Green Energy and Technology

Jia-Wei Zhang · Wei-Hang Deng · Chatchai Putson · Fouad Belhora · Abdelowahed Hajjaji

Insulation Aging Phenomenon in Green Energy Systems

Photovoltaic and Electrical Vehicle Perspectives

Green Energy and Technology

Climate change, environmental impact and the limited natural resources urge scientific research and novel technical solutions. The monograph series Green Energy and Technology serves as a publishing platform for scientific and technological approaches to "green"—i.e. environmentally friendly and sustainable—technologies. While a focus lies on energy and power supply, it also covers "green" solutions in industrial engineering and engineering design. Green Energy and Technology addresses researchers, advanced students, technical consultants as well as decision makers in industries and politics. Hence, the level of presentation spans from instructional to highly technical.

Indexed in Scopus.

Indexed in Ei Compendex.

Jia-Wei Zhang · Wei-Hang Deng · Chatchai Putson · Fouad Belhora · Abdelowahed Hajjaji

Insulation Aging Phenomenon in Green Energy Systems

Photovoltaic and Electrical Vehicle Perspectives

Jia-Wei Zhang Xi'an University of Technology Xi'an, China

Chatchai Putson Materials Physics Laboratory, Department of Physics, Faculty of Science Prince of Songkla University Songkhla, Thailand

Abdelowahed Hajjaji Laboratoire des Sciences de l'Ingénieur Pour l'Energie (LabSIPE) Ecole Nationale des Sciences Appliquées El Jadida, Morocco Wei-Hang Deng Xi'an University of Technology Xi'an, China

Fouad Belhora Laboratoire des Sciences de l'Ingénieur Pour l'Energie (LabSIPE) Ecole Nationale des Sciences Appliquées El Jadida, Morocco

ISSN 1865-3529 ISSN 1865-3537 (electronic) Green Energy and Technology ISBN 978-981-99-7606-5 ISBN 978-981-99-7607-2 (eBook) https://doi.org/10.1007/978-981-99-7607-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Paper in this product is recyclable.

Preface

The construction of green energy systems has increased in the last decades because of the need for sustainable development worldwide. With the development of green energy worldwide, the importance of solar, wind, and tidal energy is increasing. Meanwhile, electrified transportation will also become the dominant pathway for the sustainable development in the future. However, aging phenomenon of insulating materials used in green energy systems is unavoidable, especially in photovoltaic systems installed in highlands, seaside, space environment and used in the PWM drive motors of electric vehicles. Thus, aging has a significant impact on the safety and stability of green energy systems. Therefore, it is necessary to analyze the aging phenomenon of insulating materials in photovoltaic and electric vehicles, which are included in the new energy system. This book establishes a fundamental framework for this topic and provides important basic data and reference for the research of insulation materials used in photovoltaic and electric vehicles. The book is intended for researchers, undergraduate and graduate students who are interested in aging phenomenon in green energy system. This book can be also used for teaching, scientific research, and popularization of science.

Xi'an, China Xi'an, China Songkhla, Thailand El Jadida, Morocco El Jadida, Morocco Jia-Wei Zhang Wei-Hang Deng Chatchai Putson Fouad Belhora Abdelowahed Hajjaji

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 62061136009, Grant No. 51877031) and Ministry of Science and Technology of the People's Republic of China (MOST) (No. 2023YFE0114600). The author thanks Joint Laboratory of China-Morocco Green Energy and Advanced Materials, The high-level talents plan of Shaanxi Province, The "Belt and Road Initiative" Overseas Expertise Introduction Center for Smart Energy and Reliability of Transmission and Distribution Equipment of Shaanxi Province, The Youth Innovation Team of Shaanxi Universities, The Xi'an City Science and Technology Project (No. 23GXFW0070) and Graduate Research Fund of Xi'an University of Technology. The authors would like to extend sincere gratitude to Mr. Dekun Cao from State Grid Jilin Electric Power Company, Mr. Tian-hao Li from Chengde State Grid Cooperation of China, Mr. Jun-hui Chen from State Grid Xi'an Electric Power Supply Company, Mr. Zifan Ye and Mr. Guiquan Zhang from Xi'an University of Technology for their helps in the preparation of the chapters, as well as Ms. Feng Yan for her help in polishing English writing. Last but not least, the authors acknowledge the valuable discussion and the help from the following scholars around the world:

Chatchai Putson (Prince of Songkhla University, Thailand).

Chen Song (Heidelberg University, Germany).

Chuanyang Li (University of Connecticut, Storrs, USA).

Kiyoto Nishijima (Fukuoka University, Japan).

Sombel Diaham (Université de Toulouse, France).

Vincent Heuveline (Heidelberg University, Germany).

Abdelowahed Hajjaji (Laboratoire des Sciences de l'Ingénieur Pour l'Energie (LabSIPE), Morocco).

Fouad Belhora (Laboratoire des Sciences de l'Ingénieur Pour l'Energie (LabSIPE), Morocco).

Tian-hao Li (Chengde State Grid Corporation of China, China).

Jun-hui Chen (State Grid XiAn Electric Power Supply Company, China).

Contents

1	Intro Refe	duction	1 2
2	Agin	g Characteristic of Backsheet After Ultraviolet Radiation	3
	2.1	Ultraviolet Aging	3
	2.2	Experiment Principle of Partial Discharge	5
		2.2.1 Analysis of Mechanism of Partial Discharge	5
		2.2.2 Partial Discharge Experiment	7
		2.2.3 Data Processing and Parameter Analysis	8
	2.3	Material Roughness and Surface Morphology Analysis	10
	2.4	Analysis of Electrical Degradation of Backsheet	10
	2.5	Summary	16
	Refer	rences	16
3	Mod	eling of Effect of Roughness on Partial Discharge	17
	3.1	Modeling of Electric Field Distribution	17
		3.1.1 Basic Parameters and Model Simplification	17
		3.1.2 Result Analysis of Electrical Field Distribution	20
	3.2	Effect of Roughness on Partial Discharge	22
		3.2.1 Different Rough Surface Treatment	22
		3.2.2 Analysis of Partial Discharge Measurement	
		of Different Roughness Materials	23
	3.3	Summary	24
	Refer	rences	26
4	Agin	g Life Model of Insulating Material	27
	4.1	Quantitative Analysis of Discharge Energy	27
	4.2	Aging Life Model of Partial Discharge	29
	4.3	Electrical Aging Lifetime Model	30
	4.4	Summary	32
	Refer	rences	32

5	Simu	lation of PI-Doped TiO ₂ Nanoparticles
	5.1	Basic Principles of Molecular Dynamics (MD) 33
		5.1.1 Introduction
		5.1.2 Selection of Nanoparticle Types 34
	5.2	Model Building and Simulation Process
	5.3	The Influence of Nanoparticle Size on the Elastic Modulus 37
	5.4	Effect on the Total Energy of Composite Materials 40
	5.5	Summary
	5.6	Conclusion 41
	Refer	rences
6	Floot	rical Aging of Bookshoot After Solt Mist Exposure 42
U	6 1	Dartial Discharge Characteristics
	0.1	6.1.1 Mechanism of Partial Discharge 43
		6.1.2 Detection Methods of Partial Discharge 45
		6.1.2 Detection Methods of Partial Discharge
	60	Dringinles and Construction of Experimental Platform
	0.2 6.2	Frinciples and Construction of Experimental Platform
	0.5	Experimental Procedure and Samples Onder San Spray
		Corrosion Environment
		6.3.1 Sample Pretreatment
	<i>с</i> к	6.3.2 Experimental Procedure for Electrical Aging
	6.4	Results of Electrical Aging lest
	6.5 D	Summary
	Refer	ences
7	Surfa	ace Charge Decay Characteristics
	7.1	Analysis of Surface Charge Characteristics
	7.2	Surface Charge Measurement System
	7.3	Measurement Procedure and Results
		7.3.1 Measurement Procedure
		7.3.2 Analysis of Results
	7.4	Summary
	Refer	rences
8	Anal	vsis of Physicochamical Characteristics 71
0	8 1	Surface Morphology Analysis 71
	0.1	8.1.1 Surface Morphology Analysis Based on Scanning
		Flectron Microscony 71
		8.1.2 Poughness Analysis Pased on Atomic Force
		Microscopy 72
	0 7	Analysis of Crystallinity of Poolshoot
	0.2	Analysis of Crystallinity of Dacksheet
		0.2.1 Differential Scanning Caloffilletty
		o.2.2 Frincipies and Experimental Steps of Crystallinity
		Intersurement /9 8.2.2 Domits and Applying of Countryllimity 91
		8.2.3 Results and Analysis of Crystallinity

	8.3	Raman Spectroscopy Analysis	83
	8.4	Summary	85
	Refer	rences	85
9	Elect 9.1	rical Aging Characteristics of Emerging Backsheets	87
		Ones	87
	9.2	Electrical Aging Characteristics of Novel Backsheets	
		Under Salt Spray Corrosion Environment	88
	9.3	Surface Charge Decay Characteristics of Novel Backsheets	89
	9.4	Summary	91
	9.5	Conclusion	92
10	Theo	ry and Design of Electrical Aging Test Platform Under	
	Pulse	and AC Voltage	93
	10.1	Partial Discharge (PD) Test Platform Under Nanosecond	
		Pulse Voltage	93
		10.1.1 Theory of PD Test Platform Under Pulse Voltage	93
		10.1.2 High Voltage Pulse Generation Device Based	
		on MOSFET Module	96
		10.1.3 Pulse Extraction of Partial Discharge at Repetitive	
		Square Voltages Based on Ultra-High-Frequency	
		(UHF) Method	98
	10.2	PD Generation Device on AC Voltage	99
		10.2.1 Generation Device for AC Voltage	100
		10.2.2 PD Detection System Based	
		on the High-Frequency Current Transformer	
		(HFCT)	101
	10.3	Summary	102
	Refer	rences	103
11	Anal	vsis of PD Characteristics Under Pulse and AC Voltage	105
	11.1	The Mechanism of PD	105
	11.2	PD Test Conditions and Parameter Settings	107
	11.3	The PD Characteristics Under AC Voltage	108
		11.3.1 The Effect of Discharge Time on PD	
		Characteristics	109
		11.3.2 The Effect of Temperature on PD Characteristics	112
	11.4	The PD Characteristics Under Nanosecond Pulse Voltage	115
		11.4.1 The Effect of Frequency on PD Characteristics	117
		11.4.2 The Effect of Duty Cycle on PD Characteristics	120
	11.5	Summary	122
	Refer	ences	123

12	Anal	ysis of Physical and Chemical Properties of Aramid	
	Insul	ating Paper After Pulse and AC Voltage Electrical Aging	125
	12.1	Analysis of Aging Mechanism of Insulating Materials	
		Under PD	125
	12.2	Analysis of Surface Morphology and Roughness Based	
		on Atomic Force Microscope (AFM)	127
	12.3	Analysis of Chemical Group Based on Fourier Transform	
		Infrared (FTIR) Spectroscopy	132
	12.4	Summary	137
	12.5	Conclusion	137
	Refer	ences	138
13	Perspective		141
	Refer	ence	143

About the Authors

Jia-Wei Zhang was born in Ningxia, China in 1982. He received his master's degree in electrical engineering from Northeast China Institute of Electric Power Engineering in 2008. He received his Ph.D. degree in 2012 from the Department of Electrical Engineering at the L'Institut National des Sciences Appliquées de Lyon (INSA De Lyon), France. He then worked as a Postdoctoral Fellow at the Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi" of the University of Bologna (Alma Mater Studiorum-Università Di Bologna), Italy. In 2015 and 2016, he was an invited Research Fellow at Fukuoka University, Japan. In 2018 and 2019, he was an invited Professor at Heidelberg University and Heidelberg Institute for Theoretical Studies (HITS), Germany. He was awarded by the international exchange program of Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan and Deutsche Forschungsgemeinschaft (DFG) of Germany. At present, he works as a Professor at Xi'an University of Technology. He also work as Director of Overseas Expertise Introduction Center of SX, Director of Institute of High Voltage and Insulation XAUT and Co-director of Joint Laboratory of Morocco-China Green Energy and Advanced Materials (LGEMA). His research interests include electrical aging and insulation failure risk of electrical equipment in Renewable Energy System and the sensor for the Smart Grid based on functional dielectrics after polarization.

Wei-Hang Deng graduated from the Xi'an University in 2021 with bachelor's degree in electrical engineering. Presently, he is the master student of Xi'an University of Technology and the member of LEMS. His research interests concern electrical insulation of renewable energy system.

Chatchai Putson graduated from the Prince of Songkhla University in 2000 with B.Sc. degree in physics and earned M.Sc. degree, also in physics, at Chulalongkorn University in 2004. He received a Ph.D. degree at the Institut National des Sciences Appliquees (INSA) de Lyon, France. Currently, he is an Associate Professor at the Division of Physical Science (Physics), Prince of Songkhla University, Thailand. His research interests concern electroactive polymers and nanofibers, electrostrictive, piezoelectric, and electrocaloric characterizations, and multi-physics coupling for energy conversion and energy storage materials.

Fouad Belhora received his Ph.D. in electrical engineering from the National Institute of Applied Sciences (INSA), Lyon, France in 2014. He is currently Authorized Professor at the National School of Applied Sciences (ENSA), El Jadida, Morocco. His research interests for energy harvesting and smart structures.

Abdelowahed Hajjaji is the Director of National School of Applied Sciences (ENSA), University Chouaib Doukkali in El Jadida, Morocco. He received his master's degree in materials sciences from the National Institute of Applied Sciences (INSA), Lyon, France, in 2004 and his Ph.D. degree in Material Behaviours, Vibration Control, and Energy Harvesting in 2007. He is currently Authorized Professor at the National School of Applied Sciences (ENSA), El Jadida, Morocco. His current research activities are piezoelectric systems, energy harvesting, vibration control, and noise reduction.

List of Figures

Fig. 2.1	The spectrum of sunlight	4
Fig. 2.2	QUV/spray UV aging test chamber	4
Fig. 2.3	The development of electrical tree	7
Fig. 2.4	a Schematic of the PD aging test platform. b Schematic	
	of the discharge fixture structure	8
Fig. 2.5	Method for wavelet denoising of data (reproduced	
	from [1] by Li TH, Zhang JW with permission	
	from Northeast Electric Power University)	9
Fig. 2.6	Atomic force microscopy	11
Fig. 2.7	Patterns of PRPD a control group b UV aging	
	(reproduced from [1] by Li TH, Zhang JW	
	with permission from Northeast Electric Power	
	University)	12
Fig. 2.8	Effect of space charge on electric field of air gap. a $0-90^{\circ}$;	
	b 90–180°; c 180–270°; d 270–360°	13
Fig. 2.9	AFM images of a untreated PI b UV-aged PI c PD	
	after UV-aged PI (reproduced from [1] by Li TH, Zhang	
	JW with permission from Northeast Electric Power	
	University)	15
Fig. 3.1	3D random rough surface (reproduced from [1] by Li	
	TH, Zhang JW with permission from Northeast Electric	
	Power University)	18
Fig. 3.2	2D rough surface and electrode model	19
Fig. 3.3	Grid partitioning (reproduced from [1] by Li TH, Zhang	
	JW with permission from Northeast Electric Power	
	University)	20
Fig. 3.4	Modeling of electric field distribution with different	
	roughness a untreated PI b UV-aged PI (reproduced	
	from [1] by Li TH, Zhang JW with permission	
	from Northeast Electric Power University)	21
F1g. 3.5	Surface of PI after polishing treatment	23

Fig. 3.6	Schematic diagram of surface roughness of PI	24
Fig. 3.7	The PRPD of PI with different rough surfaces	
	$(\mathbf{a}-\mathbf{c})$ and control group (\mathbf{d}) (reproduced from [1] by Li	
	TH, Zhang JW with permission from Northeast Electric	
	Power University)	25
Fig. 4.1	PD data	28
Fig. 4.2	Waveform of PD voltage pulse (reproduced from [1]	
	by Li TH, Zhang JW with permission from Northeast	
	Electric Power University)	28
Fig. 4.3	Fitting curve of aging (reproduced from [1] by Li TH,	
	Zhang JW with permission from Northeast Electric	
	Power University)	31
Fig. 5.1	Model for TiO ₂ nanocluster	35
Fig. 5.2	a Model of PI monomers b structure of PI molecular	
	chain (reproduced from [5] by Li TH, Zhang JW	
	with permission from Northeast Electric Power	
	University)	35
Fig. 5.3	a Model of energy graph via geometry optimization	
	b convergence graph (reproduced from [5] by Li TH,	
	Zhang JW with permission from Northeast Electric	
	Power University)	36
Fig. 5.4	Model of unit cell of TiO ₂ /PI (reproduced from [5] by Li	
	TH, Zhang JW with permission from Northeast Electric	
	Power University)	37
Fig. 5.5	Relation between mechanical properties and nanoparticle	
	diameter of TiO ₂ /PI (reproduced from [5] by Li TH,	
	Zhang JW with permission from Northeast Electric	
	Power University)	39
Fig. 5.6	Relationship between nanoparticle diameter and total	
	energy of unit cell (reproduced from [5] by Li TH, Zhang	
	JW with permission from Northeast Electric Power	
	University)	41
Fig. 6.1	Model of mechanism of PD	44
Fig. 6.2	Equivalent circuit	44
Fig. 6.3	Direct method for testing circuits a series connection	
	method for testing circuits b parallel connection method	
	for testing circuits	47
Fig. 6.4	Balance method for testing circuits	47
Fig. 6.5	Schematic diagram of PD experimental platform	49
Fig. 6.6	Schematic of the PD aging test system	49
Fig. 6.7	Chemical formula of PET	51
Fig. 6.8	Salt spray corrosion test chamber	53