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Abstract

Witness operators are a useful tool to detect and quantify entanglement. A
standard way to construct them is based on the fidelity of pure states and math-
ematically relies on the Schmidt decomposition of vectors [31]. In this thesis
a method to build entanglement witnesses using the Schmidt decomposition of
operators is presented. One can show that these are strictly stronger than the
fidelity witnesses. Moreover, the concept can be generalized easily to the multi-
partite case and one may use it to quantify the dimensionality of entanglement.
Finally, this scheme will be used to provide two algorithms that can be combined
in order to improve given witnesses for multiparticle entanglement.
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1Introduction

In the 20th century it turned out that classical mechanics was not sufficient anymore
in order to describe certain phenomena in physics. Hence, in the 1920s the theory
of quantum mechanics was developed, which provides a mathematical framework
to describe for example physical interactions on small energy scales. In 1935 the
phenomenon of entanglement was first described by Einstein, Podolsky and Rosen
(EPR) [49] and Schrödinger [52], who questioned the completeness of the theory.
The assumption arose that there are hidden variables determining the physical hap-
pening. In 1964 Bell found that if there were such hidden variables, the correlations
between the results ofmeasurements of composed systemswould be upper-bounded
by a certain number. However, using entanglement, quantummechanics violates this
bound and thus, the assumption that there are hidden variables completing the theory
of quantum mechanics may not be true. This violation could first be shown experi-
mentally by John F. Clauser et al. in 1972 [13]. Later, Alain Aspect et al. performed
several experiments closing one of two loopholes in Clauser’s experiment [15–17].
Finally, in 2015 the first loophole free experiments were done simultaneously by two
groups lead by Anton Zeilinger [27, 56, 61]. For their work, these three physicists
received the Nobel Prize in Physics 2022.

With the development of quantum mechanics, also quantum information theory
arose, where entanglement is a topic of great interest, too, as it is a resource for many
applications such as quantum teleportation, quantum cryptography and quantum
metrology. Consequently, entanglement detection is as important. One useful tool
to detect and quantify it are entanglement witnesses. These are observables and
hence can be implemented experimentally, which motivates their investigation. In
this thesis a new type of witness, which is based on the Schmidt decomposition
in the operator space (OSD), is introduced. One can show that these witnesses are
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2 1 Introduction

strictly stronger than those, based on the Schmidt decomposition in the vector space,
which are considered as the standard witnesses. Furthermore the concept can be
generalized to the multiparticle case and also be used to quantify the dimensionality
of entanglement.

In the first part of this thesis the physical and mathematical background is given.
We start with putting the concept of states and measurements into mathematical
terms. After that, quantum entanglement will be discussed in detail and having
defined it for the bipartite case, some examples for detection criteria are given.
Moreover the Schmidt rank and Schmidt number as quantity for the dimensionality
of entanglement are introduced and further, quantum entanglement in the multi-
partite case will be discussed. Next, entanglement witnesses are introduced. Their
formal definition will be given as well as some examples how to construct and quan-
tify them. Additionally, Schmidt number witnesses and witnesses for multiparticle
entanglement will be explained. Lastly, some examples for applications of quantum
entanglement are given, which are quantum teleportation, quantum cryptography
and quantum metrology.

Having introduced the preliminaries, in the next chapter the new type of wit-
nesses, based on the Schmidt decomposition of operators is discussed. First, we
will explain how to construct them and further, we will show that they are indeed
strictly stronger than the standard witnesses, which are based on the vector Schmidt
decomposition. After that, two algorithms to improve given entanglement witnesses
or find an entanglement witness that detects a certain target state are constructed.
One is based on optimizing the operator Schmidt coefficients (OSC) and the other
on optimizing the Schmidt operators (SO). Further, we will give an example where
those algorithms are applied to a PPT entangled state. It is found that, starting with
a completely random input, one can only find the best witness if both algorithms
are applied. Moreover, we will show that the algorithms behave as expected and
therefore can be generalized to multiparticle systems.

The next chapter deals with the generalization of the OSD-based witness to the
multipartite case. First, its construction will be addressed. Then, we will adapt the
two optimization algorithms to themultiparticle case. Starting with the optimization
with respect to the operator Schmidt coefficients, we will show that the algorithm
improves the fidelity witness quite well for many states. However, we will find
that for W states the optimization does not work that well. Therefore, two ideas to
modify the algorithm in order to find better results are introduced and it is found
that indeed those modifications lead to better results for the W states. Furthermore,
another optimization approach will be discussed. The second part of this chapter
focuses on the optimization algorithm with respect to the Schmidt operators. After
the adaption, it will be applied to the same example states as from the previous


