Game Development
with Unity 3D

A Beginner’s Guide to Mathematical
Foundations

Second Edition

Kelvin Sung
Gregory Smith

Apress’

Basic Math for
Game Development
with Unity 3D

A Beginner’s Guide to Mathematical
Foundations

Second Edition

Kelvin Sung
Gregory Smith

Figures and illustrations: Clover Wai

Apress®

Basic Math for Game Development with Unity 3D: A Beginner’s Guide to
Mathematical Foundations, Second Edition

Kelvin Sung Gregory Smith
Bothell, WA, USA Caldwell, ID, USA
ISBN-13 (pbk): 978-1-4842-9884-8 ISBN-13 (electronic): 978-1-4842-9885-5

https://doi.org/10.1007/978-1-4842-9885-5

Copyright © 2023 by Kelvin Sung, Gregory Smith

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: James Markham

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit https://www.
apress.com/gp/services/source-code.

Paper in this product is recyclable

https://doi.org/10.1007/978-1-4842-9885-5

To my wife, Clover, and our girls, Jean and Ruth, for completing my life.
—Kelvin Sung

To my wife and our little one, thank you for making
my life better each and every day.

—Gregory Smith

Table of Contents

About the AUtROIS.........ccceemmssmmmssnsmssnssssnsssssssss s s s s s ssn s ss s s sssansssssnnsnssnnsnnsnnnnnsns xi
Acknowledgments........ccccciuiisssnmmsmnmmmmmssssssssssssnnmsesssssssssssnnnsseesssssssssnnnnnssssssssssnnnnnns Xiii
INtroduction........cccimiimminsmsmnsen s XV
Chapter 1: Introduction and Learning Environmentcccccmmmmmmnmmmmsssssssnnnsenssnnes 1
INEPOAUCTION.....c.vietccc e e e e e e p e e n e nRa e s 1
ChoiCe Of UNItY ENQINEcceerreririerereriesessere e sessesse s sessessessessesssssssessesssssssessessesssssssessessssssnsnsessens 3
Setting Up Your Development ENVIFONMENTcccvevenririererissessesessesessessessessssesessessssessensessens 4
Notes on INSTalliNg UNity......ccceceririececrcre e s r e s 5

Unity Editor ENVIFONMENTc.ooii st s 5
Opening the Intro 1o Unity ProjECtcccceevrcrirrs s 7
Working with the Unity EItor ..o 8
Working With MySCHiptcoviiiirrrr e s 14

To Learn More About Working with Unity.........ccccconininincncr e 23

HOW 10 USE THiS BOOKcoveeerecerreeresenessee e sessese e se s e se s sessssessssessssesssssenns 23
SUMIMAIY....ctitiertseseee s e s e Re e e e e e e e R e e s R e e sen e e e Re e Ra e nrn e e nsnnnns 24
RETBIBNCEScvieeecet et 25
Chapter 2: Intervals and Bounding BOXEeScccesrussssnsnssssssnsnssssssnnssssssssssssssssnnnsssss 27
INEFOTUCTION ...t s 27
Review of Cartesian Coordinate SYSEBMccvvvvrierererrrreriesssersere e ssesse s ssesssesseseesessensesaes 28
Intervals: Min-MaX RANQEcccccvrriniiniininnsirse e s s se s s sre s e s snes 30
Working with Examples in UNity ... ssssessesnes 31

The Interval Bounds in 1D EXaMPpIE.......c.ccoevrcririnnsrsne e 32
Axis-Aligned Bounding Boxes: Intervals in Three DIMenSionscvoveernererenerssesensesessenesennes 42
The Box Bounds Intervals in 3D EXaMPpIe.........ccccoiriininininnnsnene s sessesnes 44

TABLE OF CONTENTS

ColliSion Of INTEIVAIS........ccccvereririiie e 52
The Interval Bound Intersections EXamplec.cccvverinininnninnensen s ssesssessesessens 54
Collision of BOUNMING BOXES.......cccouruereririerereriresersesesesesessesessssesessesessssessssessssesssssssssssssssessssenens 59
The Box Bound Intersections EXample ... sessesnes 60
Final Words on Bounding BOXES..........cccoerererrermrerenerenesessesesesessese s sesessesessssesessesessesessssessssesenns 70
The Unity BOUNAS CIASScccrererereereererenesessese e ese s sessesessssesessesessssessesesessssesssnens 70
B30T 111 T PSSR 72
Chapter 3: Distances and Bounding SPheres........ccuusseemmmssssnsnmsssssnnsssssssnssssssssnnssssss 73
INEFOAUCTION.....c.vicecct e b e e p e nr e 73
Distances Between POSItIONS.........c.conmn s s ssas 74
The Positions and Distances EXAmPIe.........cocvcvverievennseneniesensenesessssessesessssessessessessssessesaes 76
Sphere Colliders or Bounding SPREIESccccvvvervrierererrerseresesessesessessssessessesssssssessessesssssssesseses 82
The Sphere Bounds EXAMPIE......ccccovirrvrierivensinienesssessessesssssssessessessssessessesssssssessesssssssessesses 84
Collision of BoUNMiNg SPREIESccueceririerireriresire st st se e 89
The Sphere Bound Intersections EXamPple..........ccovecvrerrenernsesniesesesesessesesesessesesessesessenens 90
The Unity BoundingSpPhere Classcccocorrerrenerenernseseseseseses s e sesesessesessssesenses 94
B0 111 T PSSR 94
Chapter 4: Vectorsccccuuismmmmmmssssnnmmmsssssnmmssssssnmsssssssnssssssnsnssssssnnnsssssnnnnessssnnnnsssss 97
INEFOAUCTION.....c.vicecct e b e e p e nr e 97
Vectors: Relating TWO POINEScccveriiirrricre e s et se s saesessessesnessssessesnens 99
0L L0 R =Tt o] 102
FOHOWING @ VECTOK ...t 103
Following a Vector from Different POSItioNnsccccvvvvnninininsnn s 104
The Position Vectors EXAMPIE ..o ssessss s e sses e s s sssssssssesse s 106
Vector Algebra: SCAlINGccccevrerrerire sttt r s st s re e e 121
NOrmalization 0f VECIOFSccovieerercrerereresere e 124

DT =T 10 0 Y= (0] 3T 125
The Vector Scaling and Normalization EXamplecccovvvrienninsnnccvnicnere s sesesesesseens 126
Application of VECtor: VEIOCILYcccvcririinine s sss e sss s e ssesnens 137
The Velocity and Aiming EXAMPIE........ccoreerrerreseree e see e sesseesnenens 139

TABLE OF CONTENTS

Vector Algebra: Addition and Subtraction.........cccveevvrvrninnnensnene e sessens 148
Rules of Vector Addition and Subtraction ..o 149
Addition and Subtraction with the Zero Vector...........ccvivnniinsnsnnnse s 150
Vectors in an EQUALION.........cocvve s e s 151
Geometric Interpretation of Vector Addition and Subtraction............ccccveevievvvnieriennsensenens 151
The Vector Add and Sub EXAMPIE........covvrveriererenienrenessesessesesessssessessessessssessessesssssssessesaes 154
EXaming the SCENE ... 155
Analyze Controller MyScript COMPONENT.........ccccvirveriernrersersere s s e e ssssessessesaes 155
Interact with the EXample........cccvverrininnc s sse s s ses 156
Details Of MYSCHIPEcvvcerevrecerrere s s s ae s a e eae e e aennen 158
Takeaway from This EXaMPIE.........ccccvcrirninininnin s s s ssse s sae s 161

Application of VECtor AIgEIDIa..........ccvveieriirire s se e nne s 162
The Windy Condition EXAMPIEcccoreeererrnicrre s ses e ses e sessssesessesessesessssesessessssenens 163

£ 7 o 169

Chapter 5: Vector Dot Productsccceeeemmsrrnssssssssssssnnsmssssssssssssssnssssssssssssssssnnsnnnss 171

11100 1T 0 o SR 171

Vector Dot Product: Relating TWO VECIOrScuccevenerisernesine s sesss s ssnnes 173
Definition of Vector Dot ProduCt ... sennes 174
Properties of Vector DOt ProdUCt ..o s e 175
The Angle Between TWO VECTOIS.......ccccveieremreresiesese s s s se s sessennes 177
The Angle Between Vectors EXamPIEccoceverrnenrerienesensesse s ssssessessesnes 181

LT (0] gl o €] 1= (4O 189
The Vector Projections EXAMPIEcccvvcrvriernnnsinsenesss s sessese s sesse e ssesessessessessssessessesees 191

Representation of @ Line SEGMENT..........cccrrirririnienssnrere e sessese e ssssessessessssessessessessssessessens 198
Inside-Outside Test of a General 1D INterval ... 200
The Line Interval Bound EXamPpIE.......ccccevirininnnnninense e sses s ssessssssesaesaesns 204

Line t0 POINE DISTANCEcccoereeeeereec e 210
The Line to Point Distance EXamplecccocevenninnnnnsinsne s sss e e snes 212

Ling t0 LiNe DISTANCE........ccccrereerereereserereresese e se s se s 218
The Line to Line Distance EXample..........cccccriiiinininnnnsne s sessese e seseenes 222

£ 10T o 230

TABLE OF CONTENTS

Vector Dot Product Definition and Implications.........cccccvveririnvnnnninnnsnne e 231
Interpreting the Dot Product RESUISccccerririin e 232
Insights into the SUDTENAEd ANGIE.......ccevereriere e eae s 232
The Line EQUALIONSccovueririirsiene e sa e s s s s s sn e s s s 233
Chapter 6: Vector Cross Products and 2D Planes........ccccuusssennmnssssnnnsssssssnsssssssnnnss 235
L C (0T 1T 0 o T 235
3D Coordinate System CONVENTION..........ccoeerrecrereserecrsese e 237
Unity Follows the Left-Handed Coordinate SyStem..........ccccovoirerrncnnneneneseres e 238
Vector Cross Product: The Perpendicular DireClioncccoovvvvninnnninnnnnsnsenesneses s 239
Definition of Vector Cross Product...........ccoveeerenernnsnsesesssese s ssssesennes 240
Geometric Interpretation of Vector Cross Productsccccvevverrenreriersenseesessessesseessesensens 242
Properties of Vector Cross ProduCt.........cccovvvviennnnnnie s s s sessessesses 243
The Vector Cross Products EXample.........cccvvininininnsinsnesess s sssssssessesees 244
The Vector Plane EQUALIONcccuecevicernenincsinsse s ss e se s s sessssssesssssssenens 252
The PosSition P, 0N @ PIANE........ccciiiriiree s ss s s e ssess e s saessesssssnesaesassnas 255
Given @ PoSition 0N @ PIANE ... s nsanes 256
POSItionS 0N 2D PIANEScoveeirriireserisessse e s se s s sen s 256
The Vector Plane Equations EXamPIEcccovvernenmnnnesnsennesese s sesessssssessssesessessssenens 257
AXis Frames and 2D REJIONSc.covvrrererriiersereressssessessessessssessessesssssssessessesssssssessessessssessessens 265
Bounds 0N @ 2D PIANE ... s 267
The Axis Frames and 2D Regions EXAMPIEccccvverirvnnrnienens s sessessessessssessessesees 268
Projections onto 2D PIANESccvciieriiiininne s se s s s 274
The Point to Plane Projections EXample ... ssessesssessessesns 277
Line t0 PIane INTErSECHONccveeereeecreeree e e 283
The Line Plane Intersections EXample.........cccovivninnnnnsnnnesssssese s sessesseenes 285
Mirrored Reflection ACroSS @ PIANe...........ccoveiereecrnscrrcrere e 292
The Reflection DIF€CHIONcoecceerecrerereree e 293
The Line Reflections EXAmPIE ... enes 294

£ 11T 1117 301

viil

TABLE OF CONTENTS

Chapter 7: Axis Frames and Vector Componentsccccuusseemnmssssssnssssssssssssssssnnnss 303
L C (0T 11T 0 o 303
Positions in the Cartesian AXiS FIaME........c.ccccorerrrrrnnererese s 306

Components of @ PoSItion VECTONcccvvvrvninsrsne e 307
The Components of Cartesian Axis Frame EXample...........c.cccvvvninnnnnnnnsnsennessssnsenennns 308
Positions in General AXiS FTAMES..........ccooverrrererenmrnsssesesese s s ssssssssssssssssesessssenns 312
Review of Axis Frame Derivationc.ccccvvrerrenernnsnsesessssess s sesssssssssessnss 313
Position Vectors in General AXiS FIaAMESccccoerermrnsesesssnmsssesessesesssesssessssesesssssssssessnnes 314
Components of POSition VECIOIS........cccveviininenn s 315
The Components of Any Frame EXample........cccovvvvninnnnnninnn s sessesesees 318
VECTOrs iN AXiS FraAMES.......cceceriierinesinese s s sr s sn s s sr s sna s 325
VECtor COMPONENLSccvveriiiririire e s b e s b nn 326
The Vectors in Any Frame EXamPpIeccooccvvcennennncnnessessss s sessessssenens 330
Motion Control in AXiS Frames ... s ssssas 338
The Motion in AXiS Frame EXAMPIEccccvvrierennnnrenens s sesese s sessesse e sessessessessssessessesees 340
AXIS Frames iN UNITYcocoviiiircnsis s ss e s s s s s 346
£ 1T 1117 OO 347

Chapter 8: Quaternions and Rotations.........ccccusmrmssmsmssmsmssssssssssssssssssssssssssssnssnas 349
1L ((0T 1T 0 o 349
Rotation TErmin0IOGIesc.cueererermrrenerensesesesesene s sesse e s sesssnenns 351
QUALErnNion: TUPIE OF FOUTcoveerrertre st se s e sa e e se e a e e s e p e e e 352

Encoding of ANgle @nd AXIScueeerrenerrnsemsssesesesesssse s ese s ssssesssssssssssessssesssssssssssessanes 354
Rotation OPeration.........cccvecrinieninnn s e e 354
Quaternion Rotation Limitation..........c.ccurrerennnnnisscs s 355
Rotating Positions and VECIOrS..........cccuvcinininnsennse s sennes 356
The Rotation with Quaternion EXample ... sessese s sessessesees 356
Quaternion CoNCAENALIONccoiiicreriren s 366
The Quaternion Concatenation EXampleccoovvvrveriennnnsnienness s sessessessessssessesseses 368
Aligning Vector DIr@CHIONSccvcvii e a e s s 375
The Align Vector Directions EXampIe..........cocvvrvenininninnnn e sessessss e e ssessesssessessesns 376

ix

TABLE OF CONTENTS

Interpolation and Chasing BENAVIOFccccvevrererrerieressnsenenessssesessessssessesessssessessessessssessessens 384
Interpolation: Gradual ChANQESccveeveveererrerere s s sss e ssessessssessesaees 385

The Chasing or HOME-IN BERAVIOTcccvvrereniriereresssessesesessssessessessessssessessesssssssessesaes 387

The Chasing Behavior EXAMPIEcccceevvrerrerierenersereressssessesessessssessessesssssssessessesssssssessesses 388
AligNIiNg AXIS FrAMES.......cciiirieririesissenese s s st b e s r et s benr e naenne s 393
The Unity QUALErnion ClaSSccoouvevrererererneriresese e ses e ses e ses e ssssesessesessesessssesessessssenens 396

The Align Frames EXaMPIE ..o s se s enes 397

£ 111 T 405
Chapter 9: CONCIUSION.......icuiimmmmmmsssannmmsssssnnsmsssssnnnsssssnnnnsssssnnnnessssnnnnsssssnnnnesssnnnnnss 407
The Final Comprehensive EXAmPIE........cccvirinnennsni s sssse s s ses e s s 408
EXAMINE the SCENE......cccoeercrc e s 409
Analyze Controller MyScript COMPONENT..........ccoverrinernserssesese s sessesessenens 411
Interact with the EXample.........covivinncsrrnr e 413
Details Of MYSCIIPLcvovreerrerrsese s nne e 424
Takeaway from ThiS EXAMPIEcccevereresernsesenesese s s e ssssesesse s ssssesesssssssenens 436
WRALE'S NEBXL......eieeeecerire e s s e e R e e e e s 438
1T - a1

About the Authors

Kelvin Sung is Professor with the Computing and Software Systems Division at the
University of Washington Bothell (UWB). He received his Ph.D. in Computer Science
from the University of Illinois at Urbana-Champaign. Kelvin’s background is in computer
graphics, hardware, and machine architecture. He came to UWB from Alias|Wavefront
(now part of Autodesk), where he played a key role in designing and implementing the
Maya Renderer, an Academy Award-winning image generation system. At UWB, funded
by Microsoft Research and the National Science Foundation, Kelvin’s work focuses on
the intersection of video game mechanics, solutions to real-world problems, and mobile
technologies. Together with his students and colleagues, Kelvin has co-authored six
books: one in computer graphics and the others in 2D game engines with Apress.

Gregory Smith is a software engineer at Virtual Heroes, a company that focuses

on creating training and simulation software in Unreal Engine. He received his
undergraduate degree in Computer Science from Northwest Nazarene University in 2018
and earned a Master of Computer Science and Software Engineering degree from the
University of Washington Bothell in 2020. Gregory also owns his own game company,
Plus 2 Studios, which he works on in his spare time.

xi

Acknowledgments

This book and the projects it relates to stem from the results of the authors’ attempts

to understand how to engage learners in exploring knowledge related to interactive
computer graphics, introductory programming, and video games. Past funding for
related projects includes support from the National Science Foundation for the projects
“Essential Concepts for Building Interactive Computer Graphics Applications” (Award
Number, CCLI-EMD, NSE DUE-0442420) and “Game-Themed CS1/2: Empowering the
Faculty” (Award Number DUE-1140410). Projects supported by Microsoft Research and
Microsoft Research Connections include “XNA Based Game-Themed Programming
Assignments for CS1/2” (Award Number 15871) and “A Traditional Game-Themed CS1
Class” (Award Number 16531). All of these past projects have laid the foundation for
our perspectives and presentation of the materials in this book. We would also like to
thank NSF officers Suzanne Westbrook, Jane Prey, Valerie Bar, and Paul Tymann for
their invaluable discussions and encouragements, as well as Donald Brinkman and Kent
Foster as they continue to be our best advocate and supporters at Microsoft. Lastly, we
remember and continue to miss Steve Cunningham, John Nordlinger, and Lee Dirks for
their early recognition of our vision and ideas.

A thank you must also go out to our students, whose honest, even when brutal,
feedbacks and suggestions from CSS385: Introduction to Game Development, CSS451:
3D Computer Graphics, CSS452: Game Engine Development, and CSS551: Advanced
3D Computer Graphics at the University of Washington Bothell inspired us to explore
the approach to present these materials based on an accessible game engine. They have
tested, retested, contributed to, and assisted in the formation and organization of the
contents of this book. The second author of this book is an alumnus of CSS551.

It must also be mentioned that the teaching brown bag hosted by Yusuf Pisan offered
the opportunity for the discussions with Yusuf, Johnny Lin, Lesley Kalmin, and Mike
Stiber on the topics of linear algebra applications which sparked the initial idea for this
book. A sincere thank you goes to Yusuf for his enthusiasm and energy in organizing us
and, of course, for the delicious-looking Tim Tam; one day, I will try them.

xiii

ACKNOWLEDGMENTS

We also want to thank Spandana Chatterjee for believing in our ideas, her patience,
and continual efficient and effective support. Nirmal Selvaraj organized everything and
ensured proper progress was ongoing.

Lastly, a thank you must go to Peter Shirley, our technical reviewer, whose frank and
precise comments made this a much easier to understand book.

The vehicle models used are free assets, UAA - City Props - Vehicles, downloaded
from the Unity Asset Store under the Unity-EULA. The cone shape that represents the
arrow heads for the axis frames and vectors in all examples is created based on the
utilities developed and shared by Wolfram Kresse available at https://wiki.unity3d.
com/index.php/CreateCone. The cosine function plot from Figure 5-5 is based on a
screenshot taken from www.desmos.com/calculator/ngfu5lxaij.

Xiv

https://wiki.unity3d.com/index.php/CreateCone
https://wiki.unity3d.com/index.php/CreateCone
http://www.desmos.com/calculator/nqfu5lxaij

Introduction

Welcome to Basic Math for Game Development with Unity 3D. Because you have picked
up this book, you are probably interested in finding out more about the mathematics
involved in game development or, maybe, in the details of fascinating applications like
Unity. This can be the perfect book to begin with your exploration.

This book uses interactive examples in Unity to present each mathematical concept
discussed, taking you on a hands-on journey of learning. The coverage of each topic
always follows a pattern. First, the concept and its relevancy in video game functionality
are described. Second, the mathematics, with a focus on applicability in game
development and interactive computer graphics, are derived. Finally, an implementation
of the concept and derived mathematics are demonstrated as an example in Unity.

Through interacting with these examples, you will have the opportunity to explore
the implications and limitations of each concept. Additionally, you can examine the
effects of manipulating the various related parameters. Lastly, and very importantly,
you can study the accompanied source code and understand the details of the
implementations.

In Chapter 2, you will begin by reviewing simple number intervals in the Cartesian
Coordinate System. Chapters 3 and 4 let you examine and learn about vectors and the
rules of their operations to formally relate positions in 3D space. Chapters 5 and 6
study the vector dot and cross products to relate vectors and the space that defines
them. Chapter 7 leads you to work in multiple coordinate spaces simultaneously to
address compound issues such as describing motions inside a navigating spaceship.
Chapter 8 introduces quaternions and the rotation operator and Chapter 9 concludes
with the basic math involved in game development. Throughout this book, you will
learn the mathematical and implementation details of bounding boxes; bounding
spheres; motion controls; ray castings; projecting points to lines and planes; computing
intersections between fast-traveling objects; projecting objects onto 2D planes to create
shadows; computing reflections; working in multiple coordinate spaces; rotations to
align vectors; and much more!

INTRODUCTION

Who Should Read This Book

This book is targeted toward video game enthusiasts and hobbyists who have some
background in basic object-oriented programming. For example, if you are a student
who has taken an introductory programming course, or are a self-taught programming
enthusiast, you will be able to follow the concepts and code presented in this book with
little trouble. If you do not have any programming background in general, it is suggested
that you first become comfortable with the C# programming language before tackling
the content provided in this book.

Besides a basic understanding of object-oriented programming, you will also need
to be familiar with the Cartesian Coordinate System, basic algebra, and knowledge in
trigonometry. Experience and working knowledge with Unity are not required.

Code Samples

Every chapter in this book includes examples that let you interactively experiment with
and learn the new materials. You can download the source code for all the projects from
the following page: www.apress.com/.

http://www.apress.com/

CHAPTER 1

Introduction and Learning
Environment

After completing this chapter, you will be able to
o Know the details of what this book is about
e Understand the style that this book uses to present concepts

o Install Unity and an Integrated Development Environment (IDE) for
developing programming code

e Access the accompanying source code and run the example projects
e Understand the Unity terminology used throughout this book

e Begin to appreciate the intricate details of math for game
development

Introduction

When you think of math in a video game, you may picture health bars, attack stats,
experience points, and other game mechanics. You may not consider the underlying
math that enables the in-game physics world, such as calculating gravity, movements,
or enemy chasing behaviors. Additionally, you may not consider physical interaction in
a mathematical manner, such as collisions between different objects and the reflections
of these objects after they collide. These underlying mathematical computations are
critical to implementing a successful video game. When creating a game, whether you
intend on using a game engine or you intend on performing the computations yourself,
understanding the details and knowing how the underlying mathematics work and
when to use them to create what you want, where you want, is vital.

© Kelvin Sung, Gregory Smith 2023
K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_1

https://doi.org/10.1007/978-1-4842-9885-5_1

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

Traditionally, math is taught without any application contexts. Typically, theories
are developed based on abstract symbols, formulas are derived to support these
theories, and then numbers are used to verify the formulas. You are tested on whether
you can generate the correct solution based on how the formulas are applied. It is
believed that learning math in this manner has the benefit of granting learners the
ability to understand the concepts being taught at the pure abstraction level. Then,
once understood, the application of these concepts to different disciplinary contexts
becomes straightforward. For many learners, this assumption is certainly true. However,
for other types of learners, it can be difficult to appreciate the intricate details in the
abstract without concrete examples or applications to build off. This fact is recognized
by educators and often story problems are introduced after a basic understanding is
established to help learners gain insights and appreciate the formulas. This learning
approach is taken on and exploited in the context of linear algebra and video games.

This book takes you on the journey of learning linear algebra, a branch of
mathematics that is the foundation of interactive graphical applications, like video
games. While the underlying theories can be abstract and complicated, the application
of these theories in graphical object interactions is relatively straightforward. For this
reason, this book approaches linear algebra topics in a concrete manner, based around
game-like examples that you can interact with. Through this book, you will learn a flavor
of linear algebra that is directly applicable to video games and interactive computer
graphics as a whole.

Every math concept presented in this book is accompanied with concrete examples
that you can interact with and are relevant to video game development. It is the intent of
this book that you will learn and know how to apply the concepts in solving the problems
you are likely to encounter during game development. A direct consequence of this
focused approach is that readers may find it challenging to apply the knowledge gained
throughout this book to other disciplines, like machine learning or computer vision. For
example, the dot product, which will be covered in Chapter 5, can be used to calculate
intersection positions, and it can also be used in machine learning algorithms as a data
reduction tool; however, this book will only focus on the video game applications of
the dot product. If you are looking for general knowledge in linear algebra, you should
consider a more traditional textbook. Such a book is likely to cover concepts at levels that
are suitable for applications for multiple problem spaces. If you are interested in solving
problems specific to interacting graphical objects, especially for game development,
then this is the perfect book for you.

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

After the introduction to the game engine and terminologies in this chapter,
Chapter 2 reviews the Cartesian Coordinate System and number intervals leading to
the exploration of one of the most widely used tools in game development—bounding
boxes. Chapter 3 continues bounding volume exploration by examining bounding
spheres while also beginning the investigation of relationships between positions.
Chapter 4 introduces vectors to formalize the relationships between positions in 3D
space and applies vector concepts in controlling and manipulating object motions under
external effects like wind or current flow. Chapter 5 presents the vector dot products
to relate vectors, represents line segments based on vectors, and demonstrates the
application of these concepts in computing distances between objects and motion paths
when approximating potential collisions. Chapter 6 discusses the vector cross product,
derives the space that defines vectors, defines vector plane equation, and illustrates
the application of these concepts in computing intersections and reflections of moving
objects and 2D planes. Chapter 7 examines the axis frame, or the derived space that
contains vectors, analyzes the representation of vectors in different axis frames, and
explains how to work with movements in axis frames that are dynamically changing,
such as object motions in a navigating spaceship. Chapter 8 introduces the quaternion
as a tool for rotating vectors, analyzes the relevant properties of quaternions, and
demonstrates the alignments of 3D spaces based on quaternions. Finally, Chapter 9
summarizes all of the concepts presented in an aggregated example.

Choice of Unity Engine

Unity is the choice of platform for presenting the mathematical concepts covered in
this book for three reasons. First, Unity provides elaborate utilities and efficient support
for its user to implement and visualize solutions based on mathematical formulas. Its
application programming interface (API) implements the basic and many advanced
linear algebra functionalities, while the Entity-Component-System (ECS) game object
architecture allows straightforward user scripting. These qualities give Unity a close
pairing of math concepts to your programming code, assisting in the visualization of the
mathematical solution that you are trying to understand. This close pairing cannot be
understated and is the backbone of this book.

The second reason for choosing Unity is that, being a game engine, the system allows
for a high degree of intractability with the solution as well as the ability to visualize that
solution. For example, in addition to being able to examine the results of a ray and 2D

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

plane intersection computation in real time, you will also be able to manipulate the

ray and the 2D plane to observe the effects on the intersection. The ability to interact,
manipulate, and examine the application of mathematical concepts in real time will give
you a greater understanding and appreciation for that concept. Third and finally, Unity
is chosen because there is no better way to learn math concepts for video games than
through a popular game engine!

While this book is meant for readers who may be interested in building a video game
in Unity, the focus of this book is on the math concepts and their implementations and
not on how to use Unity. This book teaches the basic mathematical concepts that are
relevant to video game development using Unity as a teaching instrument. This book
does not teach how to use the math provided by Unity in building video games. You
should focus on understanding the math rather than the Unity-specific functionality.
For example, a position in 3D space in Unity is located at transform.localPosition;
you should focus on working with that position and not be concerned about the Unity.
Transform class. Ultimately, you should be able to take what you have learned in this
book and apply to developing games in any game engine.

Note Unity Technologies is the name of the company; the game engine is most
often referred to as Unity, though it is sometimes called Unity 3D. For simplicity,
this book refers to the entire game engine system as Unity.

Setting Up Your Development Environment

There are two main applications that you will work with when using Unity. The first is
the game engine editor, which will be referred to as Unity or Unity Editor throughout this
book. The Unity Editor can be thought of as the graphical interface to the Unity game
engine. The second application you will need is a script editing Integrated Development
Environment (IDE). Microsoft’s Visual Studio Community 2019 is the IDE of choice for
developing the C# script examples in this book. This software will be referred to as the
Script Editor, or the IDE, throughout the rest of this book.

To begin your download and installation of Unity and Visual Studio Community
2019, go to https://store.unity.com/download?ref=personal, accept the terms, and
then download Unity Hub.

https://store.unity.com/download?ref=personal

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

Note If you ever find yourself stuck at a certain point in this book, whether on
installing Unity or just using it, there is a plethora of tutorials online, many of which
were referenced in the development of this book and will be listed at the end of
this chapter.

Notes on Installing Unity

This book is based on Unity in its most basic form. Unless you know what to specify
when installing features or desire extra features, it is suggested you follow the default
settings. Please begin downloading, installing, and launching the Unity Hub if you
haven'’t already. When Unity Hub is up and running, navigate to the Installs tab on
the left side, and select the Install Editor button in the top right. From here, you will
be prompted with a list of different Unity versions. The version that this book uses is
2021.3.25f1. If you do not see this version in the selected list, you can go to this link
https://unity3d.com/get-unity/download/archive and find it there to download.
It should be noted that while this book is based on Unity 2021.3.25f1, any version at or
newer than this version should suffice but is not guaranteed.

After selecting your Unity version, you will be prompted with options to install
extra features. As mentioned previously, this textbook only requires the default options.
These options, if you are running on Windows 10 or 11, should only be the suggested
IDE, “Microsoft Visual Studio Community 2019.” If you already have Visual Studio 2019
installed, then you may uncheck that option. Once you have selected all the features
you want, begin the install process and then move onto the next section to begin
familiarizing yourself with the source code used throughout this book.

Unity Editor Environment

It should be noted, again, that in this book Unity is used as a tool for learning math
concepts for game development and not as a game building editor. This means many
Unity-specific and game building-related information that do not pertain to the concept
at hand will simply be skipped. For example, this book does not discuss how to create

or save Scenes or how to build a final executable game. If these are subjects of interests,
you should consider research through the many online tutorials or for example refer

https://unity3d.com/get-unity/download/archive

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

to the Learn tab of the Unity Hub. It should also be noted that all examples throughout
this book will be run and interacted with through the editor and not as games. This will
become clearer as the first example is discussed.

Now that you have Unity and the IDE installed and ready to go, you can refer to the
GitHub repository located at https://github.com/Apress/Basic-Math-for-Game-
Development-with-Unity-3D. After downloading the repository, open Unity Hub and
add the Chapter-1Introduction project. Directions on how to do this can be seen in
Figure 1-1.

The Projects and Learn tabs The Open button

Projects ISR New project

* NAME MODIFIED -~ EDITOR VERSION

Figure 1-1. Opening Chapter-1-Introduction (the Intro to Unity Project) from
Unity Hub

As Figure 1-1 shows, to add a project, navigate to the Projects tab and then select
the Open button. From here, navigate to where you downloaded the source code to this
book. You will notice that the file structure is organized according to chapters. The first
example you should open using the Open button is Chapter-1-Introduction. Note that
after a project is opened, you need to click the newly opened project to launch it.

Figure 1-1 also establishes where the Learn tab is located. Here you can view and
select Unity sponsored tutorials. The “Foundational Tutorial” category contains tutorials
that will be very helpful to those who have never used Unity before as it contains
tutorials such as “Welcome to Unity Essentials” and “Explore the Unity Editor” At the
end of this chapter, there are some additional suggestions as to which tutorials to follow
if you are new to Unity or just need a refresher.

https://github.com/Apress/Basic-Math-for-Game-Development-with-Unity-3D
https://github.com/Apress/Basic-Math-for-Game-Development-with-Unity-3D

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

Opening the Intro to Unity Project

To open a project from Unity Hub, simply click it. The first time you try to open any
projects from this book, you will encounter the following two steps:

» Unity will invite you to select the version to use; you can simply select
the version you just installed.

o Unity will display an information dialog box titled, “Opening Project
in Non-Matching Editor Installation,” you can simply click the
Continue button.

The first time opening a project will take a while for Unity to copy the support library
and perform system configuration. Once you open Chapteri-Introduction, you should
be confronted with a window similar to the screenshot in Figure 1-2. If you do not see a
screen similar to that of Figure 1-2, make sure the IntroToUnity scene is open and not
an Untitled scene. To open the IntroToUnity scene, find it in Asset folder under the
Project Tab and double-click to open it.

Controller Checker, Brick, and Stripe Spheres

ar, e -y LT Bl 4 ()

My Script Component

| eessssssssssssssssdMasssnsasnnsnanan, |

Aad Component

Figure 1-2. Running the IntroToUnity scene in the Chapter-1Introduction project

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

Figure 1-2 shows a very simple scene. There is the Controller game object and
three different spheres. Each sphere is named after the design pattern placed upon it:
CheckerSphere, BrickSphere, and StripeSphere. In this screenshot, the Controller
object is selected so you can observe the MyScript component on the right. The
Controller object and the MyScript component are present in every example in this
book and will be described in detail. The purpose of this example is to familiarize you
with how examples are organized and to establish terminologies that will be used
throughout the book.

Working with the Unity Editor

Figure 1-2 is an example of what the Unity Editor looks like and is one of the two editors
you will be working in. The other editor, the Script Editor, or IDE, will be discussed later.
Figure 1-3 illustrates the various functionalities of the Unity Editor.

C: The Scene and the Game Tabs A: The Play and Pause Buttons

ity ™G
File fde Aviets Gomelbject Componest

-
Static v
i Tag Untagged ~ Layer Default -l

B: The Scene View window Tamtem @ @ i)
when = < My Script (Seript) L
b the Scene Tab is selected [ms‘ S -1
F: The Project | D:The ~ OR SRl E:The NN
and the Hierarchy Game View Window when v Inspector
Consoles Tabs Window the Game Tab is selected : Window

| # Favortes ass F: The ProLect Wmdow

k E: n::.:n.q, ’ the Project Tab is selected
r ac 0%

1 Console Window when
the Console Tab is selected

1
1
H
1
1
1
1
1
1
1
1
|
1
1

Figure 1-3. The Unity Editor Environment

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

Figure 1-3 overlays the editor in Figure 1-2 with labels identifying the different

windows presented by the Unity Editor and establishes the terminologies that will be

used from here on:

A: The Play and Pause buttons: In the top-center area, you can see
the Play and Pause buttons. These buttons control the running

(or playing) of the game. Feel free to click the Play button, give the
system a few seconds to load, and then observe the movements of
the spheres in the scene. If you click the Play button again, the game
will stop running. You will learn more about and work with these
buttons later.

B: The Scene View window: The main 3D window in the top-left
region of the Unity Editor is the main area for performing interactive
editing. In Figure 1-2, this window is displaying the Scene View of
the game.

C: The Scene and the Game View tabs: Above the Editor Window
(B), you can spot the Scene and Game tabs. If you select the Game
tab, then Unity will switch to the Game View which is what a player
will see in an actual game. An example of the Scene View next to the
Game View can be seen in Figure 1-4.

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

~ | Display1 ¥ Free Aspect Play Focused ~ | E8 Stats | Gizmos | ¥

@ 5 g

Figure 1-4. The Scene View (top) and the Game View (bottom)

Note Please pay attention to the differences between the Scene and Game
Views. The Scene View is meant for the game designer to set up a game scene,
while the Game View is what a player of the game would observe while playing the
game. While both views can be invaluable tools for examining the intricate details
of the mathematical concepts, you will be working exclusively with the Scene View.

10

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

Note To help distinguish between the Scene and the Game Views, as depicted

in Figure 1-4, in all the examples for this book, the Scene View has a skybox-like
background, while the Game View window has a constant, light blue backdrop.
Once again, you will be working exclusively with the Scene View, the view with the
skybox-like background.

EXERCISE

Working with the Scene View Window

Left-click and drag the Scene View tab to see that you can configure and place the Scene
View window at different configuration locations throughout the Unity Editor or even outside as
an independent window. This is the case for most of the Unity tabs, including the Game View
window. Figure 1-4 shows the Scene View and Game View windows as two separate windows
that can be examined simultaneously.

Figure 1-5 is a close-up view of the Hierarchy Window, which is labeled as D in

Figure 1-3.

= Hierarchy a8 i 0Xx

+ v o A @

‘. v i IntroToUnity :
9 Controller

' D CheckerSphere

(D) BrickSphere
0 StripeSphere
Y% » (P zlgnoreThisObject

Figure 1-5. The Hierarchy Window

Note The crossed-out finger icon next to the last object, zZIgnoreThisObject,
disables click-select functionality in the editor window. In all examples, objects that
are not meant to be interacted will have the crossed-out icon next to them.

11

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

e D:The Hierarchy window: In the Unity Editor, this window
(Figure 1-5) is typically anchored to the left of the Scene View and
above the Project/Console Windows (F). The Hierarchy Window
displays every object and its parental relationship to other objects
in the scene. Just like the Scene View and Game View, the Hierarchy
Window can be moved and placed wherever you desire. You should
observe the different objects within the Hierarchy Window. There
is the Controller, which will be discussed later, but for now know
that it contains the script that supports your interaction with the
scene; the CheckerSphere, which is the checkered sphere; as well as
the BrickSphere and StripeSphere, which also correspond to their
object’s descriptions. Finally, there is the zZIgnoreThisObject object;
this last object supports the setup of the game environment for the
learning of math concepts specific to each example. You will never
need to interact with this object, and therefore this book will ignore
this object as its details can be distracting. You are, of course, more
than welcome to examine and explore this object, and any others, at
your leisure.

Note Try clicking the different objects in the Hierarchy Window and observe how
the Scene View highlights the object you have selected while the Game View does
not. This simple feature underscores how the Scene View is meant for scene edits
while the Game View is not.

EXERCISE

Select different spheres in the Hierarchy Window and switch between the Scene and Game
Views to observe the differences between these two views. You should notice that the selected
sphere is highlighted in the Scene View and not in the Game View. It is essential to differentiate
between these two views when you manipulate the scene in examining concepts. Once again,
and very importantly, all examples in this book work exclusively with the Scene View.

12

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

Figure 1-6 is a close-up view of the Inspector Window, which is labeled as E in

Figure 1-3.
Controller game object
© Inspector a i
@ v Controller Static ~
- Tag Untagged v | Layer Default v
v). Transform 9 3 :
MySeript Position X 0 il O Z8 0
Component Rotation X 0 S O Z 0
Scale ® X 1 B 1 201
:v # v My Script (Script) @ i
Script MyScript :
i _» Left Sphere @ CheckerSphere © i
ariables H = i values or
varia 05<Centef Sphere 0 BrickSphere ® >l'cfcrenccs
%, *Right Sphere) StripeSphere Ol

Add Component

Figure 1-6. Inspector Window with the Controller object selected in the
Hierarchy Window

e E: The Inspector Window: The Inspector Window (Figure 1-6) displays
the details of the selected object for the user to inspect and manipulate.
The Inspector Window is typically located on the right of the Scene View.
Just like all other windows described, it can be placed wherever you want.
The selected object being displayed in Figure 1-6 is the Controller.
Notice that there are two components attached to this object: Transform
and MyScript. Figure 1-6 shows that you can expand and compress
each of the components to examine or hide their details. In this case,
the Transform and MyScript components are expanded. The MyScript
component is the custom script developed for this book. Note that on the
left side of the MyScript component are the names of the public variables
defined in the script: Left Sphere, Center Sphere, and Right Sphere.
Directly across from these variable names, you can see their values or
the objects that the corresponding variables reference: CheckerSphere,
BrickSphere, and StripeSphere. These aspects of the MyScript
component will be explained in more detail in the next section.

13

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

o F:The Project and the Console windows and tabs: The Project
Window displays the file structure of your project. This is where
scripts, prefabs, materials, and everything else that will be loaded
into your game are located. The Console Window is where Unity will
output debug messages, warnings, and errors, all of which can be
very helpful in debugging your code if something goes wrong. The
Project Tab and Console Tab allow you to switch between these two
windows just like the Game View and Scene View tabs do. These
windows can also be moved around and placed wherever you decide.

Figure 1-3 shows the default layout used by this book. In the rest of this book, the
corresponding windows will be referenced by their name as depicted in Figure 1-3. If you
accidentally close one of these windows, they can be reopened by going to the Window
drop-down menu at the top of the Unity Editor and then selecting the General option.
There you will see a list of all of the windows that have been discussed.

Note In later chapters, there will be folders added to the Project Window such as
Editor, Resources, and so on. These folders will include utilities that the book uses
to create the examples. You are more than welcome to explore these. However,
please keep in mind that the content in these folders will not be relevant to
learning the mathematical concepts presented. For example, the Resources folder
is a special folder that Unity searches for object blueprints known as prefabs.
Knowing about these prefabs is irrelevant to learning the math concepts and
therefore will not be covered.

Working with MyScript

In general, a Unity script is a component with code that can be attached to any game
object. This script can then modify the behavior of that object or the entire game. All
scripts presented in this book are written in C#.

Throughout this book, in each example you will only have to work with one script.
This script will have MyScript be part of its name, for example, EX 2 1 MyScript,
and will always be attached to the Controller object. It is important to note that the
Controller object in all of the examples is empty (it does not contain anything visible)

14

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

and does not perform any function other than to present the MyScript script for your
interactions. The MyScript script always implements and demonstrates the concept
being studied.

Figure 1-7 shows how you can open and edit MyScript.

© Inspector o i

Ea v Controller Static ~
- Tag Untagged v Layer Default ~

Vi Transform o i+
Position X 0 Y 0 28 0
Rotation X 0 Y 0 280
Scale™ &8 X 1 Y 1 72

" # + My Script (Script) @ 3t

Reset

Script

Left Sphe Remove Component

Center Sg

| Copy Component

ent Values
Find References In Scene

Properties...
Edit Script

Figure 1-7. Invoking the Script Editor

There are two ways to open and edit scripts in Unity. The first method is depicted
in Figure 1-7. To open and examine the source code of MyScript, select Controller in
the Hierarchy Window, and then in the Inspector Window with the mouse pointer over
the MyScript component, left-click the Settings button (the three-dots icon in the top
right of the MyScript component) or right-click the name of the MyScript component
(“My Script (Script)”).Both of these actions will trigger the pop-up menu as depicted
in Figure 1-7. From there, select the “Edit Script” option at the very bottom. The second
way to open and edit a script is by double-clicking the script icon in the Project Window.
In all of the examples, MyScript is located in the Assets/ folder. Once you open
MyScript, you should see a pop-up window showing the progress of Unity invoking
the IDE.

After your Script Editor has loaded, you should see a screen similar to that of
Figure 1-8, which shows the MyScript’s code using Visual Studio under the light theme.

15

