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Performance Exploration of Impinging 
Jet Solar Air Heater: A Comparative 
Study 

Amitesh Sharma, Sushant Thakur, Prashant Dhiman, and Rakesh Kumar 

Abstract Given the imminent depletion of fossil fuels, the present scenario relies on 
capturing solar energy. The current study compares experimental trials of traditional 
SAH with alternative impinging jet ribbed solar air heater designs. The experimental 
investigation is investigated by increasing the Re from 4000 to 16,500 and comparing 
the results. The geometric parameters and jet parameters used in the investigation 
were e/dhd = 0.043, P/e = 10, α = 55°, Xst/dhd = 0.40, Y sp/dhd = 0.84, and dj/ 
dhd = 0.064. The impinging jet with multi-V-shaped ribs outperformed the V-shaped 
ribbed SAH, with a reported thermohydraulic efficiency of 3.301 compared to 2.05 
for the V-shaped ribbed SAH and 1.83 for the impinging jet flat-plate solar air. It 
establishes that when active and passive heat transfer approaches are coupled, heat 
transfer enhancement and THEP are increased. The findings were also compared to 
traditional SAH. 

Keywords Solar air heater · Artificial roughness · Jet impingement · THEP ·
Circular holes 

Nomenclature 

SAH Solar air heater 
Ao Duct opening area, m2 

Cp Specific heat at const. pressure, J kg−1 K−1 

dhd Hydraulic dia. of the channel, m 
Ap Absorber plate area, m2 

Cd Coefficient of discharge of orifice plate
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H Vertical channel height, m 
e Wire roughness height, m 
m Flow rate of air, kg s−1 

L Length of testing section, m 
P Roughness pitch, m 
ka Air thermal conductivity, W m−1 K 
h Convective coefficient, W m−2 K 
Qf Heat exchange rate, W
ΔPd Pressure decrement crosswise in the testing section, N m−2

ΔPo Pressure decrement in orifice meter, N m−2 

T in Entry air temp. in the conduit, K 
T out Exit air temp. in plenum, K 
Tmp Average plate temperature, K 
Tmf Mean temp. of air, K 
V Fluid speed, m s−1 

W Conduit breadth, m Dimensionless factors/numbers 
e/dhd Relative wire rib roughness height 
f s Friction factor of conventional SAH 
Nu Nusselt number 
Nus Nusselt number of conventional SAH 
P/e Relative roughness pitch 
w/W Width ratio 
Pr Prandtl number 
Re Reynolds number 
f p Friction penalty of a roughened surface 
Xst/dhd Streamwise impinging jet pitch ratio 
Y st/dhd Spanwise impinging jet pitch ratio 
THEP Thermohydrodynamic efficiency parameter 

Symbols: (Greek) 

α Attack angle 
β Fraction of hole distance corresponding of pipe width 
ρair The density of fluid, kg m−3 

ρair Density of flowing air at mean temperature, kg m−3 

ϑ Kinematic viscosity, m2 s−1
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1 Introduction 

Solar insolation is a pure, plentiful, and limitless source of power. Research on 
renewable energy is sorely needed in light of the present fossil fuel dilemma [1]. 
A solar air heater (SAH) is a tool for obtaining solar heat energy to be used in 
commercial and agricultural purposes [2]. Heating systems and air conditioning 
(SAH) are preferred over solar water heaters (SWH) due to their usage in a number 
of technical applications, such as the drying of paper and pulp, whereas SWH’s uses 
are quite constrained. Second, the simple design, lack of scaling-fouling, corrosion, 
leakage problems, and safety features of SAHs make them safe to use [3]. Despite 
its numerous advantages, it has one disadvantage: poor performance due to air’s low 
heat transfer coefficient [4]. 

Numerous techniques have been created to increase SAH efficiency and encourage 
heat exchange between the absorbing surface and air [5]. The techniques are catego-
rized as active techniques, passive techniques, and combination of both active and 
passive techniques [6]. The absorber plate is suitable modified by arrangement of 
ribs underneath the absorber plate which results in distortion of laminar sublayer 
resulting in heat transfer augmentation [7]. Design modifications are done by the 
arrangement of extended surfaces [8, 9] incorporating baffles suitably on absorber 
plate [10] and utilizing the impingement of flowing fluid on the absorber plate for 
boosting the turbulence [11]. The jet impingement approach is a good way to improve 
heat transfer between air and a hot surface [12]. Several researchers investigated this 
process and reported on it in experimental and numerical investigations. Based on 
jet impingement physics, Chaudhary and Garg developed a mathematical model for 
solar air heaters, with findings indicating a 26% improvement in efficiency and a 
maximum temperature rise of 15.5 °C at airflow rates ranging from 50 to 250 kg/ 
hm2 with a 10 cm conduit depth and 2.0 m duct length [13]. Chauhan and Thakur 
conducted an experimental procedure of modified impinging jet SAH, with reported 
maximum efficiency of 70% recorded by adjusting jet hole diameter, streamwise jet 
pitch, and spanwise jet pitch [14]. The effectiveness of an unglazed SAH with an 
impinging jet was investigated by Belusko et al., and it was shown that jet-to-jet 
distance is paramount factor in increasing thermal efficiency [15]. Singh et al. evalu-
ated impinging jet behavior in a dual-passage rectangular duct with a modified corru-
gated wavy impinging jet plate. The highest thermal performance improvement of 
roughly 94% was achieved with 0.48% perforation of the impinging jet plate and 98% 
bed porosity [16]. Maithani et al. used jet impingement on an absorber plate having 
hemispherical protrusions slightly below the jet holes in order to provide impinge-
ment over the protrusions and produce turbulence. The maximum thermal hydraulic 
efficiency measurement was 3.01 [17]. Kannan et al. conducted investigation under 
outdoor circumstances, a suitably adapted SAH with a pin–fin absorber plate, and 
compared this with a normal SAH, and the output air temperature was increased 
from 2° to 7 °C with improved energy, thermohydraulic, and exergy efficiency [18]. 

According to the prior research, the impinging jet method is extensively employed 
for enhancing heat transfer in a variety of applications. Only few works have
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been conducted to investigate the interaction of cylindrical wire-shaped ribs with 
impinging air jet SAH. The current study fills this void by examining the thermal 
behavior of cylindrical wired ribs positioned underneath the absorber plate and 
applying a variety of geometric parameters for rib roughness in cylindrical wire-
shaped ribs. The current experimental investigation is a comparison of the increased 
thermal behavior of an impinging jet on a flat-plate solar air heater and an 
impinging air ribbed solar air heater with ribs installed on a V-shaped pattern and a 
multi-V-shaped pattern with a conventional SAH. 

2 Experimental Setup 

An indoor test facility for assessing roughened absorber plate has been established 
in line with the ASHRAE standard [19]. A test facility has been built based on this 
idea, as illustrated in Fig. 1. It was an open-loop system with a rectangular route 
comprising components for entry, testing, and exit. 

The test component of the rectangular channel has a cross-section of 300× 25 mm 
and a length of 1400 mm. The entry and exit parts are respectively 600 and 400 mm 
in dimension, equivalent of 5 

√
Wd Hd & 2.5

√
Wd Hd as per ASHRAE protocols. As 

a result, the flow may be presumed to be completely developed across the length of 
the test portion. A variac is used to govern a steady heat flow of approximately 1000 
W/m2. The mass flow through the conduit is measured using a U-tube. A digital 
micro-manometer of TSI made with a least count of 0.1 Pa was used to monitor the 
pressure change over the jet impingement test segment. The average temperature of

Fig. 1 Test rig 
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Table 1 Lists the parameters 
that were chosen for the 
experiment 

S no. Parameters of investigation Range 

1 Re 4000–16,500 

2 Width ratio (w/W ) 01 and 05 

3 Relative roughness ht. (e/dhd) 0.043 

4 Relative roughness pitch (P/e) 10 

5 Attack angle (α) 550 

6 Streamwise jet hole pitch ratio (Xst/dhd), 0.40 

7 Spanwise jet hole pitch ratio (Y sp/dhd) 0.84 

8 Jet hole diameter ratio (dj/dhd) 0.064 

air at the intake and exit portions, as well as the temperature of the absorbing surface, 
was measured at 18 places using calibrated J-type thermocouples with an accuracy of 
0.1 °C. The air was blown through the rectangular conduit using a 3-HP centrifugal 
blower. The experiment was started by setting the appropriate set of geometric and 
flow parameters on the jet plate arrangement, and the operational conditions were 
assured by utilizing a gate valve to govern the mass flow rate of air. 

The various parameters selected for the study are presented in Table 1. 

3 Confirmation of the Experimental Procedure 

The created setup facility was approved for a conventional SAH without any obstruc-
tions in the passage of the flow regimes, as required by the laws. The estimated results 
from an experimental run were equal to the projected values of the Nu and friction 
penalty determined using an empirical relationship well acknowledged by various 
researches for assessing classic SAH. The Dittus-Boelter correlation and Gnielinski 
equation as given in Eqs. (1, 2) for Nusselt number, the modified Blasius equation as 
represented in Eq. (3), and Petukhov equation as represented in Eq. (4) were used to  
obtain the projected values for conventional SAH in validating friction factor [7]. As 
shown in Fig. 2, the mean absolute deviation in this conformity for Nusselt number 
estimated using Gnielinski and Dittus-Boelter correlations was 5.06% and 6.8%, 
respectively. The mean absolute deviation of friction penalty from modified Blasius 
and Petukhov empirical correlations and experimental values were 3.5 and 6.1% as 
represented in Fig. 3. The lower percentage of mean absolute deviation proves the 
setup acceptability and validation of the experimental facility and its use in future 
test concerning planned study, leading to logical acceptance of the test rig.

Nus = 0.023Re0.8 
0.4 
Pr (1)
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Fig. 2 Validation for Nu 

Fig. 3 Validation for friction factor

Nus = ( f /2)(Re − 1000) Pr 
1 + 12.7

([ f /2]0.53)(Pr 2 −1) 
(2) 

fs = 0.085 Re−0.25 (3)
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fs = (1.58 ln Re − 3.82)−2 (4) 

3.1 Formula Used 

1. Heat gain by fluid: 

Q f = ṁCp(Tout − Tin) 

2. Mass flow rate of working fluid: 

ṁ = Cd Ao

[
2ρair,0ΔPo 
1 − β4

]1/2 

3. Friction factor: 

f = 
2(ΔP)d Dh 

4ρair LV  2 

4. Convective heat transfer coefficient: 

h = Qa 

Ap
(
Tmp − Tm f

)

5. Nu  := hDh 
kair 

. 

3.2 THEP 

A lot of studies have looked into the usage of turbulence promoters to improve 
the thermal behavior of SAH. This advantage, however, comes at the expense of 
a pressure loss, which needs a large pumping effort to move the air through the 
pipe. As a result, in order to establish the setup for effective performance, the heat 
transfer and friction characteristics must be examined concurrently, a process known 
as “thermohydraulic performance,” [20] as mentioned in Eq. (5) 

ηTHEP =
[
(Nuroughened/Nusmooth)/( froughened/ fsmooth) 

1 
3

]
(5)



10 A. Sharma et al.

4 Result and Discussion 

This experimental comparative study determines the Nu symbolizing heat transfer 
increase, friction coefficient, and THEP for a given range of variables used in a 
redesigned impinging jet solar air heater. 

4.1 Heat Gain 

The augmentation in Nusselt number represents the heat gain. Figure 4 demonstrates 
the relationship between Nu and Re within a set of parameters. The fixed geometric 
and jet parameters were w/W = 1 and 5 (width ratio), P/e = 10 (relative roughness 
pitch), e/dhd = 0.043 (relative rib roughness height), α = 55° (attack angle), Xst /dhd 
= 0.40 (streamwise pitch), Y st/dhd = 0.84 (spanwise pitch), and jet hole diameter 
(dj/dhd) = 0.064. In typical solar air heaters, heat transmission to the air is limited 
by a viscous layer formed near the absorber plate, and the impinging jet causes 
turbulence and promotes heat transfer augmentation, stated to as the passive heat 
transfer enhancement strategy. As shown in the illustration Fig. 5, a modified absorber 
plate is used, with V-patterned ribs positioned beneath the absorber plate and a jet 
impinging from the bottom via the jet plate. This is an amalgamation of active and 
passive manners of heat transfer, and the results show that as Re increases, Nu 
increases for both impinging jet and impinging jet V patterned ribs, and the results 
are also compared to conventional solar air heaters, as shown in Fig. 4, with the 
maximum Nu reported for multi-V-patterned impinging jet SAH and secondly by 
V-patterned impinging jet SAH.

As a result, the arrangement in which the ribs were fastened throughout the whole 
length of the absorber plate was optimal for heat exchange. To push fluid from the 
cooler zone (internal core) toward the multi-V obstacle wall, the impingement jets 
have two separate rotating vortices. As a result, the lower impingement jets become 
entrained in the primary flow. Boundary layer development was halted due to heat 
transmission among the multi-V ribs, which was triggered by the mixing of inner 
stream with the main stream. With an increase in Re, the convective resistance in the 
boundary layer decreased, resulting in a thinner boundary layer and a greater Nu. 
As a result, there was significant turbulence where the impinging jets separated and 
merged with the main stream. This was located behind the ribs. There was a rise in 
HT from the absorber plate to the air as the number of vortices rose as in multi-V 
ribs in comparison with other designs.
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Fig. 4 Variation of Nusselt number with Re 

Fig. 5 Schematic diagram and flow pattern [5]
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Fig. 6 Variation of Friction factor with Re 

4.2 Frictional Characteristics 

Figure 6 shows the relationship between f and Re for a set of selected parameters. With 
rising Re, the value of f continues to decrease. As Re increases, so does air penetration 
into the ribs, resulting in a continual reduction in pressure drop. Furthermore, the jet 
spacing is carefully selected to reduce jet interference. When the width-to-expansion 
value ratio was adjusted from 1 to 5, a corresponding rise in the number of secondary 
stream jets was observed. In this way, a sequence of V-shaped ribs on the absorber 
plates can increase the friction factor to a maximum value within the range of the 
design’s specifications. The frictional cost introduced by the partitioning of the flow 
may be used to investigate the vortex structures. Nu rises when pressure builds up in 
the vortex. An increase in Nu, as is the case with most targets, occurs when the flow 
increases its pumping force around the SAH, as seen above. The frictional factor 
recorded for V-patterned ribbed impinging jet SAH is 0.0297. The highest value 
recorded for multi-V-patterned ribs signifies that augment in heat transfer leads to 
enhancement in pressure drop. 

4.3 THEP 

Thermohydraulic performance is dimensionless parameter that denotes performance 
of modified SAH. Figure 7 illustrates THEP variation with Re for fixed geometric
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Fig. 7 Thermohydraulic efficiency parameter variation with Re 

and jet parameters. The maximum THEP reported is for Reynolds number 14,500 
for all designs, i.e., impinging jet SAH, impinging jet ribbed SAH (V and multi-V 
ribs) with maximum reported value of 3.301 for impinging jet multi-V-patterned 
ribs. The rise and fall that were seen in the findings of thermohydraulic efficiency 
may be attributed to an increase in the pumping power above the thermal gain at a 
certain value of mass flow rate in relation to the geometrical parameters, and this 
value offers the optimum value. 

5 Conclusions 

The present study is performed to conclude the comparison of impinging air and 
impinging air ribbed SAH, in which ribs are organized in V pattern. The fixed value 
of various parameter is w/W = 1 and 5, P/e = 10, e/dhd = 0.043, α = 55°, Xst/dhd 
= 0.40 (streamwise pitch), Y st/dhd = 0.84, and jet hole diameter (dj/dhd) = 0.064. 
The results clearly showed that when jet impingement is combined with roughness, 
heat transfer augmentation increases with a certain rise in friction factor. The results 
clearly showed that when jet impingement is combined with roughness, heat transfer 
augmentation increases with a certain rise in friction factor. The study’s findings may 
be summarized as follows: 

• The highest THEP is reported as 3.301 for impinging jet multi-V-patterned ribbed 
modified SAH.
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• When equated to usual conventional SAH, there is a 4.70 times enhancement in 
Nu and a 2.92 times augmentation in friction factor in this research in the option 
of impinging jet multi-V-patterned ribbed modified SAH with width ratio of 5. 
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Performance Evaluation of Single Pass 
Solar Air Heater with Stepped-Type 
Arrangement of Metal Foam 
by a Numerical Study 

Rawal Diganjit and N. Gnanasekaran 

Abstract A solar air heater is easy to build and easy to use for drying applica-
tions, room heating purposes, etc. In the present study, single-pass forced convection 
rectangular-type solar air heater is studied numerically. The copper metal foam with 
0.92 porosity is used for case (a) empty channel, cases (b) to (e) comprising of 
different stepped-type arrangements, and case (f) fully filled metal foam condition 
and studied numerically to obtain outlet temperature, pressure drop and the perfor-
mance factor of the solar air heater. The Reynolds number is varied from 4401 to 
5868. Based on this range of Reynolds number RNG k-ε model with enhanced wall 
function is adopted for numerical simulations. The local thermal equilibrium model 
is used to simulate the porous zone. The Rosseland radiation model has been chosen 
with solar ray tracing method. The case (c) is the best stepped-type arrangement to 
get same outlet temperature compared to fully filled metal foam case (f). Hence, the 
material cost is minimized. The temperature rise is 8.89% more compared to empty 
channel solar air heater. Case (c) has less pressure drop compared to other metal 
foam arrangements. The performance factor for case (c) is 2.03. 

Keywords Single pass · Solar air heater (SAH) · Metal foam · Performance 
factor · Forced convection 

Nomenclature 

Re Reynolds number [-] 
ε Porosity [%] 
Ts Solid temperature [K] 
Tf Fluid temperature [K] 
T out Outlet temperature [K]
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ΔP Pressure drop [Pa] 
CFD Computational fluid dynamics [-] 
SAH Solar air heater [-] 
ρ Density [kg/m3] 
Cp Specific heat capacity [kJ/kg K] 
k Thermal conductivity [W/m K] 
μ Kinematic viscosity [Ns/m2] 

1 Introduction 

Solar energy is easily available on earth. It has zero cost; so, there is a scope to utilize 
this solar energy for human comfort. The solar air heater has four main parts, i.e., 
absorber plate, transparent cover, insulation, and outer frame of the solar air heater. 
The absorber plate absorbs the solar radiation and heats the incoming air. The air 
passes through the space between the glass and absorber plate. The metal foam is 
used due to its low density, high superficial area-to-volume ratio, and high strength. 
The metal foam is used to maximize the heat transfer rate in solar air heater [1], heat 
exchangers [2], electronic cooling devices, etc. 

2 Literature Review and Objectives 

Saedodin et al. [1] performed numerical and experimental analyses using single-
pass flow. They used porous metal foam having bed dimensions of 70 × 12 mm. The 
control volume method and local thermal equilibrium (LTE) model have been adopted 
through test channel to get thermal performance, and pressure drop. The numerical 
and experimental analyses of porous medium results give increased thermal effi-
ciency and Nusselt number up to 18.5% and 82% respectively. Kansara et al. [3] 
investigated the performance of flat-plate collector using internal fins and porous 
media by using solar simulator. The rise in temperature of air with fins and porous 
media is 8.19% and 16.17%, respectively, than an empty channel. Maximum rise is 
115.9 K for copper foam, and minimum is 110.4 K for steel foam. Anirudh et al. 
[4] studied performance improvement of a flat-plate solar collector with intermittent 
porous blocks by using numerical analysis of FPSC. The porous resistances are higher 
in amplitudes for low permeability. The values vary for Darcy–Brinkman compared 
to Extended Darcy–Brinkman–Forchheimer model. Singh et al. [5] performed exper-
imental and numerical investigations of a single and double pass using porous serpen-
tine wavy wire mesh in solar air heater. Best thermal and thermohydraulic efficiencies 
for 93% porous double-pass serpentine-packed bed solar air heater are achieved. The 
thermohydraulic performance for serpentine presents 24.33% than flat-packed bed 
solar air heater. Huang [6] reported a numerical study of enhanced forced convection
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in a channel of solar water collector using multiple metal foam blocks. With the help 
of Darcy–Brinkman–Forchheimer flow model and local thermal non-equilibrium 
model, the study includes thermo-flow fields inside the porous media. Valizade 
et al. [7] studied experimentally the thermal behavior of direct absorption parabolic 
collector using copper metal foam. The maximum thermal efficiency for full metal 
foam and semi-metal foam are 171.2% and 119.6%, respectively, than free-channel 
metal foam. Wang et al. [8] worked on experimental study of latent thermal energy 
storage system with copper metal foam for further solar applications. Silicon oil was 
utilized as heat transfer fluid. Hence, temperature uniformity improved and the reduc-
tion in time for melting the mixture by 37.6%. Xiao et al. [9] investigated thermal 
performance analysis of a solar energy storage using copper foam/nanosalt. The 
results show that the time duration of heat storage process at heating temperature of 
160° is reduced by 58.5%. Jouybari et al. [10] experimentally investigated the use of 
metal foam using nanofluid to improve thermal performance. The performance eval-
uation criterion is used to reduce the pressure drop and increase the heat transfer. With 
the help of metal foam and nanofluid, the performance evaluation criteria increased 
more than 1% at a lower flow rate. The increase in nanofluid concentration increases 
the performance evaluation criteria. Rajarajeswari et al. [11] reported numerical 
and experimental results in porous and non-porous solar air heaters. Two types of 
screen wire mesh WSM-I and WSM-II having different porosities and character-
istics are used. The increase in thermal efficiency for WSM-I and WSM-II is 5– 
17% and 5–20% respectively with mass flow rate from 0.01 to 0.05 kg/s. Jadhav 
et al. [12] accomplished the numerical study of horizontal pipe in the presence of 
metal foam. Darcy-extended Forchheimer (DEF) and local thermal non-equilibrium 
(LTNE) models were used. The novelty of the work is the selection of suitable flow 
and thermal models to find the heat transfer in metallic foams. 

From the above literature, it is understood that metal foam is the best option 
to increase heat transfer rate. At the same time, the pressure drop increases due 
to the resistance offered by the metal foams. To overcome this issue, researchers 
have attempted several methods, but stepped-type arrangement is not studied till 
date in the literature. This type of arrangement not only increases the heat transfer 
but also decreases the pressure drop. Hence in this paper, four different stepped 
arrangements are considered. The objective of this work is to study the different 
stepped-type arrangement of metal foam to increase outlet temperature and reduce 
pressure drop. 

3 Materials and Methods 

A rectangular channel-type SAH experimental study of Rajarajeswari [11] is consid-
ered as a reference work for this numerical analysis of heat transfer through porous 
media like metal foam. The width is modified in this analysis. Width is considered 
to be 1 m because the industrial solar air heater absorber plate area is in general 2 
m2. The schematic diagram and numerical geometry are shown in Fig. 1.



20 R. Diganjit and N. Gnanasekaran

Fig. 1 Detailed schematic layout of SAH, 1 wooden material for entrance section, 2 toughened 
glass, 3 aluminum absorber plate, 4 insulation, 5 wooden material for exit section, 6 M S steel stand 
for support, and 7 wooden materials for the frame as an outer box of the solar air heater 

It consists of 2 × 1 × 0.12 (m) as a length, width, and height of solar air heater, 
respectively. The top plate is transparent toughened glass with 0.004 m thickness. 
The bottom absorber plate is considered as aluminum with 0.0005 m thickness. The 
wood material is considered as an insulation material to reduce heat losses from side 
wall and bottom wall of SAH. The location for the present study is the Department 
of Mechanical engineering, National Institute of Technology, Karnataka, India. The 
longitude and latitude for the location are 74.7951 ◦ and 12.9958 ◦, respectively. So, 
the SAH is tilted at 13 ◦ to facing south. The absorptivity of black painted aluminum 
plate is taken as 0.95 and wall is opaque. The transparent cover has 0.1 absorptivity 
and 0.9 transmissivity (Fig. 2).

3.1 Computational Details and Boundary Conditions 

The 3D geometry is drawn with the help of Ansys Fluent 2019 R3 software. The 
solar air heater is divided into three parts, i.e., entrance zone, test zone, and exit zone. 
The fluid as air is taken for this analysis. The mesh for this domain is linear mesh.
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Fig. 2 Schematic diagram of stepped metal foam arrangement in solar air heater case a empty 
channel, case b, case c, case d, case e, and case f fully filled metal foam

The maximum skewness of the meshing is 0.3526. For the setup, pressure-based 
solver is taken with absolute velocity. The steady flow is considered for the present 
analysis. The RNG k-ε model with enhanced wall function is employed for the 
turbulent flow of air. The Reynolds number for the present study is from 4401 to 
5868. The Rosseland radiation model is used with solar ray tracing method for 
complete analysis as mentioned in [11]. The sunshine factor is taken as 1. For direct 
beam radiation and diffuse radiation, the solar calculator is selected to get accuracy. 
All the simulations are done for the date 15 April. The maximum solar intensity for 
the day is 13:00 pm. Hence, 13:00 pm is considered for further analysis. The material 
properties are taken as mentioned in Table 1. 

In the cell zone conditions, the porous zone is included to increase the heat transfer 
rate, i.e., to increase the outlet temperature of solar air heater by using metal foam. 
The porosity and pore diameter of metal foam are mentioned in [13]. The same 
configurations are used for comparing the heat transfer rate of solar air heater in the 
present study. The details are given in Table 2.

Table 1 Material properties used for CFD simulations 

Air Aluminum Glass Wood 

Density (ρ) kg/m3 1.225 2719 2500 700 

Specific heat capacity (Cp) kJ/kg K 1006.43 871 670 2310 

Thermal conductivity (k) W/m K 0.0242 202.4 0.7443 0.173 

Kinematic viscosity (μ) Ns/m2 1.789 E-05 – – – 
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Table 2 Details of copper 
metal foam Copper metal foam [13] 

Pore diameter (mm) 0.216 

Pitch (mm) 2.324 

Porosity 0.92 

Viscous resistance 6,082,725.061 

Inertial resistance 148.97 

Table 3 Boundary condition considered for CFD analysis 

Conditions 

Inlet 
velocity 

0.3, 0.35, and 0.4 m/s and its turbulent intensity 5.6063%, 5.4993%, and 5.4083% 
respectively 

Outlet 
pressure 

Zero 

Absorber 
plate 

No slip condition, stationary wall, heat flux = 850W/m2, opaque wall 

Glass No slip condition, stationary wall, 
mixed heat transfer coefficient 9.5 W/m2 K, free stream temperature and external 
radiation temperature are 300 K, emissivity = 0.88, and semi-transparent wall 

The boundary conditions applied are given in Table 3. The hydraulic diameter 
is calculated for rectangular channel, and it turns out to be 0.2143 m. The inlet 
temperature for conventional SAH is 300 K. The local thermal equilibrium model 
(LTE) is used in the heat transfer from fluid zone to solid porous zone. Hence, the 
average temperature of glass and absorber plate is taken as inlet temperature for 
porous solar air heater. 

The method used for solution is coupled wall scheme for pressure velocity 
coupling. The spatial discretization for pressure, momentum, turbulent kinetic 
energy, and turbulent dissipation rate and energy is second-order upwind scheme. The 
least square cell-based gradient is used to get more accuracy. The solution controls 
for pseudo-transient explicit relaxation factors are 0.5, 0.5, 1, 1, 0.75, 1, and 1 for 
pressure, momentum, density, body forces, turbulent kinetic energy, turbulent dissi-
pation rate, and turbulent viscosity and energy, respectively. The residual for the 
energy is 10–6. The other residual for continuity, momentum, and turbulent kinetic 
energy and dissipation are 10–4. 

3.2 Governing Equations 

For fluid flow in solar air heater, continuity and Reynolds-averaged-Navier–Stokes 
(RANS) equations are used. In this study, the RNG k-ε turbulence model [5, 14] is  
used as it improves the performance for rotation and streamline curvature.
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Continuity equation, 
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Energy equation 
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where GT = μt /Pr is the turbulent thermal diffusivity, G = μ/Pr is the molecular 
thermal diffusivity, Pr is the Prandtl number, μ and μt are the viscosity (Ns/m2) and 
thermal viscosity, respectively, ρ is the density (kg/m3), P is the pressure (Pascal), 
u is the velocity (m/s), and T is the temperature (K). To model flow through porous 
media, it is required to add an additional source term to governing flow equations by 
using the Forchheimer equation as given below as per [14] 

∇ p∗ = 
μ 
α 
u∗ + βρu∗2 (4) 
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(
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1 

2 
ρ|u|ui

)
(5) 

where Fi is the source term for the i-th Navier–stokes equation and C2 = 2β 
For solar air heater with empty channel, hydraulic diameter and Reynolds number 

are considered. 
Local thermal equilibrium model assumes that the solid and fluid phases of the 

porous medium are in thermal equilibrium, i.e., Ts = Tf = T. The net heat transfer 
between the phases of the porous medium is zero since the heat conduction in both 
the phases takes place simultaneously. 

For solid(1 − ε)(ρc)s 
∂Ts 
∂t 

= (1 − ε)∇ ·  (ks∇Ts) + (1 − ε)q '''
s (6) 

For fluid ε
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+ (
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Adding Eqs. (6) and (7) 
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where 

(ρc)e f  f  = (1 − ε)(ρc)s + ε(ρcP ) f (9)


