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Preface

‘H ow large a sample size do I need for my
study’? Although one of the most commonly

asked questions in statistics, the importance of
proper sample size estimation seems to be over-
looked by many preclinical researchers. Over the
past two decades, numerous reviews of the pub-
lished literature indicate many studies are too small
to answer the research question and results are too
unreliable to be trusted. Few published studies pres-
ent adequate justification of their chosen sample
sizes or even report the total number of animals
used. On the other hand, it is not unusual for proto-
cols (usually those involving mouse models) to
request preposterous numbers of animals, some-
times in the tens or even hundreds of thousands,
‘because this is an exploratory study, so it is
unknown how many animals we will require’.

This widespread phenomenon of sample sizes
based on nothing more than guesswork or intuition
illustrates the pervasiveness of what Amos Tversky
and Daniel Kahneman identified in 1971 as the
‘belief in the law of small numbers’. Researchers
overwhelmingly rely on best judgement in planning
experiments, but judgement is almost always mis-
leading. Researchers choose sample sizes based on
what ‘worked’ before or because a particular sample
size is a favourite with the research community.
Tversky and Kahneman showed that researchers
who gamble their research results on small
intuitively-based samples consistently have the
odds stacked against their findings (even if results
are true). They overestimate the stability and preci-
sion of their results, and fail to account for sampling
variation as a possible reason for observed pattern.
The result is researchwaste on a colossal scale, espe-
cially of animals, that is increasingly difficult to
justify.

This book was written to assist non-statisticians
who use animals in research to ‘right-size’

experiments, so they are statistically, operationally,
and ethically justifiable. A ‘right-sized’ experiment
has a clear plan for sample size justification and
transparently reports the numbers of all animals
used in the study. For basic and veterinary research-
ers, appropriate sample sizes are critical to the
design and analysis of a study. The best sample
sizes optimise study design to align with available
resources and ensure the study is adequately
powered to detect meaningful, reliable, and gener-
alisable results. Other stakeholders not directly
involved in animal experimentation can also benefit
from understanding the basic principles involved.
Oversight veterinarians and ethical oversight com-
mittees are responsible for appraising animal
research protocols for compliance with best prac-
tice, ethical, and regulatory standards. An apprecia-
tion of sample size construction can help assess
scientific and ethical justifications for animal use
and whether the proposed sample size is fit for
purpose. Funding agencies and policymakers use
research results to inform decisions related to ani-
mal welfare, public health, and future scientific ben-
efit. Understanding the logic behind sample size
justification can assist in evaluation of study quality
and reliability of research findings, and ultimately
promote more informed evidence-based decision-
making.

An extensive background in statistics is not
required, but readers should have had some basic
statistical training. The emphasis throughout is on
the upstream components of the research process –
statistical process, study planning, and sample size
calculations rather than analysis. I have used real
data in nearly all examples and provided formulae
and code, so sample size approximations can be
reproduced by hand or by computer. By training
and inclination I prefer SAS, but whenever possible
I have provided R code or links to R libraries.
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1 The Sample Size Problem in
Animal-Based Research

CHAPTER OUTLINE HEAD

1.1 Organisation of the Book 5 References 6

Good Numbers Matter. This is especially true when
animals are research subjects. Researchers are
responsible for minimising both direct harms to
research animals and the indirect harms that result
from wasting animals in poor-quality studies
(Reynolds 2021). The ethical use of animals in
research is framed by the ‘Three Rs’ principles of
Replacement, Reduction, and Refinement. Origi-
nating over 60 years ago (Russell and Burch 1959),
the 3Rs strategy is framed by the premise that max-
imal information should be obtained for minimal
harms. Harms are minimised by Replacement,
methods or technologies that substitute for animals;
Reduction, the methods using the fewest animals for
the most robust and scientifically valid information;
and Refinement, the methods that improve animal
welfare through minimising pain, suffering, distress,
and other harms (Graham and Prescott 2015).

The focus of this book is on Reduction and meth-
ods of ‘right-sizing’ experiments. A right-sized
experiment is an optimal size for a study to achieve
its objectives with the least amount of resources,
including animals. However, simply minimising
the total number of animals is not the same as
right-sizing. A right-sized experiment has a sample
size that is statistically, operationally, and ethically
defensible (Box 1.1). This will mean compromising
between the scientific objectives of the study, pro-
duction of scientifically valid results, availability

BOX 1.1
Right-Sizing Checklist

Statistically defensible: Are numbers verifiable?
(Calculations)

Outcome variable identified
Difference to be detected
Expected variation in response
Number of groups
Anticipated statistical test (if hypothesis tests used)
All calculations shown

Operationally defensible: Are numbers feasible?
(Resources)

Qualified technical staff
Time
Space
Resources
Equipment
Funding

Ethically defensible: Are numbers fit for purpose? (3Rs)

Appropriate for study objectives?
Reasonable number of groups?
Are collateral losses accounted for and minimized?
Are loss mitigation plans described?
Are 3Rs strategies described?

Source: Adapted from Reynolds (2021).

A Guide to Sample Size for Animal-based Studies, First Edition. Penny S. Reynolds.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.



of resources, and the ethical requirement to mini-
mise waste and suffering of research animals. Thus,
sample size calculations are not a single calculation
but a set of calculations, involving iteration through
formal estimates, followed by reality checks for
feasibility and ethical constraints (Reynolds 2019).

Additional challenges to right-sizing experiments
include those imposed by experimental design and
biological variability (Box 1.2). In The Principles of
Humane Experimental Technique (1959), Russell
and Burchwere very clear that Reduction is achieved
by systematic strategies of experimentation rather
than trial and error. In particular, they emphasised
the role of the statistically based family of experi-
mental designs and design principles proposed by
Ronald Fisher, still relatively new at the time. For-
mal experimental designs customised to address
the particular research question increase the experi-
mental signal through the reduction of variation.
Design principles that reduce bias, such as rand-
omisation and allocation concealment (blinding)
increase validity. These methods increase the
amount of usable information that can be obtained
from each animal (Parker and Browne 2014).

Although it has now been almost a century
since Fisher-type designs were developed many
researchers in biomedical sciences still seem

unaware of their existence. Many preclinical studies
reported in the literature consist of numerous two-
group designs. However, this approach is both inef-
ficient and inflexible and unsuited to exploratory
studies with multiple explanatory variables
(Reynolds 2022). Statistically based designs are
rarely reported in the preclinical literature. In part,
this is because the design of experiments is seldom
taught in introductory statistics courses directed
towards biomedical researchers.

Power calculations are the gold standard for sam-
ple size justification. However, they are commonly
misapplied, with little or no consideration of study
design, type of outcome variable, or the purpose of
the study. The most common power calculation is
for two-group comparisons of independent samples.
However, this is inappropriate when the study is
intended to examine multiple independent factors
and interactions. Power calculations for continuous
variables are not appropriate for correlated observa-
tions or count data with high prevalence of zeros.
Power calculations cannot be used at all when sta-
tistical inference is not the purpose of the study, for
example, assessment of operational and ethical fea-
sibility, descriptive or natural history studies, and
species inventories.

Evidence of right-sizing is provided by a clear
plan for sample size justification and transparent
reporting of the number of all animals used in the
study. This is why these items are part of best-
practice reporting standards for animal research
publications (Kilkenny et al. 2010, Percie du Sert
et al. 2020 and are essential for the assessment of
research reproducibility (Vollert et al. 2020). Unfor-
tunately, there is little evidence that either sample
size justification or sample size reporting has
improved over the past decade. Most published ani-
mal research studies are underpowered and biased
(Button et al. 2013, Henderson et al. 2013, Macleod
et al. 2015) with poor validity (Würbel 2017, Sena
and Currie 2019), severely limiting reproducibility
and translation potential (Sena et al. 2010, Silver-
man et al. 2017). A recent cross-sectional survey
of mouse cancer model papers published in high-
impact oncology journals found that fewer than
2% reported formal power calculations, and less
than one-third reported sample size per group. It
was impossible to determine attrition losses, or
how many experiments (and therefore animals)
were discarded due to failure to achieve statistical

BOX 1.2
Challenges for Right-Sizing Animal-Based Studies

Ethics and welfare considerations. The three Rs
Replacement, Reduction, and Refinement should
be the primary driver of animal numbers.

Experimental design. Animal-based research has
no design culture. Clinical trial models are inapp-
ropriate for exploratory research. Multifactorial
agriculture/industrial design may be more suita-
ble in many cases, and they are unfamiliar to
most researchers.

Biological variability. Animals can display signifi-
cant differences in responses to interventions,
making it challenging to estimate an appropriate
sample size.

Cost and resource constraints. The financial cost of
conducting animal-based research, including the
cost of housing, caring for, and monitoring the
animals, must be considered in estimates of
sample size.

4 A Guide to Sample Size for Animal-based Studies



significance (Nunamaker and Reynolds 2022). The
most common sample size mistake is not perform-
ing any calculations at all (Fosgate 2009). Instead,
researchers make vague and unsubstantiated state-
ments such as ‘Sample size was chosen because it is
what everyone else uses’ or ‘experience has shown
this is the number needed for statistical signifi-
cance’. Researchers often game, or otherwise adjust,
calculations to obtain a preferred sample size
(Schultz and Grimes 2005, Fitzpatrick et al. 2018).
In effect, these studies were performed without jus-
tification of the number of animals used.

Statistical thinking is both a mindset and a set of
skills for understanding and making decisions
based on data (Tong 2019). Reproducible data can
only be obtained by sustained application of statis-
tical thinking to all experimental processes: good
laboratory procedure, standardised and comprehen-
sive operating protocols, appropriate design of
experiments, and methods of collecting and analys-
ing data. Appropriate strategies of sample size justi-
fication are an essential component.

1.1 Organisation of the Book
This book is a guide to methods of approximating
sample sizes. There will never be one number or
approach, and sample size will be determined for
the most part by study objectives and choice of

the most appropriate statistically based study
design. Although advanced statistical or mathemat-
ical skills are not required, readers are expected to
have at least a basic course on statistical analysis
methods and some familiarity with the basics of
power and hypothesis testing. SAS code is provided
in appendices at the end of each chapter and refer-
ences to specific R packages in the text. It is strongly
recommended that everyone involved in devising
animal-based experiments take at least one course
in the design of experiments, a topic not often cov-
ered by statistical analysis courses.

This book is organised into four sections
(Figure 1.1).

Part I Sample size basics discusses definitions of
sample size, elements of sample size determina-
tion, and strategies for maximising information
power without increasing sample size.

Part II Feasibility. This section presents strategies
for establishing study feasibility with pilot stud-
ies. Justification of animal numbers must first
address questions of operational feasibility
(‘Can it work? ’ Is the study possible? suitable?
convenient? sustainable?). Once operational
logistics are standardised, pilot studies can be
performed to establish empirical feasibility
(‘Does it work?’ is the output large enough to
be measured? consistent enough to be reliable?)

Feasibility

Power

Justifiable
numbers

YesNo

Feasible?

Interval

Operational 
feasibility?

Sample size
definitions

Confidence, power, 
significance 

Sample size 
basics

Description Comparison 

Arithmetic

Sampling
probability Signal 

Noise 
Minimise

Process variation
Subject variation

Maximise
Effect size

Data 
visualisation

Figure 1.1: Overview of book organisation. For animal numbers to be justifiable (Are they feasible? appropriate? ethical?
verifiable?), sample size should be determined by formal quantitative calculations (arithmetic, probability-based, precision-
based, power-based) and consideration of operational constraints.
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and translational feasibility (‘Will it work?’ proof
of concept and proof of principle) before pro-
ceeding to the main experiments. Power calcula-
tions are not appropriate formost pilots. Instead,
common-sense feasibility checks include basic
arithmetic (with structured back-of-the-envelope
calculations), simple probability-based calcula-
tions, and graphics.

Part IIIDescription. This section presents methods
for summarising themain features of the sample
data and results. Basic descriptive statistics pro-
vide a simple and concise summary of the data in
terms of central tendency and dispersion or
spread. Graphical representations are used to
identify patterns and outliers and explore rela-
tionships between variables. Intervals computed
from the sample data are the range of values
estimated to contain the true value of a popula-
tion parameter with a certain degree of confi-
dence. Four types of intervals are discussed:
confidence intervals, prediction, intervals, toler-
ance intervals, and reference intervals. Intervals
shift emphasis away from significance tests
and P-values to more meaningful interpretation
of results.

Part IV Comparisons. Power-based calculations
for sample size are centred on understanding
effect size in the context of specific experimen-
tal designs and the choice of outcome variables.
Effect size provides information about the
practical significance of the results beyond con-
siderations of statistical significance. Specific
designs considered are two-group comparisons,
ANOVA-type designs, and hierarchical designs.
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2.1 Introduction
Investigators frequently assume ‘sample size’ is the
same as ‘the number of animals’. This is not necessar-
ily true. Reliable sample size estimates are determined
by the correct identification of the experimental units,
the true unit of replication (Box 2.1). Replication of
experimental units increases both precision of esti-
mates and statistical power for testing the central
hypothesis. Replicates on the same subject over time

provide an estimate of time dependencies in response.
Technical replicates are used to obtain an estimate of
measurement error and are essential for quality con-
trol of experimental procedures. Pseudo-replication
is a serious statistical error that occurs when the
number of data points (evaluation units) is confused
with the number of independent samples, or experi-
mental units (Hurlbert 2009; Lazic 2010). Incorrect
specification of the true sample size results in errone-
ous estimates of the standard error, inflated type
I error rates, and increased number of false positives
(Cox and Donnelly 2011). Research results will there-
fore be biased and misleading.

Definitions of ‘replicates’ and ‘replication’ are fre-
quently confused in the literature, and further con-
flated with study replication. Planning experiments
using formal statistical designs can help differenti-
ate between the different types of replicates and
sampling units, and determine which is best suited
for the intended study.

2.2 Experimental Unit
The experimental unit or unit of analysis is the smal-
lest entire entity to which a treatment or control
intervention can be independently and randomly

BOX 2.1
What Is Sample Size?

A replicate is one unit in one group.

Sample size is determined by the number of replicates
of the experimental unit.

Experimental unit: Entire entity to which a treatment
or control intervention can be independently and indi-
vidually applied.

Biological replicate is a biologically distinct and inde-
pendent experimental unit.

Technical replicate is one of multiple measurements
on subsamples of the experimental unit, used to obtain
an estimate of measurement error.
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applied (Figure 2.1a). Cox and Donnelly (2011)
define it as the ‘smallest subdivision of the experi-
mental material such that two distinct units might
be randomized (randomly allocated) to different
treatments.’Whatever happens to one experimental
unit will have no bearing on what happens to the
others (Hurlbert 2009). If the test intervention is
applied to a ‘grouping’ other than the individual
animal (e.g. a litter of mice, a cage or tank of ani-
mals, a body part; (Figure 2.1b–d)), then the sample

size N will not be the same as the number of
animals.

The total sample size N refers to the number of
independent experimental units in the sample.
The classic meaning of a ‘replicate’ refers to the
number of experimental units within a treatment
or intervention group. Therefore, replicating exper-
imental units (and hence increasing N) contributes
to statistical power for testing the central statistical
hypothesis. Power calculations estimate the number

(a) (b)

(c)

t1 t2 t3 t4

t1 t2 t3 t4

(d)

Figure 2.1: Units of replication. (a) Experimental unit = individual animal = biological unit. The entire entity to which an
experimental or control intervention can be independently applied. There are two treatment interventions A or B. Here each
mouse receives a separate intervention, and the individual mouse is the experimental unit (EU). The individual mouse is also
the biological unit. (b). Experimental unit = groups of animals. There are two treatment interventions A or B. Each dam
receives either A or B, but measurements are conducted on the pups in each litter. The experimental unit is the dam (N = 2),
and biological unit is the pup (n = 8). For this design, the number of pups cannot contribute to the test of the central
hypothesis. (c) Experimental unit with repeated observations. The experimental unit is the individual animal (= biological unit)
with four sequential measurements made on each animal. The sample size N = 2. (d) Experimental unit = part of each animal.
There are two treatment interventions A or B. Treatment A is randomised to either the right or left flank of each mouse,
and B is injected into the opposite flank of that mouse. The experimental unit is flank (N = 8). The individual mouse is the
biological unit. Each mouse can be considered statistically as a block with paired observations within each animal.

10 A Guide to Sample Size for Animal-based Studies



of experimental units required to test the hypothe-
sis. The assignment of treatments and controls to
experimental units should be randomised if the
intention is to perform statistical hypothesis tests
on the data (Cox and Donnelly 2011).

Independence of experimental units is essential
for most null hypothesis statistical tests and meth-
ods of analysis and is the most important condition
for ensuring the validity of statistical inferences (van
Belle 2008). Non-independence of experimental
units occurs with repeatedmeasures andmulti-level
designs and must be handled by the appropriate sta-
tistically based designs and analyses for hypothesis
tests to be valid.

2.3 Biological Unit
The biological unit is the entity about which infer-
ences are to be made. Replicates of the biological
unit are the number of unique biological samples
or individuals used in an experiment. Replication
of biological units captures biological variability
between and within these units (Lazic et al. 2018).
The biological unit is not necessarily the same as
the experimental unit. Depending on how the treat-
ment intervention is randomised, the experimental

unit can be an individual biological unit, a group of
biological units, a sequence of observations on a sin-
gle biological unit or a part of a biological unit (Lazic
and Essioux 2013; Lazic et al. 2018). The biological
unit of replicationmay be the whole animal or a sin-
gle biological sample, such as strains of mice, cell
lines or tissue samples (Table 2.1).

2.4 Technical Replicates
Technical replicates or repeats are multiple mea-
surements made on subsamples of an experimental
unit (Figure 2.2). Technical replicates are used
to obtain an estimate of measurement error, the dif-
ference between a measured quantity and its true
value. Technical replicates are essential for asses-
sing internal quality control of experimental proce-
dures and processes, and ensuring that results are
not an artefact of processing variation (Taylor and
Posch 2014). Differences between operators and
instruments, instrument drift, subjectivity in deter-
mination of measurement landmarks, or faulty cal-
ibration can result in measurement error. Cell
cultures and protein-based experiments can also
show considerable variation from run to run, so
in vitro experiments are usually repeated several

Table 2.1: Units of Replication in a Hypothetical Single-Cell Gene Expression RNA Sequencing Experiment. Designating a
given replicate unit as an experimental unit depends on the central hypothesis to be tested and the study design.

Replicate ‘unit’ Replicate type

Animals Colonies Biological

Strains Biological

Cohoused animals in a cage Biological

Sex (male, female) Biological

Individuals Biological

Sample
preparation

Organs from animals killed for purpose Biological

Methods for dissociating cells from tissue Technical

Dissociation runs from given tissue sample Technical

Individual cells Biological

RNA-seq library construction Technical

Sequencing Runs from the library of a given cell Technical

Readouts from different transcript molecules Biological or technical

Readouts with unique molecular identifier (UMI) from a
given transcript molecule

Technical

Source: Adapted from Blainey et al. (2014).
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times. At least three technical replicates of Western
blots, PCR measurements, or cell proliferation
assays may be necessary to assess reliability of tech-
nique and confirm validity of observed changes in
protein levels or gene expression (Taylor and Posch
2014).

The variance calculated from the multiple mea-
surements is an estimate of the precision, and
therefore the repeatability, of the measurement.
Technical replicates measure the variability
between measurements on the same experimental
units. Repeating measurements increases the preci-
sion only for estimates of the measurement error;
they do not measure variability either within or
between treatment groups. Therefore, increasing
the number of technical replicates does not improve
power or contribute to the sample size for testing the
central hypothesis. Analysing technical repeats as
independent measurements is pseudo-replication.

High-dimensionality studies produce large
amounts of output information per subject. Exam-
ples include multiple DNA/RNA microarrays; bio-
chemistry assays; biomarker studies; proteomics;
metabolomics; inflammasome profiles, etc. These
studiesmay require a number of individual animals,
either for operational purposes (for example, to
obtain enough tissue for processing) or as part of
the study design (for example, to estimate biological
variation). Sample size will then be determined by
the amount of tissue required for the assay techni-
cal replicates, or by design-specific requirements
for power. Design features include anticipated

response/expression rates, expected false positive
rate, and number of sampling time points (Lee
andWhitmore 2002; Lin et al. 2010; Jung and Young
2012).

Example: Experimental Units with Techni-
cal Replication

Two treatments A and B are randomly allocated
to six individually housed mice, with three mice
receiving A and three receiving B. Lysates are
obtained from each mouse in three separate ali-
quots (Figure 2.2).

The individual mouse is the experimental unit
because treatments can be independently and
randomly allocated to each mouse. There are
three subsamples or technical replicates per
mouse. The total sample size is N = 6, with k =
2 treatments, n = 3 mice per treatment group,
and j= 3 technical replicates permouse. The total
sample size N is 6, not 18.

2.5 Repeats, Replicates, and
Pseudo-Replication
Confusion of repeats with replicates is a problem of
study design, and pseudo-replication is a problem of
analysis. Study validity is compromised by incorrect
identification of the experimental unit. A replicate is

A B

Figure 2.2: Experimental unit versus technical replicates. Two treatments A and B are randomly allocated to six mice.
The individual mouse is the experimental unit. Three lysate aliquots are obtained from each mouse. These are technical
replicates. The total sample size N is 6, not 18.
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a new experimental run on a new experimental
unit. Randomisation of interventions to experimen-
tal units and randomising the order in which exper-
imental units are measured (sequence allocation
randomisation) minimises the effects of systematic
error or bias. A repeat is a consecutive run of the
same treatment or factor combination. It does not
minimise bias and may actually increase bias if
there are time-dependencies in the data. Repeats
are not valid replicates.

Example: Replication Versus Repeats

In Figure 2.3, the experimental units are eight
mice that receive one of two interventions. In
the first scenario, both treatment allocated to
mouse and themeasurement sequence are rando-
mised. Bias is minimised and treatment variance

will be appropriately estimated. In the second
scenario, treatment intervention may or may
not have been randomly allocated to mice, but
measurements were obtained for all mice in the
first group followed by those in the second group.
Bias results from confounding of outcome mea-
surements with potential time-dependencies
(for example, increasing skill levels or learning)
and difference in assessment, especially if treat-
ment allocation is not concealed (blinded).

2.5.1 Repeats of Entire Experiments
A common practice in mouse studies is to repeat an
entire experiment two or three times. It has been
argued that this practice provides evidence that
results are robust. However, NIH directives are clear
that replication is justifiable only for major or key
results, and that replications be independent.
Repeating an experiment in triplicate by a single
laboratory is not independent replication. These
repeats can provide only an estimate of the overall
measurement error of that experiment for that
lab. A major consideration is study quality. If the
study is poorly designed and underpowered, repli-
cating it only wastes animals. Unless the purpose
of direct internal replications is scientifically justi-
fied, experiments are appropriately designed and
conducted to maximise internal validity, and exper-
imental, biological, and technical replicates are
clearly distinguished, simple direct repeats of
experiments on whole animals are rarely ethically
justifiable. Chapter 6 provides practical guidelines
for experiment replication.

2.5.2 Pseudo-Replication
In a classic paper, Hurlbert (1984) defines pseudo-
replication as occurring when inferential statistics
are used ‘to test for treatment effects with data
from experiments where either treatments are
not replicated (though samples may be) or experi-
mental units are not statistically independent’
(Hurlbert 1984, 2009). The extent of pseudo-
replication in animal-based research is disturbingly
prevalent. Lazic et al. (2018) reported that less than
one-quarter of studies they surveyed identified the

True replicates

Repeats

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Figure 2.3: Replicates versus repeats. True replicates are
separate runs of the same treatment on separate
experimental units. Both treatment allocation to units
and sequence allocation for the processing of individual
experimental units are randomised. In this experiment,
the eight measurements on eight mice are taken in
random order. Repeat measurements are taken during
the same experimental run or consecutive runs. Unless
processing order is randomised, there will be
confounding with systematic sources of variability
caused by other variables that change over time. In this
experiment, eight measurements on eight mice are
obtained consecutively with units in the first treatment
measured first.
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correct repli-cation unit, and almost half showed
pseudo-replication, suggesting that inferences based
on hypothesis tests were likely invalid.

Three of the most common types of pseudo-
replication are simple, sacrificial, and temporal.
Others are described in Hurlbert and White (1993)
and Hurlbert (2009).

Simple pseudo-replication occurs when there is
only a single replicate per treatment. There may
be multiple observations, but they are not obtained
from independent experimental replicates. The arti-
ficial inflation of sample size results in estimates of
the standard error that are too small, contributing to
increased Type I error rate and increased number of
false positives.

Example: Mouse Photoperiod Exposure

A study on circadian rhythms was conducted to
assess the effect of two different photoperiods on
mouse wheel-running. Mice in one environmen-
tal chamber were exposed to a long photoperiod
with 14 hours of light, and mice in a second
chamber to a short photoperiod with 6 hours of
light. There were 15 cages in each chamber
with four mice per cage. What is the effective
sample size?

This is simple pseudo-replication. The experi-
mental unit is the chamber, so the effective sam-
ple size is one per treatment. Analysing the data
as if there is a sample size of n = 60 (or even n =
15) per treatment is incorrect. The number of
mice and cages in each chamber is irrelevant.
This design implicitly assumes that chamber con-
ditions are uniform and chamber effects are zero.
However, variation both between chambers and
between repeats for the same chamber can be
considerable (Potvin and Tardif 1988; Hammer
and Hopper 1997). Increasing sample size of mice
will not remedy this situation because chamber
environment is confounded with photoperiod. It
is, therefore, not possible to estimate experimental
error, and inferential statistics cannot be applied.
Analysis should be restricted to descriptive statis-
tics only. The study should be re-designed either to
allow replication across several chambers, or if
chambers are limited, as a multi-batch design
replicated at two or more time points.

Sacrificial pseudo-replication occurs when there
are multiple replicates within each treatment arm,
the data are structured as a feature of the design
(such as pairing, clustering, or nesting), but design
structure is ignored in the analyses. The units are
treated as independent, so the degrees of freedom
for testing treatment effects are too large. Sacrificial
pseudo-replication is especially common in studies
with categorical outcomes when the χ2 test or Fish-
er’s exact test is used for analysis (Hurlbert and
White 1993; Hurlbert 2009).

Example: Sunfish Foraging Preferences

Dugatkin and Wilson (1992) studied feeding suc-
cess and tankmate preferences in 12 individually
marked sunfish housed in two tanks. Preference
was evaluated for each fish for all possible pair-
wise combinations of two other tankmates. There
were 2 groups × 60 trials, per group × 2 replicate
sets of trials, for a total of 240 observations. They
concluded that feeding success was weakly but
statistically significantly correlated with aggres-
sion (P < 0.001) based on 209 degrees of freedom,
and that fish in each group strongly preferred
(P < 0.001) the same individual in each of the
two replicate preference experiments, based on
60 observations.

The actual number of experimental units is 12,
with 6 fish per tank. The correct degrees of
freedom for the regression analysis is 4, not
209. Suggested analyses for preference data
included one-sample t-tests with 5 degrees of free-
dom or one-tailed Wilcoxon matched-pairs test
with N = 12. Correct analyses would produce
much larger P-values, suggesting that interpreta-
tion of these data requires substantial revision
(Lombardi and Hurlbert 1996).

Temporal (or spatial) pseudo-replication occurs
when multiple measurements are obtained sequen-
tially on the same experimental units, but analysed
as if they represent an individual experimental unit.
Sequential observations (or repeated measures)
are correlated within each individual. Repeatedmea-
sures increase the precision of within-unit estimates,
but the number of repeatedmeasures do not increase
the power for estimating treatment effects.
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Example: Tumour Proliferation in Mouse
Models of Cancer

Sequential measurements of solid tumour volume
inmice are commonly reported as ameasureof dis-
ease progression or response to an intervention.
Mull et al. (2020) tested the effects of low-dose
UCN-01 to promote survival of tumour-bearing
mice with lower tumour burden. Mice in four
treatment groups were weighed daily for 30 days,
then twiceweekly to day 75. Differences in tumour
volume between groups were assessed by t-tests
and one-way ANOVA at five time points.

This is temporal pseudo-replication because the
same groups of mice are repeatedly sampled over
time, but separate hypothesis tests were performed
at different time points. However, successive obser-
vations on the same mice are correlated, and sam-
ple size is expected to decline as mice die or are
humanely euthanised at different times during
the study. Traditional ANOVA or repeated-
measures ANOVAmethods cannot handle missing
data or imbalance in the number of repeated
responses and do not incorporate the actual corre-
lation structure of the data. Mixed models are
much more appropriate, because the true variation
in the repeated measurements can be modelled
directly by incorporating time dependencies and
allowing customisation of the correlation struc-
ture; they can also accommodate missing data
due to subject loss.
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3.1 Introduction
Reduction of animal numbers is a key tenet of the
3Rs strategy, but at times may seem to conflict
with the goal of maximising statistical power.
Large power results in part from increasing
sample size. However, a large sample size does
not guarantee adequate power, and high
power alone does not ensure that results are infor-
mative. This section outlines ten complementary
strategies for maximising experimental signal
and reducing noise, and therefore increasing the
information content of study data. Highlighted
are strategies for reducing experimental variation
before, rather than after, the experiment is con-
ducted. Incorporating all ten strategies will also
increase experimental efficiency – the ability of
an experiment to achieve study objectives with
minimal expenditure of time, money, and
animals.

The ten strategies are as follows:

1. ‘Well-built’ research questions
2. Structured inputs (statistical study designs)
3. Reduce variation I: Process control
4. Reduce variation II: Research animals
5. Reduce variation III: Statistical control
6. Appropriate comparators and controls
7. Informative outcomes
8. Minimise bias
9. Think sequentially

10. Think ‘right-sizing’, not ‘significance’

3.2 The ‘Well-Built’ Research
Question
Once the investigator has identified an interesting
clinical or biological research problem, the chal-
lenge is to turn it into an actionable, focused, and
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testable question. A well-constructed research ques-
tion consists of four concept areas: the study popu-
lation or problem of interest, the test intervention,
the comparators or controls, and the outcome. For-
mat is modified according to study type (Box 3.1 and
Figure 3.1).

Structuring the research question enables clear
identification and discrimination of causes (factors

that are manipulated or serve as comparators),
effects (the outcomes that are measured to assess
causality), and the test platform (the animals used
to assess cause and effect). Breaking the research
question into components allows the identification
and correction of metrics that are otherwise poorly
defined or unmeasurable.

A well-constructed research question is essential
for effective literature searches. Comprehensive lit-
erature reviews provide current evidence-based
assessments of the scientific context, the research
gaps to be addressed, suitability of the proposed ani-
mal and disease model, and more realistic assess-
ments of potential harms and benefits of the
proposed research (Ritskes-Hoitinga and Wever
2018; Ormandy et al. 2019). Collaborative research
groups such as CAMARADES (https://www.ed.
ac.uk/clinical-brain-sciences/research/camar-

ades/about-camarades) and SYRCLE (https://
www.syrcle.network/) are excellent resources for
certain specialities such as stroke, neuropathic pain,
and toxicology, and provide a number of e-training
resources and tools for assessing research quality.
Construction of the research question in the PICOT
framework was originally developed for evidence-
based medicine. Information on constructing
research questions and designing literature searches
can be obtained from university library resources
sections and the Oxford Centre for Evidence-based
Medicine website.

The research question dictates formation of
both the research hypothesis and related statistical
hypotheses. These are often confused or conflated.
The research hypothesis is a testable and quantifiable
proposed explanation for an observed or predicted
relationship between variables or patterns of events.
It should be rooted in a plausible mechanism as to
why the observation occurred. One or more testable
predictions should follow logically from the central
hypothesis (‘If A happens, then B should occur, oth-
erwise C’). A description of the scientific hypothesis
provides justification for the experiments to be per-
formed, why animals are needed, and rationale for
the species, type or strain of animals, and justifica-
tion of animal numbers.

The statistical hypothesis is amathematically-based
statement about a specific statistical population

I
Interventions

C
Comparators,

controls

P
“Patient”

“Platform”
“Population”

O
Outcomes

T
Time

Figure 3.1: System diagram for the ‘well-built’ research
question.

BOX 3.1
The ‘Well-Built’ Research Question

Experimental/intervention studies: PICOT

Population/Problem
Intervention
Comparators/Controls
Outcome
Time frame, follow up

Observational studies: PECOT

Population/Problem
Exposure
Comparators
Outcome
Time frame, follow up

Diagnostic studies: PIRT

Population/Problem
Index test
Reference/gold standard
Target condition.
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parameter. Hypothesis tests are the formal testing
procedures based on the underlying probability dis-
tributionof the relevant sample test statistic.Choice
of statistical test will depend upon the statistical
hypothesis, the study design, the types of variables
(continuous, categorical, ordinal time to event),
designated as inputs or outcomes. Statistical
hypotheses should be a logical extension of the
research hypothesis (Bolles 1962). However, the
research hypothesis may not immediately conform
to any one statistical hypothesis, and multiple sta-
tistical hypotheses may be required to adequately
test all predictions generated from the research
hypothesis.

Example: Research Versus Statistical
Hypotheses

Based on a comprehensive literature review, an
investigator determined that ventricular dys-
rhythmia after myocardial infarction is associ-
ated with high risk of subsequent sudden
cardiac arrest in humans (clinical observation,
clinical pattern). The investigator wished to
design a series of experiments using a mouse
model of myocardial infarction to test the effects
of several candidate drugs with the goal of redu-
cing sudden cardiac death.

Scientific hypothesis. Pharmacological suppres-
sion of ventricular dysrhythmia should
result in clinically important reductions in
the incidence of sudden cardiac death.

Research question. In a mouse model of dys-
rhythmia following myocardial infarction
(P), will drug X (I) when compared to a saline
vehicle solution (C) result in fewer deaths (O)
at four weeks post-administration (T)?

Quantified outcomes. Number of deaths (n) in
each group and proportion of deaths (p) in
each group.

Statistical hypothesis. The null hypothesis is
that of no difference in the proportion of
deaths for mice treated with drug X (pX) ver-
sus the proportion of deaths for mice treated
with control C (pC) is H0 pX = pC or H0:
pX – pC = 0.

3.3 Structured Inputs
(Experimental Design)
The design of an animal-based study will affect esti-
mates of sample size. Good study designs are an
essential part of the 3Rs (Russell and Burch 1959;
Kilkenny et al. 2009; Karp and Fry 2021; Gaskill
and Garner 2020; Eggel and Würbel 2021). Rigor-
ous, statistically-based experimental designs consist
of the formal arrangement and structuring of inde-
pendent (or explanatory) variables hypothesised to
affect the outcome. (Box 3.2). The optimum design
will depend on the specific research problem
addressed. However, to be fit for purpose, all designs
must facilitate discrimination of signal from noise,
by identifying and separating out contributions of
explanatory variables from different sources of var-
iation (Reynolds 2022). By increasing the power to
detect real treatment differences, a properly
designed experiment requires the use of far fewer
time, money, and resources (including animals)
for the amount of information obtained.

Well-designed studies start with a well-
constructed research question and well-defined
input and output variables. A good design also
incorporates specific design features that ensure
results are reliable and valid. These include correct
specification of the unit of analysis (or experimental
unit), relevant inclusion and exclusion criteria, bias
minimisation methods (such as allocation conceal-
ment and randomisation; Section 3.10), and mini-
misation of variation (Addelman 1970). Useful
designs for animal-based research include com-
pletely randomised design, randomised complete
block designs, factorial designs, and split-plot
designs (Festing and Altman 2002; Montgomery
2017; Festing 2020; Karp and Fry 2021).

BOX 3.2
Statistical Design of Experiments: Components

Study design. Formal structuring of input or explan-
atory variables according to statistically-based
design principles

Study design features. Unit of analysis (experimen-
tal unit), inclusion/exclusion criteria, bias mini-
misation methods, sources of variation.
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