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Preface 

The increase of natural phenomena due to the advancement of human infrastruc-
tures is inevitable nowadays. The technology and methods to be used for geomor-
phic hazards risk reduction are absolutely dependent on the governance and cultural 
context. Mainly in the mountain, coastal, arid and semi-arid regions these natural 
hazards are the main barriers to the economic development. However, human pres-
sure and specific human actions (such as deforestation, inappropriate land use, and 
farming techniques) have increased the danger of natural disasters and degraded the 
natural environment. This makes it more difficult for environmental planners and 
policymakers to develop appropriate long-term sustainability plans. Since previous 
several decades, geospatial technology has undergone dramatic advances, opening up 
new opportunities for handling environmental challenges in a more comprehensive 
manner. 

The book is organized into three parts comprising a total of 16 chapters, each 
of which will emphasize the use of advanced geospatial techniques in geomorphic 
hazards modelling and risk reduction. This book also compares the accuracy of 
traditional statistical methods and advanced machine learning methods. This book 
also addresses the different ways of reducing the impact of geomorphic hazards. 

Each chapter is written by scholars and/or practitioners with acknowledged exper-
tise in the field and with adequate experience of working in the Asian region. The book 
is intended to cover all dimensions of geomorphic hazards and an interdisciplinary 
perspective is thus ensured. 

The book is sub-divided into three parts and they are: 

Part I: Geomorphic Hazards and Machine Learning Techniques: This part explores 
the application of different advanced machine learning techniques in modelling the 
geomorphic hazards like landslide, flood, soil erosion, river bank failure etc. This part 
also compares the result of advanced machine learning techniques with the traditional 
statistical methods. LULC changes have accelerated the intensity of different hazards. 
Future prediction of these geomorphic hazards also assessed in parity with LULC 
change in this part.
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Part II: Geomorphic Hazards and Multi-temporal Satellite Images: Advancement 
in satellite systems has provided lots of advantages to planners and policymakers in 
detecting and modelling different hazards not only in accessible areas but also in inac-
cessible areas. This part assesses the application of multi-temporal high-resolution 
satellite images like Quickbird, Worldview 3, LiDAR, SPOT 5, Google Earth Engine 
etc. in the mapping of different geomorphic hazards. 

Part III: Geomorphic Hazards Risk Reduction and Management: This part explores 
the techniques and methods that help in reducing the risk of geomorphic hazards. 
Resilience adopted by the inhabitants of the affected areas to different geomorphic 
hazards also discussed in this part. 
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Lalitpur, Nepal 
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About This Book 

This book explores the use of advanced geospatial techniques in geomorphic hazard 
modelling and risk reduction. It also compares the accuracy of traditional statistical 
methods and advanced machine learning methods and addresses the different ways 
to reduce the impact of geomorphic hazards. 

In recent years with the development of human infrastructures, geomorphic 
hazards are gradually increasing, which include landslides, flood and soil erosion, 
among others. They cause huge loss of human property and lives. Especially in moun-
tainous, coastal, arid and semi-arid regions, these natural hazards are the main barriers 
to economic development. Furthermore, human pressure and specific human actions 
such as deforestation, inappropriate land use and farming have increased the danger 
of natural disasters and degraded the natural environment, making it more difficult for 
environmental planners and policymakers to develop appropriate long-term sustain-
ability plans. The most challenging task is to develop a sophisticated approach for 
continuous inspection and resolution of environmental problems for researchers and 
scientists. However, in the past several decades, geospatial technology has under-
gone dramatic advances, opening up new opportunities for handling environmental 
challenges in a more comprehensive manner. 

With the help of geographic information system (GIS) tools, high and moderate-
resolution remote sensing information, such as visible imaging, synthetic aperture 
radar, global navigation satellite systems, light detection and ranging, Quickbird, 
Worldview 3, LiDAR, SPOT 5, Google Earth Engine and others deliver state-of-
the-art investigations in the identification of multiple natural hazards. For a thor-
ough examination, advanced computer approaches focusing on cutting-edge data 
processing, machine learning and deep learning may be employed. To detect and 
manage various geomorphic hazards and their impact, several models with a specific 
emphasis on natural resources and the environment may be created.
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Part I 
Geomorphic Hazards and Machine 

Learning Techniques



Chapter 1 
Landslide Susceptibility Assessment 
Based on Machine Learning Techniques 

Jierui Li, Wen He, Lingke Qiu, Wen Zeng, and Baofeng Di 

Abstract In this chapter, we will introduce the landslide susceptibility assess-
ment (LSA) methods based on machine learning techniques. The economic loss 
or even casualties caused by landslides indicate the significance of LSA. LSA can 
be regarded as either regression or classification problems, which can be processed 
by machine learning techniques. LSA provides administrators or researchers with 
information on potential disaster areas, which can be an efficient way to relieve 
the pressure of disaster reduction and mitigation. Several landslide inventories and 
disaster-related geo-environmental variable datasets were recommended. A total of 9 
machine learning methods applied in LSA were simply introduced. The advantages 
and future work of LSA based on machine learning techniques were summarized 
from the aspects of scale, performance, modeling, and interpretability. 

Keywords Landslide Susceptibility model · Machine learning techniques ·
Landslide conditioning factors · Validation · ROC curve
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1.1 Introduction 

1.1.1 Landslides 

Landslides are worldwide geo-hazards distributed on almost all continents (Fig. 1.1), 
causing economic loss or even casualties. Based on the Emergency Events Database 
(EM-DAT) (Guha-Sapir 2019), there were 789 large-scale landslides from 1910 
to March 2022 on a global scale. These fatal landslides have affected 14.7 million 
people, causing 4.3 million people homeless and 67.2 thousand deaths. Each landslide 
event leads to an average of 226.2 thousand U.S. dollars in economic loss. 

Totally 17 Sustainable Development Goals (SDG) with 169 targets and 247 indi-
cators related to peace and prosperity of people and the planet were proposed in 2015 
by the United Nations General Assembly (Zeng et al. 2020). SDGs are supposed to 
be achieved by 2030, during which SDG 13 focuses on climate change and one of 
its targets is to strengthen the climate-related disaster early warning (Campbell et al. 
2018). Since many studies have revealed that the occurrence of landslides is linked 
to climate change (Peres and Cancelliere 2018; Scheidl et al. 2020), the prevention 
and mitigation of landslides will be a topic for achieving SDGs. 

Landslide susceptibility assessment (LSA) is a commonly applied tool for 
predicting the occurrence probability of landslides (Huang et al. 2018). The LSA 
zonation maps provide government officials, decision-makers, and the public with 
information on areas under different levels of landslide susceptibility, facilitating the 
establishment of a local landslide early warning system for landslide prevention and 
mitigation (Guzzetti et al. 2020). LSA is thus considered a crucial step for effectively 
reducing the casualties and economic loss due to landslides.

Fig. 1.1 Large-scale landslide spatio-temporal distribution around the world 
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1.1.2 Development of Landslide Susceptibility Assessment 

Before the 1970s, scientists focused on the mechanism and process prediction of 
geological disasters. Since then, the loss caused by geological disasters continues to 
increase, which has seriously threatened the safety of human life and property. In this 
regard, disaster prevention and management began to be paid attention by scientists 
all over the world (Cui et al. 2011; Reichenbach et al. 2018). At the same time, a large 
amount of literature on landslide susceptibility began to be published. These studies 
used different mathematical methods to study the relationship between spatial distri-
bution characteristics of landslides and assessment factors of landslide susceptibility 
in different assessment units (grid cells, slope units, or watersheds) (Guzzetti 2006). 
The first geological hazard assessment map in the world, namely landslide assessment 
map, was published in the mid-1970s (Neuland 1976). Neuland presented 250 stable 
and unstable slopes in the study area by means of cartographic synthesis through 
field investigation and experience, in which unstable regions refer to areas where 
landslides have occurred or are likely to occur. In addition, binary discriminant anal-
ysis was used to construct a specific stable/unstable landslide prediction model by 
selecting slope morphology, geomechanics, lithology, and structural characteristics 
(Neuland 1976). 

The landslide assessment map should provide information on the probability and 
scale of landslide occurrence (Varnes 1984). However, early landslide assessment 
maps did not predict the probability of landslide occurrence. With the development 
of discriminant analysis (Carrara et al. 1991; Guzzetti 2006; Neely and Rice 1990), 
linear regression (Carrara 1983; Carrara and Guzzetti 1995), logistic regression 
(Ayalew and Yamagishi 2005; Lee  2005), and other conventional mathematical and 
statistical models, researchers began to attach importance to the application of math-
ematical models in disaster risk assessment. Meanwhile, Italian scholars developed 
a geographic information database to store landslide and geological environment 
information, and predicted landslide hazard of two watersheds in southern Italy by 
multiple regression analysis. The “landslide hazard” in this study is the early “land-
slide susceptibility,” which promoted the prediction of regional landslides on a large 
spatial scale. Subsequently, according to the current situation of landslide distribu-
tion, the geological experts in the United States adopted topography, lithology, and 
other factors related to landslides, and divided the landslide risk into five grades 
(Wieczork 1984). 

In the 1990s, with the development of geographic information technology, 
researchers analyzed various influencing factors of landslides through the Geographic 
Information System (GIS) platform, combined with statistical models to study land-
slide susceptibility (Ohlmacher and Davis 2003; Van Westen et al. 2008). Landslide 
susceptibility began to enter the quantitative assessment stage, which is an important 
milestone (Ghosh and Bhattacharya 2010; Gorsevski and Jankowski 2010). Subse-
quently, some scholars proposed the concept of landslide susceptibility in succession 
and considered the influence of driving factors on potential landslides in combination 
with historical landslide laws (Aleotti and Chowdhury 1999; Martin et al. 2002).
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American scholars considered the bedrock and surface geology, tectonic geolog-
ical conditions, climate, geomorphic units, land use, hydrological conditions, and 
other related factors to evaluate landslide susceptibility and made a zoning map for 
landslide risk assessment based on GIS (Mejia-Navarro and Wohl 1994). Korean 
scholars used GIS technology to extract 14 factors such as slope, aspect, slope angle, 
surface curvature, and lithology and analyzed the landslide susceptibility using the 
probability analysis and logistic regression algorithm (Lee and Min 2001). 

In the past 20 years, with the development of computer science, machine learning 
technology has provided a new research method for landslide susceptibility. Its 
powerful nonlinear prediction ability improves the accuracy of regional LSA. The 
commonly used models include decision tree (Saito et al. 2009; Wu et al.  2014), 
Naïve Bayes (Tien Bui et al. 2012), random forest (Catani et al. 2013; Trigila et al. 
2015), gradient boosting machine (Di et al. 2019), support vector machine (Peng 
et al. 2014; Yao et al. 2008), artificial neural network (Aditian et al. 2018; Ermini  
et al. 2005), convolutional neural network (Liu et al. 2022; Sameen et al. 2020), and 
so on. For example, the neural network model and logistic regression model were 
used to predict LSA, respectively, and the results showed that the evaluation results of 
the neural network model were more consistent with the actual situation (Yesilnacar 
and Topal 2005). Simultaneously, since there are no historical landslide samples in 
some areas, the transferability of LSA mapping is gradually developed (Sun et al. 
2020; Zhou et al. 2021). 

To sum up, there are many methods to evaluate landslide susceptibility. We need to 
know that there will be differences in LSA by selecting different models in the same 
area (Rossi et al. 2010). The uncertainty brought by these differences will affect the 
evaluation of assessment results. Therefore, appropriate susceptibility assessment 
methods should be carefully selected in the LSA (Huabin et al. 2005). At present, 
researchers prefer to use multiple assessment methods to calculate LSA and combine 
different assessment results into a comprehensive LSA map (Rossi et al. 2010; Tien  
Bui et al. 2016; Xiong et al. 2020). This will reduce the uncertainty brought by 
different methods and improve the reliability of assessment results. Of course, a 
disaster assessment system and method with universal principles are also worth 
developing in the future. 

1.1.3 Machine Learning for Dealing with Regression 
and Classification Problems 

A regression model or a classification for LSA can be trained and validated based 
on a large number of landslide records along with the geo-environmental factors. 
Landslide susceptibility can be described by either probability (value) or category 
(level), and thus both regression and classification methods are available for LSA 
(Sahin 2020; Wang et al. 2020).
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Regression is a statistical method applied to simulate the relationships between 
a dependent variable and independent variables. For LSA, landslide susceptibility 
is considered the dependent variable, while the geo-environmental factors related 
to landslides are regarded as the independent variables (Mandal and Mandal 2018). 
The built regression model can be applied to predict the probability of landslide 
susceptibility in an area where the geo-environmental factors are known. 

Classification is a method applied to identify the category of an item according to 
its properties (Shahabi et al. 2020). The landslide susceptibility level can be defined 
into different categories, and the geo-environmental factors related to landslides 
are the properties. The constructed classification model can determine the landslide 
susceptibility level based on the geo-environmental factors in the area. Furthermore, 
for landslide susceptibility zonation mapping, the regression results generally will 
be classified based on standards (natural breaks, quantiles, etc.) or classification 
algorithms (Guo et al. 2021). 

1.1.4 Supervised and Unsupervised Learning 

Machine learning can be generally divided into three types: supervised learning, 
unsupervised learning, and reinforcement learning, during which supervised learning 
and unsupervised learning are generally applied in LSA (Chang et al. 2020; Mandal 
and Mondal 2019). 

Supervised learning requires the preset of labels for all items (Merghadi et al. 
2020). In LSA, the dependent variable (landslide occurrence) should be labeled based 
on a certain assessment unit. All geo-environmental factors will then be extracted 
based on the assessment unit (Kalantar et al. 2020). The values of geo-environmental 
variables will be mapped into the labels through the training process. The output 
of a supervised learning model will contain the landslide susceptibility value or 
susceptibility level. 

Unsupervised learning can be conducted without labeling the items with the prior 
knowledge (Pokharel et al. 2021). In other words, it will be more suitable for the situa-
tion when the landslide inventory is not sufficient. However, the good performance of 
an unsupervised learning LSA model is decided by the characterizations contained in 
the geo-environmental databases (Liang et al. 2021). Thus, the unsupervised learning 
for LSA requires more comprehensive variables based on the formation and initiation 
mechanisms of landslides. The output of an unsupervised learning model will divide 
the assessment region into different categories. The landslide susceptibility of each 
category can be further validated based on the existing landslide records. 

However, since there is no prior information and training model, the prediction 
accuracy of unsupervised learning is generally not very high (Hakim et al. 2022). With 
the prior information on supervised learning, a more accurate LSA can be conducted 
(Tien Bui et al. 2016). A “semi-supervised” method was thus proposed for LSA 
(Huang et al. 2020). This method overcomes the shortcomings of the traditional
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supervised and unsupervised machine learning models in landslide susceptibility 
prediction. 

1.2 Landslide Inventory and Disaster-Related 
Geo-Environmental Variable Dataset 

This section provides shared online resources of landslide inventory and geo-
environmental variable database, which can all be required in constructing the 
machine learning models for regional LSA. For geo-environmental datasets, refer-
ring to the most commonly applied variables based on the formation and initiation 
of landslides (Cui et al. 2014; Di et al.  2019; Gao and Sang 2017), we provided 
the online database for terrain, meteorological, soil, land use/cover, and geological 
data. We only displayed the global dataset, although there are still many comprehen-
sive datasets in certain countries or regions. The resolution of the geo-environmental 
variable database directly determines the precision of LSA. 

1.2.1 Landslide Inventory 

1.2.1.1 Global Landslide Catalog 

Global Landslide Catalog (GLC) was developed by the National Aeronautics and 
Space Administration (NASA) to identify landslides around the world (https://data. 
nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4). GLC covers 6,788 
landslide events from 2003 to 2015 all over the world, with detailed information 
including the triggers (precipitation, earthquake, or human activities) and subtype 
(debris flows, mudflow, creep, rockfall, snow avalanche, lahar, and so on) of the 
landslides. Fatalities and injuries are also contained in the dataset. 

1.2.1.2 Emergency Events Database 

Emergency Events Database (EM-DAT) was a comprehensive database including 
natural, technological, and complex disasters (www.emdat.be). The landslide was 
a natural disaster classified in the hydrological subtype. The EM-DAT covers the 
landslide records all over the world from 1900 up to now. Users can download the 
dataset from different continents or countries and during any period separately. The 
subtype of landslide records in the EM-DAT contains avalanche, mudslide, rockfall, 
and subsidence. Fatalities and injuries are all recorded as well as the total economic 
loss.

https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4
https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4
http://www.emdat.be
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1.2.2 Geo-Environmental Database 

We first revealed the contribution of the geo-environmental variables based on 
the formation and initiation mechanisms of landslides and then listed some free 
online resources for downloading the geo-environmental data including terrain, 
meteorological, soil, land use/land cover, and geological data. 

1.2.2.1 Terrain Data 

The terrain directly related to the energy of landslides is a crucial factor in disaster 
occurrences. Landslide is a kind of mass movement consisting of various sediments 
due to gravity. The area with a large elevation difference has high potential energy, 
while the area with a steep slope has the condition of energy conversion (Huang 
et al. 2012; Luo et al. 2019). Therefore, the topographic factors such as elevation 
difference and slope jointly determine whether landslides will occur in an area. 

Space Shuttle Radar Topography Mission (SRTM) conducted by NASA in the 
year 2000 offers the digital terrain model (DTM) and digital elevation model (DEM) 
with 30-m resolution (https://earthexplorer.usgs.gov). The Global ALOS world 3D 
digital surface model (DSM) provided by the Japan Aerospace Exploration Agency 
(JAXA) (https://www.eorc.jaxa.jp/ALOS/en/index_e.htm) also has a resolution of 30 
m. Compared to DTM or DEM, DSM includes the height information of buildings 
and trees on the surface. 

1.2.2.2 Meteorological Data 

Meteorological factors can form and initiate a landslide from different mechanisms. 
Water is considered the most common trigger of landslides. Precipitation, glacial 
meltwater, glacial lake outburst, and floods highly related to meteorological condi-
tions can all initiate a landslide (Borga et al. 2014; Guo et al. 2020). In addition, a 
prolonged drought period results in the shrinkage of soil and the soil particles expand 
rapidly under heavy rainfall, increasing pore pressure and decreasing slope stability 
(Chen et al. 2014). Climatic variables related to dry–wet status thus contribute much 
to the landslide formation and initiation. 

World Meteorological Organization (WMO) has developed a climate explorer 
tool for investigating and deriving meteorological data (http://climexp.knmi.nl/sel 
ectfield_obs2.cgi). The database covers the global scale from the earliest 1850 up to 
now, including temperature, precipitation, solar radiation, cloud cover, wind, drought 
index, potential evaporation, and so on. These datasets include both grid data with a 
minimum resolution of 0.25 degrees and station recorded data.

https://earthexplorer.usgs.gov
https://www.eorc.jaxa.jp/ALOS/en/index_e.htm
http://climexp.knmi.nl/selectfield_obs2.cgi
http://climexp.knmi.nl/selectfield_obs2.cgi
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1.2.2.3 Soil Data 

Soil provides the essential materials for landslides and soil properties are highly 
related to slope stability. Soil type, soil erodibility, soil liquidity index, and soil 
moisture are generally concerned factors reflecting the slope stability (Nandi and 
Shakoor 2010; Scheidl et al. 2020; Sun et al. 2020). 

International Soil Reference and Information Centre (ISRIC) has been developing 
Soil and Terrain (SOTER) (https://www.isric.org/explore/soter) databases at a scale 
of 1:1 million with global coverage and the databases in most countries or regions 
have been developed. All properties in SOTER are compiled in GIS polygon format. 
Each vector layer includes items of soil types and physical/chemical properties of 
soil. 

1.2.2.4 Land Use and Land Cover Data 

Land use and land cover affect the initiation of slope failures (Roccati et al. 2021). 
Landslides are strongly influenced by land degradation along with land use and 
land cover change in mountainous regions (Galve et al. 2015). A higher vegetation 
coverage can promote soil strength (Li et al. 2021), and generally, land use and land 
cover datasets can also reflect the vegetation coverage. 

European Space Agency (ESA) has provided a global land cover product for the 
year 2020 at a 10-m resolution (https://viewer.esa-worldcover.org/worldcover/). The 
land cover was divided into 10 categories including tree cover, shrubland, grass-
land, cropland, built-up, bare/sparse vegetation, snow/ice, permanent water bodies, 
herbaceous wetland, mangroves, and moss/lichen. Esri provides land use and land 
cover time series from 2017 to 2021 (https://www.arcgis.com/home/item.html). The 
product classifies the land use into water, trees, flooded vegetation, crops, built areas, 
bare ground, snow/ice, clouds, and rangeland. 

1.2.2.5 Geological Data 

Earthquake is another trigger of landslides. The size of landslides enlarges with the 
increase of ground motion (Valagussa et al. 2019). The distances to seismic sources, 
including epicenter and faults, are generally considered in LSA (Valagussa et al. 2019; 
Xi et al. 2019). It has been revealed that the tectonic and lithologic characteristics 
are also important in landslide occurrences (Bahrami et al. 2020). 

United States Geological Survey (USGS) offered World Geologic Maps in 2000 
(https://certmapper.cr.usgs.gov/data/apps/world-maps/). The geologic database has 
not yet included all the countries in the world. Faults and geologic-type maps are 
accessible only to some countries.

https://www.isric.org/explore/soter
https://viewer.esa-worldcover.org/worldcover/
https://www.arcgis.com/home/item.html
https://certmapper.cr.usgs.gov/data/apps/world-maps/
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1.3 Machine Learning Methods for Landslide 
Susceptibility Assessment 

1.3.1 Linear Regression 

Linear regression estimates the equation that best describes the association between 
a continuous response variable and a single or multiple predictor variable. Simple 
Linear Regression (SLR) estimates the linear correlation between a single predictor 
(x) and a single criterion variable (y), while Multiple Linear Regression (MLR) 
predicts the linear correlation between two or more predictors (x1, x2, …,  xi) and one 
criterion variable (y). MLR is applied more frequently in linear regression analysis, 
and each value of the independent variable is affiliated with the value of a dependent 
variable. The least squares approach is commonly applied to fit a linear regression 
model (Khademi et al. 2016). 

MLR estimates the level of correlation between a single response variable (depen-
dent variable) from multiple predictors (independent variable). The normal form of 
an MLR model is as shown in Eq. (1.1) (Chou and Tsai 2012): 

y
∧ = a0 + 

m∑

i=1 

ai xi (1.1) 

where y
∧

is the output, xi is the independent input variable, and ai is the partial 
regression coefficient. 

To analyze the relationship between the landslides and possible causative factors 
in the Kankai watershed, Nepal, the bivariate frequency ratio technique and the MLR 
method were applied, while the outcomes of the MLR method were less consistent 
and reliable than those of the frequency ratio technique (Kayastha et al. 2013). 
MLR and random forests were applied to predict two phenomenological models, the 
groundwater level and the landslide velocity models, for the predicting the movement 
of the Kostanjek landslide, the largest landslide in the Republic of Croatia, and the 
results obtained from random forests are just slightly better than those from MLR, in 
both models, proofing that multiple linear regression has a possibility for predicting 
landslide movement (Krkac et al. 2020). MLR analysis was used to determine the 
most influential factors among eight landslide factors toward landslide vulnerability 
levels through remote sensing data in Purworejo, and the results showed that the most 
significant factors were elevations, with regression values that were quite dominant 
among other variables (Sudaryatno et al. 2020).
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1.3.2 Logistic Regression 

Logistic Regression employs the use of independent variables to create a mathemat-
ical formula that predicts the probability of occurrence of an event. The dependent 
variable is dichotomous, while the independent variables could be interval, dichoto-
mous, or categorical (Atkinson and Massari 1998). The relationship between the 
dependent variable and independent variables is nonlinear. 

Assumptions for Logistic Regression are as follows: the dependent variable must 
be categorical; the independent variables should not have multi-collinearity. 

The logistic model can be expressed as (Devkota et al. 2013): 

p = exp(z) 
(1 + exp(z)) 

(1.2) 

where p is defined as the probability of an event occurrence, such as landslide, which 
varies from 0 to 1 on a curve-shaped S; Z is the following equation (linear logistic 
model), whose value varies from −∞ to +∞: 

Z = β0 + β1 X1 + β2 X2 +  · · ·  +  +βn Xn (1.3) 

where 0 represents the intercept of the model, 1, 2, …, n, are the partial regression 
coefficients, and X1, X2, …,  Xn represent the independent variables (Fig. 1.2). 

The Logistic Regression technique, widely used in LSA, has been confirmed as 
reliable and high performing in terms of prediction (Trigila et al. 2015). Logistic 
Regression, Multi-criteria Decision Analysis, and a Likelihood Ratio Model were 
applied for landslide susceptibility mapping inside and outside the city of Izmir, 
Turkey, during which Logistic Regression performed the best based on Area Under 
Curve (AUC) (Akgun 2012). Logistic Regression is often regarded as a benchmark in 
LSA (Di et al. 2019; Xiong et al. 2020). LSA on the Mugling–Narayanghat road with 
peripheral zone was done using bivariate (Certainty Factor and Index of Entropy) and 
multivariate (Logistic Regression) models, as a result, all the models applied showed

Fig. 1.2 Image of Logistic 
Regression. Logistic 
regression’s is ranged 
between 0 and 1. Due to 
using a nonlinear log 
transformation to the odds 
ratio, logistic regression does 
not require a linear 
relationship between inputs 
and output variables 
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reasonably good accuracy (83.57%, 90.16%, and 86.29%, respectively) based on 
receiver operating characteristics (ROC) (Devkota et al. 2013). 

1.3.3 Naïve Bayes 

A Naïve Bayes classifier is built based on Bayes’ theorem. The word “Naïve” indi-
cates the conditional independence assumption between predictors (Soria et al. 2011). 
Naïve Bayes is easy to construct without complicated iterative parameter estimation 
schemes (Wu et al. 2008). 

If we sort a test case x, the probability of each class given the vector of observed 
values for the predictive attributes may be obtained using Bayes’ theorem: 

p(C = c | X = x) = 
p(C = c)p(X = x | C = c) 

p(X = x) 
(1.4) 

where p(C = c | X = x) is known as posterior probability; p(X = x | C = c) 
is known as a likelihood probability; p(C = c) is termed as prior probability, and 
p(X = x) is the probability of evidence. 

Since the event integrates attribute value assignments, and due to the assumption 
of attribute conditional independence, the subsequent equation may be written: 

p(X = x | C = c) =
∏

i 

p(Xi = xi | C = c) (1.5) 

which is fairly simple to compute for training and testing data (John and Langley 
1995). 

In terms of LSA, given an occurrence that comprises k landslide-related variables, 
yj is a Boolean output of the estimation of landslide or non-landslide areas. According 
to the subsequent equation, the prediction is made for the class with the biggest 
posterior probability (Tien Bui et al. 2012): 

y j = argmax P(y j ) 
k∏

i=1 

P( 
xi 
y j 

) (1.6) 

where j indicates landslide or non-landslide. 
It can be assumed that when models with low complexity are initialized and 

data sets with low size are given, the Naive Bayes classifier could be considered a 
reliable tool for LSA. Naïve Bayes outperformed Logistic Regression in LSA based 
on 116 sites located in the mountainous regions of Epirus, Greece (Tsangaratos and 
Ilia 2016). Using an ensemble classifier framework could improve the performance 
of Naïve Bayes classifier (Pham et al. 2017a). A novel ensemble classifier model 
combining Naïve Bayes classifier and Rotation Forest ensemble for LSA at the Luc
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Yen district, Viet Nam, was generated, which outstripped other landslide models, 
e.g. AdaBoost, Bagging, MultiBoost, and Random Forest (Pham et al. 2017b). 

1.3.4 K-Nearest Neighbors 

K-Nearest Neighbors (KNN) is one of the simplest machine learning algorithms 
based on the supervised learning technique (Al-Hadidi et al. 2016). KNN algorithm 
was developed for discriminant analysis for a situation where reliable parametric 
estimation of probability densities was unknown or difficult to determine (Kramer 
2013). The dataset is stored in KNN models with categories for classifying new input 
data based on similarity (Taunk et al. 2019). KNN is applied more for classification 
problems (Zhang et al. 2017). 

The value of K defines the area size (neighborhoods) when the KNN algorithm 
searches. (Bottou and Vapnik 1992). When K = 1, small neighborhoods appear 
throughout the large area, and the points from different categories are relatively 
scattered. When K = 20, the points with labels in the minority are ignored during 
generating neighborhoods, and only large categories are clustered together. Figure 1.3 
is a schematic diagram of data classification when the KNN algorithm takes different 
k values (K = 1 or 20). When the KNN algorithm classifies two categories of points, 
the blue point category is represented by a blue background, and the red point category 
is represented by a white background. For example, in Fig. 1.3a, the blue domain 
category appears near some of the blue dots, but not in Fig. 1.3b. 

With the development of the algorithm, the KNN model has overcome the limi-
tations of time and memory, and has been practically applied in the field of big data 
(Maillo et al. 2017). KNN algorithm is often applied to LSA in combination with 
other machine learning algorithms, e.g., Decision Tree (DT), Random Forest (RF),

Fig. 1.3 Schematic diagram of algorithm classification of different neighborhoods (K value) 
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and Support Vector Machine (SVM) (Park and Lee 2021). KNN algorithm is robust 
to the noisy training data and can be more effective if the training data is large. 

1.3.5 K-Means Clustering 

K-means Clustering (KMC) is a common classical clustering analysis algorithm that 
solves specific problems through iteration. The main parameter of the algorithm 
is K, that is, there are some sample data, and we don’t know what category each 
sample is, but we know how many categories all samples are or should be classified 
into. The calculation process is that, based on the parameter K, the inputted n data 
objects are divided into K categories (groups). Then clustering is performed centered 
on K points in the space, and the objects closest to these points are classified. In an 
iterative manner, the value of each cluster center is updated successively until the best 
clustering effect is obtained. In the iterative process, the similarity between objects 
in the same class is high, and the similarity between objects in different classes is 
low. 

Figure 1.4 describes the basic flow of the KMC algorithm. The frame (a) repre-
sented the initial dataset. In frame (b), the centroids corresponding to the two values 
of k (suppose k = 2), the red centroid and the blue centroid, are randomly selected. 
Then calculate the distance from all other points to the two centroids, and select the 
closest centroid for classification. In frame (c), we classified the dataset after the first 
iteration of all sample points. New centroids for different class points are shown in 
frame (d), and the locations of new centroids have changed. The frames (e) and (f) 
repeated the process of the frames (c) and (d). The final two categories were shown 
in the frame (f).

Previous studies have shown that the landslide susceptibility mapping frame-
work based on the KMC algorithm can give a more general characterization of 
landslide susceptibility and can provide effective solutions for landslide mitigation 
and management (Wang et al. 2017). Comparisons between the traditional equidis-
tant classification method and the KMC algorithm in LSA showed that the overall 
performance of KMC algorithm was better (Tianlun et al. 2021). 

1.3.6 Random Forest 

Random Forest (RF) (Breiman 2001) is an ensemble learning method based on 
decision trees. Decision tree is a common machine learning algorithm (Quinlan 
1986). The nodes of the decision tree class are divided into leaf nodes and branch 
nodes. The former represents a certain category after data classification, and the latter 
represents the test features of data division. The classification rules are the internal 
nodes, and the completed classification nodes are the leaf nodes. Node division and 
selection are based on criteria, such as information gain, gain rate, Gini coefficient,


