate. Proteins
even breathe, switching between different conformations and allowing atoms
or small molecules to pass.

Synthetic Biology

The term synthetic biology was introduced by E. Kool and other speakers
at the annual meeting of the American Chemical Society in 2000. Synthetic
biology in broader terms aims at recreating the properties of living systems in
unnatural chemical systems. That means, assembling chemical systems from
unnatural components so that the systems support Darwinian evolution and
are thus biological. Thus, synthetic biology may provide a way to better
understand natural biology.

DNA and RNA are the molecular structures that support genetic systems
on earth. Synthetic biology partially shows that the DNA and RNA back-
bone is not a simple scaffold to hold nucleobases but has an important role in
molecular recognition, and the repeating charge provides the universal fea-
ture of genetic molecules that they work in water. Recently, S. Benner and
coworkers (2003) constituted a synthetic genetic system by eight nucleotides
that were generated from the natural nucleobases by shuffling hydrogen-bond
donating and accepting groups. This system is part of the Bayer VERSANT
branched DNA diagnostic assay which provides a reliable method to quantify
HIV-1 RNA in human plasma.
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Molecular Self-Assembly

Molecular self-assembly is an autonomous process of nanofabrication in which
molecules or aggregates are formed without the influence of an outside source.
The physicist H.R. Crane (1950) provided two basic design concepts required
for molecular self-assembly. First, the contact or combined spots on the com-
ponents must be multiple and weak. Thus, an array of many weak interactions
is considered preferable to a few very strong interactions because the latter
may lead to interactions with wrong candidates. Second, the assembled com-
ponents must be highly complementary in their geometrical arrangement so
that tightly packed aggregates can result. These two concepts can be observed
in numerous protein-protein structures, as already mentioned.

Molecular self-assembly can theoretically create a wide range of aggregates.
However, a major inherent difficulty is that the exact set of components and
interactions that will construct the aggregate is difficult to determine. Recent
advances in biotechnology and nanotechnology provided tools necessary to
consider engineering at the molecular level. DNA computation introduced by
L. Adleman in 1994 blazed a trail for the experimental study of programmable
biochemical reactions, the self-assembly of DNA structures.

DNA Nanotechnology

DNA nanotechnology was initiated by N. Seeman in the 1980s. It makes use
of the specificity of Watson-Crick base pairing and other DNA properties to
make novel structures out of DNA. The techniques used are also employed
by DNA computing and thus DNA nanotechnology overlaps with DNA com-
puting. A key goal of DNA nanotechnology is to construct periodic arrays
in two and three dimensions. For this, DNA branched junctions with spe-
cific sticky ends are designed that self-assemble to stick figures whose edges
are double-stranded DNA. Today, this technology provides cubes, truncated
octahedrons, and two-dimensional periodic arrays, while three-dimensional
periodic arrays are still lacking. One ultimate goal is the rational synthesis of
DNA cages that can host guest molecules whose structure is sought by crys-
tallography. This would overcome the weakness of the current crystallization
protocol and provide a good handle on the crystallization of all biological
molecules.

Computing

A digital computer can be viewed as a network of digital components such
as logic gates. The network consists of a finite number of components and
the components can take on a few states. Thus, the network has only a finite
number of states, and hence any realizable digital computer is a finite state
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machine, although with a vast number of states. Today, these machines are
realized by digital electronic circuits mainly relying on transistor technology.
The success of digital electronic circuits is based on low signal-to-noise ratio,
inter-connectability, low production costs, and low power dissipation. Digital
electronic circuits scaled predictably during the last 30 years, with unchanged
device structure and operability. Another decade of scaling appears to be
feasible.

Digital computers excel in many areas of applications, while other inter-
esting information processing problems are out of reach. The limitations are
of both a theoretical and physical nature. Theoretical limitions are due to
the nature of computations. The first model of effective computation was
introduced by the Turing machine, which is essentially a finite state machine
with an unlimited memory. In view of the generally accepted Church’s thesis,
the model of computation provided by the Turing machine is equivalent to
any other formulation of effective computation. A machine capable of car-
rying out any computation is called a universal machine. Universal Turing
machines exist, and every personal computer is a finite-state approximation
of a univeral machine. A general result in computability reveals the exis-
tence of problems that cannot be computed by a universal machine despite
potentially unlimited resources. Efficient computations can be carried out
on practical computers in polynomial time and space. However, there are
computational problems that can be performed in exponential time and it
is unknown whether they can be performed in polynomial time and space.
A prototype example is the travelling salesman problem that seeks to find a
route of minimal length through all cities in a road map.

Biomolecular Computing

Current attempts to implement molecular computing fall into two categories.
In the first are studies to derive molecular devices that mimic components of
conventional computing devices. Examples are transistors from carbon-based
semiconductors and molecular logic gates. The second includes investigations
to find new computing paradigms that exploit the specific characteristics of
molecules. Examples that fall into this category are computions based on
diffusion-reaction or self-assembly.

A physical computation in a digital computer evolves over time. Informa-
tion is stored in registers and other media, while information is processed
by using digital circuits. In biomolecular computing, information is stored
by biomolecules and processing of information takes place by manipulating
biomolecules. The concept of biomolecular computing was theoretically dis-
cussed by T. Head in 1987, but L. Adleman in 1994 was the first to solve
a small instance of the travelling salesman problem with DNA. Adleman’s
experiment attracted considerable interest from researchers hoping that the
massive parallelization of DNA molecules would one day be the basis to
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outperform electronic computers, when it comes to the computation of com-
plex combinatorial problems. However, soon thereafter, researchers realized
some of the drawbacks related to this incipient technology: a growing num-
ber of error-prone, time-consuming operations, and exponential growth of
DNA volume with respect to problem size. Although some new concepts like
molecular self-assembly counteracted these difficulties, no satisfactory solu-
tion to these problems has been found so far questioning the feasibility of
this technology for solving intractable problems.

Therefore, molecular computing should not be viewed as a competitor for
conventional computing, but as a platform for new applications. Progress
in molecular computing will depend on both novel computing concepts and
innovative materials. The goal of molecular information processing is to find
computing paradigms capable of exploiting the specific characteristics of
molecules rather than requiring the molecules to conform to a given specific
formal specification.

References

1. Adleman LM (1994) Molecular computation of solutions of combinatorial prob-
lems. Science 266:1021–1023

2. Benner SA, Sismour AM (2005) Synthetic biology. Nature Rev Genetics 6:
533–543

3. Crane HR (1950) Principles and problems of biological growth. Sci Monthly
70:376–389

4. Carbone A, Seeman NC (2004) Molecular tiling and DNA self-assembly. LNCS
2340:219–240

5. Drexler KE (1992) Nanosystems, molecular machines, manufacturing and com-
putation. Wiley and Sons, New York

6. Feynman RP (1961) Miniaturization. In: Gilbert DH (ed.) Reinhold, New York
7. Geyer C, Battersby T, Benner SA (2003) Nucleobase pairing in expanded Watson-

Crick-like genetic information systems. Structure 11:1485–1498
8. Goodsell DS (2000) Biotechnology and nanotechnology. Sci Amer 88:230–237
9. Head T (1987) Formal language theory and DNA: an analysis of the generative

capacity of specific recombination behaviors. Bull Math Biol 47:737–759
10. Kendrew J (1998) Encyclopedia of molecular biology. Blackwell Sci, Oxford
11. Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco H, Jares-

Erijman EA, Jovin TM (2004) Quantum dot ligands provide new insights into
erbB/HER receptor-mediated signal transduction. Nat Biotech 22:198–203

12. Leavitt D (2006) The man who knew too much: Alan Turing and the invention
of the computer. Norton, London

13. Rawls R (2000) Synthetic biology makes its debut. Chem Eng News 78:49–53
14. Seeman N (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247
15. Taniguchi N (1974) On the basic concept of nanotechnology. Proc Intl Conf Prod

Eng Tokyo, Japan Soc Prec Eng
16. Wu R, Grossman L, Moldave K (1980) Recombinant DNA. Vol 68 Academic

Press New York



Chapter 2

Theoretical Computer Science

Abstract This chapter provides a self-contained introduction to a collection
of topics in computer science that focusses on the abstract, logical, and math-
ematical aspects of computing. First, mathematical structures called graphs
are described that are used to model pairwise relations between objects
from a certain collection. Second, abstract machines with a finite number
of states called finite state automata are detailed. Third, mathematical mod-
els of computation are studied and their relationships to formal grammars
are explained. Fourth, combinatorial logic is introduced, which describes logic
circuits whose output is a pure function of the present input only. Finally,
the degrees of complexity to solve a problem on a computer are outlined.

2.1 Graphs

Graph theory provides important tools to tackle complex problems in differ-
ent parts of science.

2.1.1 Basic Notions

A graph is a pair G = (V, E), consisting of a non-empty set V and a set
E of two-element subsets of V . The elements of V are called vertices and
the elements of E are termed edges. An edge e = {u, v} is also written as
e = uv (or e = vu). If e = uv is an edge, then u and v are incident with e, u
and v are adjacent , and u and v form the end-vertices of e. In the following,
we consider finite graphs (i.e., graphs with finite vertex sets). The number of
vertices and edges of a graph G is called the order and size of G, respectively.

A graph is described by a diagram, in which the vertices are points in the
drawing plane and the edges are line segments.

Z. Ignatova et al., DNA Computing Models, 9
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Fig. 2.1 Diagram of the
graph in Example 2.1.
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Example 2.1. The graph G with vertex set V = {v1, . . . , v4} and edge set
E = {v1v3, v2v3, v2v4, v3v4} is given by the diagram in Figure 2.1. ♦

A graph G = (V, E) has neither loops nor multiple edges. Loops are one-
element subsets of V (i.e., edges incidenting with only one vertex). Multiple
edges are multisets over the two-element subsets of V . A multiset over a set
M is a mapping f : M → N0 assigning to each element m in M the number
of occurrences f(m) in the multiset.

Let G = (V, E) be a graph. The number of edges which are incident with
a vertex v ∈ V is called the degree of v and is denoted by d(v). A vertex v in
G is called isolated if d(v) = 0. If all vertices in G have the same degree k,
then the graph G is called k-regular .

Lemma 2.2. (Handshaking) For each graph G = (V, E),
∑

v∈V

d(v) = 2|E| . (2.1)

Proof. On the left hand side, each edge in the sum is counted twice, once for
each vertex. �
Corollary 2.3. In each graph, the number of vertices of odd degree is even.

Example 2.4. Can 333 phones be connected so that each phone is connected
with three phones? The answer is no, because the sum of degrees in this
network would be odd (333 · 3), contradicting the handshaking lemma. ♦

The degree sequence of a graph G is given by the decreasing list of degrees
of all vertices in G. For instance, the graph in Figure 2.1 has the degree
sequence (3, 2, 2, 1). On the other hand, not every decreasing sequence of
natural numbers is the degree sequence of a graph, such as (5, 3, 2, 2, 2, 1),
since the sum of degrees is odd.

Subgraphs

Let G = (V, E) be a graph. A subgraph of G is a graph G′ = (V ′, E′) with
V ′ ⊆ V and E′ ⊆ E ∩ (

V ′

2

)
, where

(
V ′

2

)
is the set of 2-element subsets of

V ′. The subgraph G′ is considered to be induced from its edge set E′. If
E′ = E ∩ (

V ′

2

)
, the subgraph G′ is induced from its vertex set V ′.
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Fig. 2.2 Two subgraphs, G1 and G2, of the graph G in Figure 2.1.

Example 2.5. In view of the graph G in Figure 2.1, two of its subgraphs G1

and G2 are illustrated in Figure 2.2. The subgraph G2 is induced from the
vertex set {v2, v3, v4}, while the subgraph G1 is not because the edge v2v3 is
missing. ♦

Isomorphisms

Let G = (V, E) and G′ = (V ′, E′) be graphs. A mapping φ : V → V ′ is called
an isomorphism from G onto G′, if φ is bijective and for all vertices u, v ∈ V ,
uv ∈ E if and only if φ(u)φ(v) ∈ E′. Two graphs G and G′ are termed
isomorphic if there is an isomorphism from G onto G′. Clearly, isomorphic
graphs have the same order, size, and degree sequence.

Example 2.6. The graphs in Figure 2.3 are isomorphic. An isomorphism is
given by φ(vi) = ui for 1 ≤ i ≤ 4. ♦

2.1.2 Paths and Cycles

Let G = (V, E) be a graph. A sequence W = (v0, . . . , vk) of vertices vi ∈ V
is called a path in G, if for each i, 1 ≤ i ≤ k, we have vi−1vi ∈ E. The vertex
v0 is the initial vertex and the vertex vk the final vertex in W . The length
of W equals n, the number of edges in W . A path W is called simple if W
contains each vertex at most once.
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Fig. 2.3 Two isomorphic graphs.
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Fig. 2.4 A Manhattan network.

Example 2.7. The graph in Figure 2.4 contains several simple paths of
length 6 such as (s, a, d, g, f, i, t) and (s, a, b, e, h, i, t). ♦

A cycle in G is a path in G, in which the initial and final vertex are
identical. A cycle is called simple if it contains each vertex at most once
(apart from the initial and final vertex). Each edge uv provides a simple
cycle (u, v, u) of length 2.

Example 2.8. The graph in Figure 2.4 contains several simple cycles of
length 6 such as (a, b, c, h, e, d, a) and (a, b, e, f, g, d, a). ♦

Connectedness

Let G = (V, E) be a graph. Two vertices u, v ∈ V are called connected in
G, briefly u ≡G v, if u = v or there is a path from u to v in G. If any two
vertices in G are connected, then G is termed connected. For each vertex v
in G, define the set of vertices connected to v as CG(v) = {u ∈ V | u ≡G v}.

Theorem 2.9. Let G = (V, E) be a graph. The set of connected sets CG(v),
v ∈ V , of G is a partition of V (i.e., the sets are non-empty and their union
provides the overall set V , and any two sets are either equal or disjoint).

A subgraph induced by a connected set of G is called a component of G. If
G is connected, then there is only one component.

Example 2.10. The graph in Figure 2.5 consists of two components: {a, b}
and {c, d, e}. ♦

Theorem 2.11. Let G = (V, E) be a connected graph and let K be a simple
cycle in G. If an edge e ∈ G on the cycle K is deleted from G, the resulting
subgraph of G is still connected.
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Fig. 2.5 A graph with
two components.
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2.1.3 Closures and Paths

A directed graph is a pair G = (V, E), consisting of a non-empty set V and
a subset E of V × V (Fig. 5.1). Each undirected graph can be assigned a
directed graph so that each edge e = uv is replaced by the edges (u, v) and
(v, u). The edge set of a directed graph forms a binary relation on V . The
indegree of a vertex v in G is the number of incoming edges (u, v), u ∈ V ,
and the outdegree of v is the number of outcoming edges (v, w), w ∈ V .

Let R be a binary relation on a set A (i.e., R ⊆ A×A). Define the powers
of R inductively as follows:

• R0 = {(a, a) | a ∈ A},
• Rn+1 = R ◦Rn = {(a, c) | (a, b) ∈ R, (b, c) ∈ Rn, b ∈ A} for all n ≥ 0.

Clearly R1 = R0 ◦R = R. The definition implies the following:

Theorem 2.12. Let G = (V, E) be a directed graph and let n ≥ 0 be an
integer. The nth power En provides all paths of length n between any two
vertices in G.

Define R+ =
⋃

n≥1 Rn and R∗ =
⋃

n≥0 Rn = R+ ∪R0.

Theorem 2.13. Let R be a binary relation on a set A. The relation R+ is
the smallest transitive relation containing R. The relation R∗ is the smallest
reflexive, transitive relation that contains R.

Proof. Let R′ =
⋃

n≥1 Rn. Claim that R′ is transitive. Indeed, let a, b, c ∈ A
with (a, b) ∈ R′ and (b, c) ∈ R′. Then there are non-negative integers m
and n so that (a, b) ∈ Rm and (b, c) ∈ Rn. Thus, (a, c) ∈ Rm+n and hence
(a, c) ∈ R′. Moreover, R = R1 and so R ⊆ R′.

Finally, let R′′ be a transitive relation on A, which contains R. Claim
that R′ ⊆ R′′. Indeed, let a, b ∈ A with (a, b) ∈ R′. Then there is a non-
negative integer n so that (a, b) ∈ Rn. Consequently, there are elements
a1, . . . , an−1 in A so that (a, a1) ∈ R, (ai, ai+1) ∈ R for all 1 ≤ i ≤ n−2, and
(an−1, b) ∈ R. But R is a subset of R′′ and so (a, a1) ∈ R′′, (ai, ai+1) ∈ R′′

for all 1 ≤ i ≤ n− 2, and (an−1, b) ∈ R′′. As R′′ is transitive, it follows that
(a, b) ∈ R′′ and so the claim is established.

The second assertion is similarly proved. �
The relation R+ is called the transitive closure of R, while the relation R∗ is
termed the reflexive, transitive closure of R.
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Distances

Let G = (V, E) be a graph and let u, v ∈ V . Define the distance between u
and v in G as follows:

dG(u, v) =

⎧
⎨

⎩

0 if u = v,
∞ if u and v are not connected,
l if l is the length of a shortest path in G from u to v.

(2.2)

Theorem 2.14. Let G = (V, E) be a graph. The distance dG defines a metric
on G. That is, for all u, v, w ∈ V , dG(u, v) = 0 if and only if u = v, dG(u, v) =
dG(v, u), and dG(u, w) ≤ dG(u, v) + dG(v, w).

Notice that each metric dG satisfies dG(u, v) ≥ 0 for all u, v ∈ V , because
0 = dG(u, u) ≤ dG(u, v) + dG(v, u) = 2dG(u, v).

2.1.4 Trees

A graph is called cycle-free or a forest if it contains no simple cycles of length
at least 3. A connected forest is called a tree (Fig. 2.6).

Theorem 2.15. Each tree contains at least two vertices of degree 1.

Proof. Let G be a tree. Let u und v be vertices in G so that their distance
dG(u, v) is maximal. Let W = (u, v1, . . . , vk−1, v) be a shortest path in G
from u to v. Suppose that u has two adjacent vertices, v1 and w. Then by
hypothesis, dG(w, v) ≤ dG(u, v). Thus there is a shortest path from w to v
not using u. So G contains a simple cycle of length at least 3. A contradiction.
Consequently, u has degree 1 and, by symmetry, also v. �
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Fig. 2.6 A tree.
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Theorem 2.16. For each tree G = (V, E), we have |E| = |V | − 1.

Proof. The case |V | = 1 is clear. Let G be a tree with |V | > 1 vertices.
In view of Theorem 2.15, the graph G contains a vertex of degree 1. If this
vertex is deleted, the resulting subgraph G′ = (V ′, E′) of G is a tree, too. By
induction hypothesis, 1 = |V ′| − |E′| = (|V | − 1)− (|E| − 1) = |V | − |E|. �

Let G = (V, E) be a graph. A spanning tree of G is a subgraph of G, which
forms a tree and contains each vertex of G (Fig. 2.7).

Theorem 2.17. Each connected graph contains a spanning tree.

Proof. Let G = (V, E) be a connected graph. If |E| = 1, then the assertion is
clear. Let |E| > 1. If G is a tree, then G is its own spanning tree. Otherwise,
there is a simple cycle of length at least 3 in G. Delete one edge from this
cycle. The resulting subgraph G′ of G has |E| − 1 edges and is connected by
Theorem 2.11. Thus by induction hypothesis, G′ has a spanning tree, and
this spanning tree is also a spanning tree of G. �

Theorem 2.18. A connected graph G = (V, E) is a tree if and only if |E| =
|V | − 1.

Proof. Let |E| = |V | − 1. Suppose G is not a tree. Then G contains a simple
cycle of length at least 3. Delete one edge from this cycle. The resulting
subgraph G′ = (V, E′) of G is connected by Theorem 2.11. The edge set
in G′ fulfills |E′| < |V | − 1. On the other hand, Theorems 2.16 and 2.17
imply that G contains a spanning tree with |V | − 1 edges, which lies in E′.
A contradiction. The reverse assertion was proved in Theorem 2.16. �
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Fig. 2.7 A spanning tree of the graph in Figure 2.4.
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Fig. 2.8 A bipartite
graph with partition
{{a, b, c}, {d, e, f}}. 
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2.1.5 Bipartite Graphs

A graph G = (V, E) is called bipartite if there is a partition of V into subsets
V1 und V2 so that every edge in G has one end-vertex in V1 and one end-vertex
in V2 (Fig. 2.8).

Theorem 2.19. A connected graph G is bipartite if and only if G contains
no cycles of odd length.

Proof. Let G = (V, E) be a bipartite graph with partition {V1, V2}. Let K =
(v0, v1, . . . , vk) be a cycle in G. If v0 ∈ V1, then v1 ∈ V2, v2 ∈ V1, and so on.
Thus, vk = v0 ∈ V1 and hence the cycle K has even length. If v0 ∈ V2, then
the result is the same.

Conversely, assume that G contains no cycles of odd length. Let v ∈ V
and define

V1 = {u ∈ V | dG(v, u) ≡ 1 mod 2}
and

V2 = {u ∈ V | dG(v, u) ≡ 0 mod 2} .

Clearly, {V1, V2} is a partition of V . Suppose that there is an edge uw in
G with u, w ∈ V1. Then there is a cycle, consisting of the edge uw, a path
of length dG(w, v) from w to v, and a path of length dG(v, u) from v to u.
This cycle has total length 1+dG(w, v)+dG(v, u), which is odd by definition
of V1 and V2. A contradiction. Similarly, there exists no edge uw in G with
u, w ∈ V2. �

2.2 Finite State Automata

Finite state automata are a simple type of machine studied first in the 1940s
and 1950s. These automata were originally proposed to model brain func-
tions. Today, finite state automata are mainly used to specify various kinds
of hardware and software components.
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2.2.1 Strings and Languages

Let Σ be a finite set and let n be a non-negative integer. A word or string
of length n over Σ is a sequence x = a1 . . . an so that ai ∈ Σ for each
1 ≤ i ≤ n. The length of a string x is denoted by |x|. The set Σ is termed
alphabet and the elements of Σ are called characters or symbols. The empty
string corresponds to the empty sequence and is denoted by ε. For instance,
the strings of length at most 2 over Σ = {a, b} are ε, a, b, aa, ab, ba,
and bb.

Define Σn as the set of all strings of length n over Σ. In particular, Σ0 =
{ε} and Σ1 = Σ. Moreover, let Σ∗ be the set of all strings over Σ (i.e., Σ∗

is the disjoint union of all sets Σn, n ≥ 0). Write Σ+ for the set of all non-
empty strings over Σ (i.e., Σ+ is the disjoint union of all sets Σn, n ≥ 1).
Any subset of Σ∗ is called a (formal) language over Σ.

The concatenation of two strings x and y is the string xy formed by joining
x and y. Thus, the concatenation of the strings “home” and “work” is the
string “homework”. Let x be a string over Σ. A prefix of x is a string u over
Σ so that x = uv for some string v over Σ. Similarly, a postfix of x is a string
v over Σ so that x = uv for some string u over Σ.

A monoid is a set M which is closed under an associative binary operation,
denoted by ‘·’, and has an identity element ε ∈M . That is, for all x, y, and
z in M , (x ·y) · z = x · (y · z), and x · ε = x = ε ·x. This monoid is written as a
triple (M, ·, ε). In particular, the set Σ∗ forms a monoid with the operation
of concatenation of strings and with the empty string as the identity element.
For any two languages L1 and L2 over Σ, write L1L2 = {xy | x ∈ L1, y ∈ L2}
to denote their concatenation.

Let (M, ·, ε) and (M ′, ◦, ε′) be monoids. A homomorphism from M to M ′

is a mapping φ : M →M ′ so that for all x, y ∈M , φ(x · y) = φ(x) ◦φ(y) and
φ(ε) = ε′. An anti-homomorphism from M to M ′ is a mapping φ : M →M ′

so that for all x, y ∈M , φ(x·y) = φ(y)◦φ(x) and φ(ε) = ε′. A homomorphism
φ : M →M is called a morphic involution if φ2 is the identity mapping. The
simplest morphic involution is the identity mapping. An anti-homomorphism
φ : M → M so that φ2 is the identity mapping is termed an anti-morphic
involution.

Let Σ be an alphabet. Each mapping f : Σ → Σ can be extended to a
homomorphism φ : Σ∗ → Σ∗ so that φ(a) = f(a) for each a ∈ Σ. To see
this, put φ(a1 . . . an) = f(a1) . . . f(an) for each string a1 . . . an ∈ Σ∗. Simi-
larly, each mapping f : Σ → Σ can be extended to an anti-homomorphism
φ : Σ∗ → Σ∗. For this, define φ(a1 . . . an) = f(an) . . . f(a1) for each string
a1 . . . an ∈ Σ∗.

Single strands of DNA are quaternary strings over the DNA alphabet
Δ = {A, C, G, T}. Strands of DNA are oriented (e.g., AACG is distinct from
GCAA). An orientation is introduced by declaring that a DNA string begins
with the 5’-end and ends with the 3’-end. For example, the strands AACG and
GCAA are denoted by 5’-AACG-3’ and 5’-GCAA-3’, respectively. Furthermore,
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in nature DNA is predominantly double-stranded. Each natural strand occurs
with its reverse complement, with reversal denoting that the sequences of the
two strands are oppositely oriented, relative to one other, and with comple-
mentarity denoting that the allowed pairings of letters, opposing one another
on the two strands, are the Watson-Crick pairs {A, T} and {G, C}. A dou-
ble strand results from joining reverse complementary strands in opposite
orientations:

5’-AACGTC-3’
3’-TTGCAG-5’ .

DNA strands that differ by orientation are mapped onto each other by the
mirror involution μ : Δ∗ → Δ∗, which is the anti-homomorphism extending
the identity mapping. For example, μ(AACG) = GCAA. The mirror image of
a DNA string x is denoted by xR = μ(x). Moreover, the complementarity
involution is the morphic involution φ : Δ∗ → Δ∗ that extends the com-
plementarity mapping f : Δ → Δ given by f(A) = T, f(C) = G, f(G) = C,
and f(T) = A. For example, φ(AACG) = TTGC. The complementary image of
a DNA string x is denoted by xC = φ(x). Finally, reverse complementary
strands are obtained by the reverse complementarity involution or Watson-
Crick involution τ = μφ (= φμ), which is composed of the mirror involu-
tion μ and the complementarity involution φ (in any order). For example,
τ(AACG) = CGTT. The reverse complementary image of a DNA string x is
denoted by xRC = τ(x).

2.2.2 Deterministic Finite State Automata

A finite state automaton can be thought of as a processing unit reading
an input string and accepting or rejecting it. A (deterministic) finite state
automaton is a quintuple M = (Σ, S, δ, s0, F ) so that Σ is an alphabet, S is
a finite set of states with S ∩ Σ = ∅, s0 ∈ S is the initial state, F ⊆ S is
the set of final states, and δ : S × Σ → S is the transition function, where
the transition δ(s, a) = s′ is also graphically written as s

a→ s′. The size of a
finite state automaton M , denoted by |M |, is the number |S|+ |δ|.
Example 2.20. Consider the finite automaton M with state set S = {s0, s1},
input alphabet Σ = {a, b}, initial state s0, final state set F = {s0}, and
transition function δ given by the transition graph in Figure 2.9. ♦

A finite state automaton M computes a string x = a1 . . . an as follows:
M starts in the initial state s0, reads the first symbol a1 and enters the
state s1 = δ(s0, a1). Then it reads the next symbol a2 and enters the state
s2 = δ(s1, a2) and so on. After reading the last symbol an, the automaton
enters the state sn = δ(sn−1, an). Therefore, the processing of an input string
x can be traced by the associated path (s0, . . . , sn) in the transition graph.
If the last state sn is a final state, then M accepts the string x; otherwise,
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Fig. 2.9 Transition
graph of finite state
automaton.
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M rejects the string x. The language of M is the set of all strings accepted
by M ,

L(M) = {x ∈ Σ∗ |M accepts x} . (2.3)

The multi-step behavior of a finite state automaton M can be formally
described by the extended transition function δ∗ : S × Σ∗ → S, which is
inductively defined as follows:

• δ∗(s, ε) = s,
• δ∗(s, ax) = δ∗(δ(s, a), x) for all s ∈ S, a ∈ Σ, and x ∈ Σ∗.

In particular, δ∗(s, a) = δ(s, a) for all s ∈ S and a ∈ Σ. The language of M
is thus given by

L(M) = {x ∈ Σ∗ | δ∗(s0, x) ∈ F} . (2.4)

If L = L(M) is a finite language, the size of the accepting automaton M is
in the worst case proportional to the total length of all strings in L.

Example 2.21. Consider the finite state automaton M in Example 2.20. The
language of M consists of all strings over Σ which contain an even number
of a’s. For instance, δ∗(s0, abab) = s0 and δ∗(s0, bbab) = s1. ♦

2.2.3 Non-Deterministic Finite State Automata

Non-deterministic machines may provide several next states for each pair
of state and input symbol. A non-deterministic finite state automaton is a
quintuple M = (Σ, S, δ, S0, F ) so that Σ is an alphabet, S is a finite set of
states with S ∩Σ = ∅, S0 ⊆ S is the set of initial states, F ⊆ S is the set of
final states, and δ : S ×Σ → P (S) is the transition function.

A non-deterministic finite state automaton M computes a string x =
a1 . . . an similar to its deterministic counterpart. However, M can start in
any initial state, and if it happens to enter the state s and reading symbol
a, then it can enter any state in δ(s, a). Therefore, the processing of the
input string x can be traced by all paths (s0, . . . , sn) in the corresponding
transition graph so that s0 ∈ S0 and si ∈ δ(si−1, ai) for all 1 ≤ i ≤ n.


