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Chapter 1
Introduction to Piaget’s Genetic 
Epistemology

Paul Christian Dawkins, Amy J. Hackenberg, and Andy Norton

 Introduction

Piaget is known for his work in developmental psychology, but he began his career 
as a biologist whose primary interests evolved into epistemology; that is, theories of 
knowledge and knowing. While studying snails, he was introduced to Bergson’s 
(1998) idea of creative evolution, in response to which he later said,

The problem of knowing (properly called the epistemological problem) suddenly appeared 
to me in an entirely new perspective and as an absorbing topic of study. It made me decide 
to consecrate my life to the biological explanation of knowledge. (Vidal, 1994, p. 52)

Piaget began to study children’s psychological development as a means of investi-
gating the biological origins of logic and mathematics. In this pursuit, he followed 
the biogenetic law that “ontology recapitulates phylogeny”: the development of the 
individual follows a similar trajectory as the development of humankind.
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We can sum up the constructivist epistemology1 with the mantra, “All knowledge 
is constructed” (Glasersfeld, 1995, p. 160). Here, we focus on Piaget’s genetic epis-
temology, which implies more than its constructivist tenets. We frame Piaget’s 
genetic epistemology in terms of his lifelong pursuit to understand the power and 
origins of logico-mathematical operations. It directs us back to the biological ori-
gins of our logico-mathematical operations and to the structures that organize them 
so that they, in turn, might organize the world.

To say “all knowledge is constructed” is to challenge the notion that knowledge 
comes in from outside a person in some simple or reliable way. Certainly, humans 
build knowledge based on their experiences in their environments, but those experi-
ences are unique to each individual. In the same way, the physical form that an 
organism takes is largely driven by its internal structure (e.g., DNA), humans’ con-
struction of knowledge operates through internal structures in a complex interplay 
with (their sensorimotor experience of) their environment. This is primarily an epis-
temological claim about the construction of knowledge, not an ontological claim 
about the extent to which the knowledge so constructed is, in some sense, an “accu-
rate” depiction of the world. A key feature of this epistemology is that it can explain 
learning without a strong notion of correspondence to reality.

Modern biology shows that different kinds of animals experience the world very 
differently from humans. By framing human psychology as fundamentally biologi-
cal, we gain at least two important perspectives. First, we learn to respect how much 
our experience of the world is structured by our bodies and by our cognitive pro-
cesses. Second, we may consider how much those experiences have changed over 
the course of our lifetimes. Children at different stages of development may experi-
ence different worlds and reason in markedly different ways from us as adults. We 
may question how much of our current experience depends intrinsically on earlier 
constructions that we cannot recall ever having done without.

In his genetic epistemology, Piaget adopted a Kantian perspective, but empirical 
results from his research with children challenged core assumptions in Kant’s phi-
losophy. Kant’s (1781) Critique of Pure Reason blended empiricism with rational-
ism by accepting a few principal cognitive structures as innate. These innate 
structures included space, time, and number, which enable us to organize our expe-
riences in the world. They also explain how we might take experiences as shared. If 
we all construct reality within the same God-given space–time framework, we can 
expect some commonalities among those realities. However, Piaget demonstrated 
that children construct these foundational structures too, during their first few years 
of life. In other words, Piaget’s research countermanded Kant’s assumptions. Few, 
if any of us, can recall the years we spent playfully organizing our worlds, so we 
take those constructions (e.g., space, time) for granted.

1 We have found Noddings (1990) explanation of constructivist epistemology, especially 
illuminating.

P. C. Dawkins et al.
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Consider Kant’s (1781) famous statement: “The concept of Euclidean space is by 
no means of empirical origin, but is the inevitable necessity of thought.” From our 
perspective now, this statement is an error. The mere possibility of non-Euclidean 
geometries, such as the one Gauss invented during the nineteenth century, refutes 
Kant’s claim. Another century later, Piaget and Inhelder (1967) demonstrated that 
children construct space during their first years of life, on the basis of their own 
sensorimotor activity in the world. Thereafter, the objects children experience have 
a home to persist in even when they are out of sight (i.e., object permanence).

Piaget demonstrated that children construct number, too. Steffe has elaborated 
on this construction through learning levels that he referred to as children’s number 
sequences. At every stage, development depends upon the coordination of actions—
first sensorimotor, then internalized as mental actions, and finally organized within 
structures that render them logico-mathematical operations. These structures, both 
spatial and numerical, serve the role Kant envisioned for them, but they are the 
result of years of labor. Once we have constructed them, it becomes difficult to 
imagine a world without them.

What then allows us to build up concepts like space, time, and number if we do 
not, as Kant claimed, begin with certain structures already in place? The heart of 
Piaget’s answer to this is the organization of our own activity. Children act in their 
experiential worlds, and their organization of those actions provides the basis for the 
organization of their experiential worlds.

Piaget’s genetic epistemology emphasizes the unique status of logico- 
mathematical operations within human knowledge. It also affords a different 
account of mathematical objects themselves. If knowledge corresponds to reality in 
a strong sense, then it raises questions about the nature and source of abstract con-
cepts such as number, line, function, and set. The philosophical stance known as 
Platonism classically solves this problem by asserting the real existence of abstract 
entities (an ontological claim). This allows us to somehow learn abstract concepts 
under the assumption that they come in from the outside world (an epistemological 
claim). Since constructivism provides an alternative account of how concepts form, 
it provides a resolution of this epistemological issue that can remain ontologically 
neutral. It thus provides an alternative to Platonism in explaining the power of logic 
and mathematics. This power owes to the structures that we construct through the 
coordination of our own mental actions rather than structures imposed upon us by 
the worlds we ourselves organize through those very same structures.

In all, the chief apparent advantage of Platonism, which is to account for the objective 
robustness of logico-mathematical entities and structures, is guaranteed in the same way by 
the concept of the general and internal co-ordinations of actions and operations. That 
hypothesis that ideal entities are external is thus unnecessary to guarantee the independence 
of structures in view of the free will of individual subjects. (Beth & Piaget, 1966, p. 294)

1 Introduction to Piaget’s Genetic Epistemology
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 Why Is Piaget’s Genetic Epistemology Useful?

For Glasersfeld (1995), a way of knowing is valuable to the extent it is useful. 
Another way to say this is that people construct ways of knowing to serve purposes. 
We apply this orientation repeatedly in this book to articulate why Piaget’s genetic 
epistemology—and the research tradition in Mathematics Education that has been 
built from it—is useful. One reason it is useful is that it acknowledges that people 
build up knowledge to organize their experiential worlds and pursue goals within 
those worlds, not to describe an observer-independent world. As Glasersfeld (1995) 
pointed out, Piaget was not the first to take this position on knowledge, but he was 
the first to take a developmental approach (p. 13). As we have introduced above, 
Piaget viewed the construction of knowing in an individual (1) to be a process of 
construction over a lifetime and (2) to reflect the construction of knowing in humans 
as a species. The first point means that no person’s ways of knowing are ever com-
plete—they are always evolving. The second point means that understanding the 
nature of knowing requires studying its ontogenesis—its development in humans 
across their lives.

In our experience, as researchers and teachers in mathematics education, Piaget’s 
views on knowing provide the basis for generating rich tools for describing and 
accounting for students’ mathematics. Piaget’s views also enlarge what is consid-
ered mathematical—and, therefore, who is considered a mathematical thinker. 
Piaget’s views on knowing imply that a great variety of ways of knowing and think-
ing can be admitted into mathematical knowledge, including children’s mathemat-
ics (Steffe & Olive, 2010). So, researchers can co-construct with participants, 
including children, ways of thinking that can be understood as mathematical beyond 
what has traditionally been viewed as mathematical. These ways of thinking are 
models of participants’ mathematical knowledge that researchers can use to support 
future interactions with other participants (see Chaps. 9 and 14). As a consequence, 
students whose ways of thinking differ from what has traditionally been considered 
standard mathematical ideas can be legitimated, and these students can be seen 
more fully as mathematical thinkers (e.g., Hackenberg, 2013; Hackenberg & Sevinc, 
2021; Norton & Boyce, 2015).

Piaget is known for developmental stages (e.g., concrete operations, formal oper-
ations) that have been critiqued as being rigid and nonrepresentative of all people. 
We would like to address that directly using children’s number sequences (Steffe 
et al., 1983; Steffe & Cobb, 1988) as an example. In this research, Steffe and col-
leagues studied how young children construct whole numbers by studying how they 
count and how the nature of counting changes with successive constructions. They 
found that children constructed approximately four number sequences, and these 
occur in order because later number sequences involve more complex organizations 
of units. Such descriptions can help teachers and researchers organize instructional 
interactions with a range of elementary school students. Yet, the descriptions of 
number sequences of children do not follow a lockstep set of stages at the same 
ages—that is not what the developmental aspect of genetic epistemology means. So, 

P. C. Dawkins et al.
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the developmental aspect of genetic epistemology means that children tend to con-
struct number sequences in a certain order, but there is great variation in how stu-
dents at a particular age conceive of number.

And yet, the usefulness of genetic epistemology does not stop with description. 
The use and development of other Piagetian tools, such as accommodation and 
reflective abstraction (discussed in Chaps. 3 and 6), provide the means for explain-
ing students’ mathematical thinking and learning.2

Together, descriptions of mathematical thinking with explanations of how learn-
ing proceeded—or did not proceed—are key components of making models of stu-
dents’ mathematical thinking and learning (Steffe & Thompson, 2000; Ulrich et al., 
2014). Consistent with Piaget’s overall insight that knowledge need not be explained 
in terms of correspondence with reality, researchers using genetic epistemology 
recognize research as their process of knowledge construction. As a result, we must 
be careful to distinguish what we try to learn about student knowledge (our models 
of their knowing) from student knowledge itself. We cannot know whether these 
models, co-constructed with students, are what we would experience if we some-
how became these students or otherwise fully adopted their ways of knowing. 
Students’ ways of knowing are not directly accessible to us. Instead, the models are 
our ways of knowing that fit with our interactions with the students—they are what 
Steffe refers to as second-order knowledge (2010), or the mathematics of students.3 
Such models take extensive work for researchers to construct and refine (see Chap. 
14). Robustly developed models can be regarded as legitimate mathematical ways 
of knowing—and thus, what gets considered to be mathematics gets expanded.

For example, when working to build fractions knowledge, students who are try-
ing to draw 3/5 of a bar can learn to partition the bar into five equal parts, take out 
one part, and repeat the part to make three parts (Fig. 1.1). In other words, they can 
create 3/5 of a bar as 1/5 of the bar, another 1/5, and another 1/5. To observers, it 
might look like the student thinks of 3/5 as 3 times 1/5. However, that may not be 
the case. Third- through fifth-grade students taught Steffe and Olive (2010) that they 
may not think of 3/5 in this way. Rather, they may rely on part–whole meanings for 
the result, thinking of 3/5 as three parts out of five, despite the actions they took to 
make the 3/5. Because this way of thinking was a regularity in how students oper-
ated in a longitudinal teaching experiment (Steffe & Olive, 2010), Steffe and Olive 
formulated a scheme (see Chaps. 2 and 3 of this volume) to describe these students’ 
way of thinking about fractions, the partitive fraction scheme (Steffe & Olive, 
2010). This way of thinking about fractions is challenging to understand for those 
who conceive of fractions as multiples of unit fractions; it is hard to see that the 
students’ meaning could be non-multiplicative when the actions look like what a 
person would do who thinks of 3/5 as 3 times 1/5. Indeed, a person with multiplica-
tive meanings could engage in the same physical behavior for 3/5. However, 

2 We will use the term “students” rather than “children,” since not all research has been with young 
children.
3 First-order mathematical knowledge is the mathematical ways of knowing we have built to orga-
nize our own experiential worlds.
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Fig. 1.1 3/5 as three of 1/5

differences quickly arise for students when fractions exceed the whole (e.g., 
Hackenberg, 2007; Norton & Wilkins, 2012; Steffe & Olive, 2010). Students who 
have constructed a partitive fraction scheme find drawing, for example, 7/5 of a bar, 
very mysterious. How can a person draw 7 parts out of 5?

This example shows both aspects of the usefulness of Piaget’s views: The parti-
tive fraction is an example of the use of scheme as a powerful tool for modeling 
student thinking, and this scheme is an expansion of ways of thinking with fractions 
that can be considered legitimately mathematical.

Second-order models of particular students can be very satisfying to make: When 
they are developed, they represent to the researcher an understanding of the ways of 
thinking of the students, and they can show why it makes sense that a student solved 
a problem or thought about a topic in a particular way. Thus, models can provide a 
researcher with a great sense of fit. And yet, the models are actually instruments of 
interaction (Steffe & Olive, 2010): They allow researchers to better interact with 
these particular students because the researchers can base problems and questions 
on the ways of thinking in the model. Doing so can facilitate communication about 
mathematical ideas with particular students. This aspect of models can also feel 
satisfying because it can engender a sense of connection between the researcher and 
students (see Chaps. 9 and 14).

And yet, if the models were only useful for the particular students with whom 
researchers were working in particular studies, that would be quite limiting as 
research. Fortunately, experience shows that is not at all the case. Another reason 
genetic epistemology is useful is that the models developed with a few students usu-
ally allow researchers to interact more broadly with other students who have simi-
larities to the students from whom the models were made (see Chap. 14). So, as 
researchers build models for particular students, they are usually building models 
that are useful with a wide range of students.

P. C. Dawkins et al.
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 Organization of the Book

We mention these models of students’ mathematics because they portray how 
Piaget’s genetic epistemology has contributed to mathematics education research. 
More importantly, Piaget provided a rich set of theoretical tools for pursuing this 
kind of research. The goal of this book is not to describe particular models of stu-
dents’ mathematics that have been developed but rather to describe the tools that 
mathematics educators use to construct such models. We have thus organized the 
main body of the book—Part 2, Chaps. 3, 4, 5, 6, 7, 8, 9, 10, and 11—around clus-
ters of related constructs. To be precise, the first seven of those chapters describe 
constructs directly descended from Piaget’s research, and the last two describe con-
structs developed later on but whose importance to mathematics education research 
warranted their inclusion in this volume.

The rest of the book—Parts 3 and 4, Chaps. 12, 13, 14, 15, 16, 17, 18, 19, 20, and 
21—contains two parts corresponding to two different ways of building on the con-
struct chapters in Part 2. The chapters in Part 3 each contain commentaries on the 
first part and on genetic epistemology more broadly. The chapters in Part 4 each 
summarize the research agenda of a younger mathematics education scholar who 
draws upon genetic epistemology in their work. These final chapters provide further 
examples of the utility and fecundity of this body of theory.

We could have adopted other organizational approaches such as a historical 
account of how ideas developed, by focusing on the various scholars who drew upon 
Piaget in their research, or by surveying key findings and contributions developed in 
this tradition. We adopted the current organization because we anticipated it would 
be most useful to scholars who want to learn about these tools to engage in mathe-
matics education research. In other words, we organized the book looking forward 
to future research rather than trying to survey or summarize previous research. As a 
result, the contributions of many important mathematics educators who draw heav-
ily upon Piaget’s work may be underrepresented or omitted in these pages. 

We have included Chap. 2 as an acknowledgment of the history of research and 
the intellectual heritage by which this body of theory has come to us. Dr. Les Steffe 
is one of the central scholars who draws upon Piaget’s work to study children’s 
mathematics and who trained many of the other authors to do the same. Chapter 2 
presents Steffe’s historical reflection on Piaget’s influence on mathematics 
education.

This book was formulated to serve as a graduate textbook for those studying to 
become researchers in mathematics education. We sense that our field needs more 
such texts, especially regarding rich and complex bodies of theory such as genetic 
epistemology. We sincerely hope that this book provides a helpful starting point for 
those newer to these ideas and a productive resource for those more experienced. 
We have learned much from the chapters our excellent coauthors contributed, which 
makes us confident that what follows will be of value to the field. It is a joy to be 
continually engaged as learners: learners of mathematics, especially students’ math-
ematics, and learners among the community of researchers trying to support quality 
mathematics education.

1 Introduction to Piaget’s Genetic Epistemology
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Chapter 2
An Historical Reflection on Adapting 
Piaget’s Work for Ongoing Mathematics 
Education Research

Leslie P. Steffe

 Piaget and Modern Mathematics

Piaget was “rediscovered” (Ripple & Rockcastle, 1964) during the 1960s by math-
ematicians and mathematics educators whose goal was to reform mathematics cur-
ricula based on modern mathematics (e.g., Allendoerfer & Oakley, 1959; School 
Mathematics Study Group, 1965). Logical–mathematical structure served as the 
basic rationale for the new math programs that, in many cases, resembled collegiate 
mathematics. Although classical idealism, the doctrine that reality, or reality as we 
know it, is fundamentally mental, served operationally as the epistemological posi-
tion of the reformers, empiricism and realism were still the more general positions 
in the United States as indicated by a return to behaviorism in the decade following 
the modernist programs. Problem solving, along with learning by discovery, was the 
major psychological emphases among the reformers (Pólya, 1945, 1981) for which 
Wertheimer’s1 (1945) work on productive thinking served as a basic rationale.

Piaget’s genetic epistemology (Piaget, 1970) did not serve as an epistemological 
basis for the modern programs, nor was it explicitly emphasized at a conference 
held at Cornell University and the University of California to investigate implica-
tions of Piaget’s work for mathematics education (Ripple & Rockcastle, 1964). The 
interest of the conference organizers was in exploring the implications of Piaget’s 

1 Wertheimer was one of the three founders of Gestalt psychology along with Kurt Koffka and 
Wolfgang Köhler.
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stages of cognitive development as a rationale for the elementary programs because 
those programs were left without a psychological rationale (Ripple & Rockcastle, 
1964). Piaget (1964) was invited to present four papers at the conference that he 
titled, “Development and learning,” “The development of mental imagery,” “Mother 
structures and the notion of number,” and “Relations between the notions of time 
and speed in children.” Although he made no reference to genetic epistemology in 
these papers, by presenting them, he did implicitly explain the concept of genetic 
epistemology that he presented at the Woodbridge Lectures at Columbia University 
in 1968 (Piaget, 1970).

Genetic epistemology attempts to explain knowledge, and in particular scientific knowl-
edge, on the basis of its history, its sociogenesis, and especially the psychological origins of 
the notions and operations upon which it is based. (p. 1)

 Development vs. Learning

Although he could have oriented his papers as elaborations of genetic epistemology, 
his emphasis at the conferences was on explaining the cognitive development of 
number, space, and time as opposed to teaching such concepts and expecting them 
to be learned. He made a sharp distinction between development and learning in that 
development is a spontaneous process tied to the whole process of embryogenesis.

Embryogenesis concerns the development of the body but it concerns as well the develop-
ment of the mental functions. In the case of the development of knowledge in children, 
embryogenesis ends only in adulthood. … In other words, development is a process—
which concerns the totality of the structures of knowledge. (Piaget, 1964, p. 8)

In contrast, he explained learning as presenting the opposite case.

In general, learning is provoked by situations. … It is provoked in general as opposed to 
spontaneous. In addition, it is a limited process—limited to a single problem or to a single 
structure. (Piaget, 1964, p. 8)

Although I do not regard learning as such a limited process, the developers of the 
modern programs firmly believed that their programs could be learned and would 
either accelerate Piaget’s account of the cognitive development of basic mathemati-
cal notions or essentially replace developmental processes.

Most, if not all, of the major curricular reform projects have taken the logic (or structures) 
of the subject matter as a point of departure rather than psychological learning theory or 
studies of cognitive development. This point is made abundantly clear, for example, in 
Jeremy Kilpatrick’s paper on the SMSG Program included in this report. (Ripple & 
Rockcastle, 1964, p. iii)

The curriculum developers considered Piaget to be an observer rather than a teacher, 
and the elasticity of the limits of children’s minds was not considered as having 
been established.

L. P. Steffe
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These reformers (and I speak now not only of SMSG) have been so successful in teaching 
relatively complex ideas to young children, and thus doing considerable violence to some 
old notions of readiness, that they have become highly optimistic about what mathematics 
can and should be taught in the early grades. (Kilpatrick, 1964, p. 129)

The lack of appreciation for genetic epistemology was addressed by Eleanor 
Duckworth, a former student of Piaget, who served as an intermediary between 
Piaget and the conference attendees. She addressed the teaching the “structure” of a 
subject matter.

The pedagogical idea is that children should be taught the unifying themes of a subject mat-
ter area, after which they will be able to relate individual items to this general structure. 
(This seems to be what Bruner often means by ‘teaching the structure’ in the Process of 
Education). (Duckworth, 1964, p. 3)

 Developmental vs. Mathematical Structure

The structural emphasis of the modern programs was not compatible with Piaget’s 
emphasis on the structure of operational thought.

An operation is an interiorized action. … Above all, an operation is never isolated. It is 
always linked to other operations and as a result it is always a part of a total structure. 
(Piaget, 1964. p. 7)

A major difficulty was that “structure” had very different meanings for Piaget and 
for the curriculum developers. Piaget’s structures were second-order models, “the 
hypothetical models observers may construct of the subject’s knowledge in order to 
explain their observations (i.e., their experience) of the subject’s states and activi-
ties” (Steffe et al., 1983, p. xvi). The mathematical structures of the modern pro-
grams were first-order models, or renditions of the mathematical knowledge of the 
curricular developers (cf. Steffe et al., 1983). This distinction between the mathe-
matical thought of the child from the point of view of the adult and the adult’s own 
mathematical knowledge that he or she would not attribute to the child has been and 
remains a major issue in the mathematics education of children. Even though it is 
assumed in genetic epistemology that the mathematical thinking of children as it 
evolves over time has something to do with mature mathematical thinking, it takes 
major decentering for an adult mathematical thinker to think as if he or she is a child 
(Thompson & Thompson, 1994). Further, in those cases where the adult does learn 
to think as if he or she is a child, developing models of how such an evolution might 
occur is quite exacting. Hermine Sinclair succinctly pointed out such difficulties at 
the level of child thought in attempts by mathematics educators to use Piaget’s 
genetic epistemology at a conference held at Columbia University in 1970.

At first sight it would seem that a psychological theory that is regarded by its author as a 
“by-product” of his epistemological research and is therefore principally directed toward 
the investigation of knowledge and its changes in the history of mankind, as well as in the 
growing child, is ideally suited to educational applications. (Sinclair, 1971, p. 1)

2 An Historical Reflection on Adapting Piaget’s Work for Ongoing Mathematics…
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Sinclair used a metaphor to explain what she regarded as difficulties in trying to 
apply Piaget’s stage theory of cognitive development in an attempt to provoke non-
operational children to become operational.

Piaget’s tasks are like the core samples a geologist takes from a fertile area and from which 
he can infer the general structure of a fertile soil; but it is absurd to hope that transplanting 
these samples to a field of nonfertile soil will make the whole area fertile. (Sinclair, 
1971, p. 1)

 Preludes to IRON (Interdisciplinary Research on Number)

 Piagetian Research

Professor Henry Van Engen introduced me to Piaget’s work while I was a doctoral 
student at the University of Wisconsin, working as a research associate in the 
Research and Development Center for Cognitive Learning. Following Bridgeman 
(1927), mental operations were at the heart of Van Engen’s meaning theory of arith-
metic, where he defined the meaning of a symbol as an intention to act (Van Engen, 
1949a, b). Piaget’s emphasis on mental operations and operational thought was a 
major point of convergence and served as the basis of Van Engen’s interest in Piaget 
(Van Engen, 1971). As a research associate, it was my wont to apply Piaget’s theory 
of the development of number in the mathematics education of young children 
using scientific methods, which in part translated to investigating the importance of 
conservation of numerosity of first-grade children on arithmetical tasks using 
research design (Stanley & Campbell, 1963) and statistical methods (Steffe, 1966). 
I continued on with this program of research, which became known as “Piagetian 
Research” (Steffe & Kieren, 1994), for 7 years after joining the faculty of mathe-
matics education at the University of Georgia, a time during which I directed ten 
doctoral students in applying Piaget’s research in the mathematics education of chil-
dren. Professor Charles Smock of the Psychology Department, who was a Piagetian, 
served on the committees of most of my doctoral students during that time, which 
was quite important because he was the one who eventually introduced me to Ernst 
von Glasersfeld.

 A Change in Research Program

I was working as a realist and an empiricist in my attempts to apply Piaget’s devel-
opmental theory in the mathematics education of children, and I was making only 
accretional rather than recursive progress. As a consequence of making only mini-
mal progress, I abandoned my attempts to apply Piaget’s research on number and 
quantity as well as my statistical method of application and taught a group of first 
graders with the help of two of my advanced doctoral students for an academic year 
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in an attempt to let children teach me what was important in their numerical ways 
of operating (Steffe et al., 1976a, b). The importance of this work was two-fold. 
First, it was the impetus for the development and use of the constructivist teaching 
experiment as a legitimate scientific method of doing research (Steffe, 1983, 1991b; 
Steffe & Cobb, 1983; Steffe & Thompson, 2000; Steffe & Ulrich, 2013). Second, 
the finding that counting was the children’s basic method of solving arithmetical 
tasks led to abandoning attempts to apply Piaget’s idea that number is constructed 
as a synthesis of classification and seriation operations concurrently with the intro-
duction of the arithmetical unit and to investigating children’s construction of num-
ber sequences in the context of their spontaneous use of counting in solution of 
arithmetical tasks in teaching experiments (Steffe, 1994, 1996; Steffe et al., 1983; 
Steffe & Cobb, 1988).

 A Fortunate Introduction

It was extremely fortunate, not only to me at the time but also to my doctoral stu-
dents and to the field of mathematics education at large, that Professor Smock 
invited me to a seminar given by Ernst von Glasersfeld (Steffe, 2013). The seminar 
event arranged by Smock occurred around 1974, shortly after the demise of the 
modern mathematics movement and during the move back to behaviorism that 
occurred in the 1970s. At the time, the question concerning whether mathematics 
was invented or discovered held little sway with me even though I had read Piagetian 
basic books such as The Child’s Conception of Number (Piaget & Szeminska, 
1952), The Child’s Conception of Geometry (Piaget et  al., 1960), The Child’s 
Conception of Space (Piaget & Inhelder, 1967), and The Growth of Logical Thinking 
from Childhood to Adolescence (Inhelder & Piaget, 1958). I understood that chil-
dren developed mathematical knowledge, but what developed I regarded as a pre-
lude to what was “out there” in some mathematical reality. My conception of 
mathematics was, and still is, widely shared by mathematics educators as well as 
mathematicians. According to Stolzenberg (1984), it is indisputable that the con-
temporary mathematician operates within a belief system whose core belief is that 
mathematics is discovered rather than created or invented by human beings.

My belief in the objective existence of mathematics was seriously questioned by 
a story Glasersfeld recounted in the seminar. The story, taken from Letvin et  al. 
(1959), clarified that the only contact we have with what is “out there” is through 
our senses. When talking about a frog as a fly-catcher, he commented that:

The system [the frog’s visual system] as a whole makes the frog an efficient fly-catcher, 
because it is tuned for small dark “objects” that move about in an abrupt fly-like way. In the 
frog’s natural habitat, as we, who observe the frog see it, every item that possesses the 
characteristics necessary to trigger the frog’s detectors in the proper sequence is a fly or bug 
or other morsel of food for the frog. But if the frog is presented with a black bead, an air-gun 
pellet, or any other small dark moving item, it will snap it up as though it were a fly. In fact, 
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