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Partial discharge (PD) testing is widely used as a quality assurance test for the electrical insulation 
in medium-  and high- voltage equipment. Owners of high- voltage equipment such as transformers, 
switchgear, power cables, and rotating machines are also using PD testing as a tool to determine if 
there is a risk of insulation failure in equipment that has been in service. This latter application has 
exploded in the past decade with the availability of PD test systems that measure PD during normal 
operation of medium-  and high- voltage apparatus.

There are now dozens of vendors of PD testing systems, and many IEC and IEEE standards have 
been published that present the basics of PD measurement on various types of high- voltage appa-
ratus. Also, books have been published that go into the details of both the physics of PD and PD 
detection theory, in addition to thousands of technical papers. These have been mainly written for 
researchers on the subject.

This book has a different aim. It is written for those who work for electrical equipment manufac-
turers and owners of medium-  and high- voltage equipment who preform PD testing as only one 
part of their job, and who want to understand better the information from vendors and the relevant 
standards. Although we discuss some basic information on why PD occurs and PD measurement 
theory in the first few chapters, the main focus is presenting practical information that even occa-
sional users of PD testing need to know when using commercially available PD measurement 
systems. There are chapters on the most common ways to detect PD, how to reduce the influence 
of electrical noise and interference, as well as how PD results are analyzed in general. Then there 
are chapters for each type of high- voltage equipment that describe the most common PD measure-
ment methods for that equipment, as well as what insulation problems it can detect and how to 
interpret the PD data. Since there is a broad range of PD system vendors for each type of high- 
voltage equipment, we have attempted to include the most popular methods applied to each type 
of equipment. Sometimes, the same PD measuring system is used for different types of electrical 
equipment. The final chapters are brief introductions to the rapidly evolving techniques to meas-
ure PD under DC excitation and short- risetime voltage impulses.

The authors have a diverse range of backgrounds. One of us was formerly with a PD system 
vendor, one is both an academic researcher and a cofounder of a different PD system vendor. The 
other two authors are primarily users of PD testing – one mainly working for a high- voltage equip-
ment supplier and the other working for a transmission grid utility. Hopefully, this diversity has 
resulted in a practical book on PD measurement.

Preface
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1.1  Why Perform Partial Discharge Measurements?

This book is focused on the practical aspects of the measurement of partial discharge (PD) and 
corona in 50/60 Hz power system equipment such as generators, motors, power cables, air-  and 
gas- insulated switchgear (GIS), and transformers, all usually rated 3 kV and above. Such electrical 
equipment uses solid electrical insulation, for example polyethylene, epoxy, and polyester, or insu-
lation composites such as oil–paper, fiberglass- reinforced polymers, or epoxy- mica, to separate 
high- voltage conductors from ground or to separate one AC phase from another. If this insulation 
fails, the equipment experiences a phase- to- ground fault or a phase- to- phase fault, which will acti-
vate protective relays to isolate the equipment from the power system. Such a failure may manifest 
itself as a power outage in a residential area or hospital, a loss of electrical power production capac-
ity, or a reduction in power system reliability. In industries such as petrochemical, cement, steel, 
aluminum, paper, or semiconductor fabrication, these failures can be extremely expensive because 
modern production processes are continuous; an electrical power failure of even a few minutes 
may necessitate taking the entire factory out of production for days or weeks. In addition, such 
insulation failures can cause collateral damage to adjacent components that can greatly increase 
the cost of repair. For example, a large utility generator or power transformer failure can cost 
 millions to repair, and result in a plant shutdown that can last for months, causing tens of millions 
of dollars in lost production.

Partial discharges are small electrical “micro- sparks” that can occur in insulation systems oper-
ating with high electric fields. The physics of PD and how it is manifested are discussed in 
Chapters 2, 3, and 5. PD activity can directly lead to insulation degradation and equipment failure. 
PD is also sometimes a symptom of poor manufacturing and/or aging of the insulation due to high 
temperature, mechanical forces, contamination, etc. In this case, PD might not directly lead to 
failure but may indicate that insulation aging due to other mechanisms is occurring and mainte-
nance may be needed. Thus, by measuring PD activity, equipment manufacturers can often deter-
mine that the insulation system on the equipment was properly made, and equipment owners can 
determine if aging is occurring that could lead to failure.

Each partial discharge is accompanied by a current pulse. As presented later in this book, these 
current pulses can be detected by various types of sensors and measurement instruments. In addi-
tion to measuring the PD current, PD can be detected from radio frequency (RF) radiation, light 
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emissions, acoustic noise, and by chemical changes in the local environment. PD testing involves 
the measurement of the PD current pulses and other signals that are produced by PD.

PD testing using 50/60 Hz AC is widely employed as a factory quality assurance (QA) test for all 
types of high- voltage equipment. Many IEEE and IEC technical standards have been published to 
indicate how the PD should be measured for each type of equipment, often providing guidance on 
interpretation, and sometimes providing information on pass/fail criteria. The premise is that if 
newly manufactured equipment successfully passes the PD test, then premature insulation failure 
due to electrical stress is unlikely.

In recent decades, with the development of digital hardware, often with powerful disturbance 
suppression methods and signal processing, PD testing has increasingly been applied to high- 
voltage equipment that has been installed in the power system or industrial plants with a view to 
assess if the high- voltage insulation system is degrading and may have a high risk of failure. Thus, 
the purpose of PD testing, once equipment has entered service, is to help with insulation condition 
assessment and determining the need for maintenance. There are relatively few IEEE and IEC 
standards for such PD testing applications. Hence, an important function of this book is to provide 
information for both onsite (offline) and online PD testing/monitoring of the different types of 
high- voltage equipment.

In this book, for simplicity, we will use the term “high- voltage insulation system,” rather than 
the more cumbersome “medium-  and high- voltage insulation system.” What voltage ratings are 
associated with medium voltage (MV) and high voltage (HV) depends on the type of equipment. A 
medium- voltage motor is usually rated between 3 and 7 kV, whereas a high- voltage motor is 11 kV 
or higher. In electrical power transmission systems, there is a wide variation of what is meant by 
medium and high voltage.

1.2   Partial Discharge and Corona

There are many definitions for partial discharge. Perhaps the most widely used definition of PD 
comes from IEC 60270, where it is described as “a localized electrical discharge that only partially 
bridges the insulation between the conductors and which can or cannot occur adjacent to a con-
ductor.” That is, PD is a localized electrical breakdown of the insulation that does not immediately 
progress to a complete breakdown across the insulator (e.g. between the high- voltage conductor 
and ground). In contrast, a “complete discharge” essentially means a phase- to- phase or phase- to- 
ground fault has occurred, which would typically trigger protective relaying to open- circuit break-
ers. As is discussed in Chapters 2 and 3, since gases (and air in particular) have a dielectric strength 
that is a small fraction of the dielectric strength of a solid or liquid insulation, PD tends to occur 
where there is a gas under high electrical stress. Thus, PD almost always occurs when there is a 
gas- filled void within the solid or liquid insulation, or there is gas adjacent to the solid/liquid insu-
lation along a surface. PD can also occur in a gas adjacent to metal conductors where the electric 
field is rapidly decreasing the greater the distance from the metal conductor. Thus, PD can occur 
in all types of high- voltage apparatus, regardless of the insulation system, and may even occur at 
relatively low voltages if distances are small (Chapter 18).

A corona discharge is a particular type of PD. In IEC 60270, corona is described as “a form of 
partial discharge that occurs in a gaseous media that is around conductors that are remote from 
solid or liquid insulation.” The most common type of corona occurs in overhead electric transmis-
sion lines, from which its distinctive crackling sound can often be heard, especially during rainy/
snowy/foggy weather. Such corona is caused by localized breakdown of the air due to the high 
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electric field adjacent to the bare aluminum conductors. The corona is very localized, since the 
electric field more than a few centimeters away from the high- voltage conductors is too low for 
electrical breakdown to occur. Thus, there is no “complete breakdown” between the transmission 
line conductors and ground. The term “corona” has been reserved for this type of PD since, on dark 
nights, the glow of the “corona” surrounding the lines can often be observed visually. To clarify, 
corona is often visible and caused by nonuniform electric fields in the air or gas. Corona itself does 
not directly damage the “electrical insulation” since, for the most part, electron and ion bombard-
ment of gas molecules have no lasting effect, and although metals may experience some discolora-
tion and pitting, and corona can produce by- products such as ozone, this usually does not impair 
the function of the HV apparatus. Also, the glass and ceramic insulators that hold up the overhead 
transmission lines are inorganic and extremely resistant to corona. In fact, the only real negative 
impact of corona is the radio and television interference they cause, as well as the energy losses 
due to corona on the transmission line.

A hundred years ago, the terms “ionization” and “corona” were used for what is now called 
PD. In the 1920s, the term corona became more popular than ionization. After the 1940s, more and 
more papers referred to both corona and (partial) discharges interchangeably. Once the definition 
of corona and partial discharge were clarified by many standard- making organizations in the 
1960s, corona and PD should no longer be used as synonyms. In reviewing the literature, Europeans 
adapted more quickly and tended not to use the corona and PD as synonyms after the 1960s. North 
Americans tended to use corona and PD interchangeably well into the 1980s (and a few older per-
sons still get mixed up). In this book, PD will refer to all types of incomplete discharges. Corona 
will be used to refer to a particular type of PD that is associated with highly divergent electric fields 
around metal conductors in air.

1.3   Categories of PD Tests

PD testing has two main purposes:

 ● as a factory test on new equipment; and
 ● as a test to determine if insulation aging is taking place in installed high- voltage equipment.

The first is an offline test (that is an external AC supply is needed to energize the equipment to the 
test voltage). There are subcategories of factory tests: PD tests during the development stage of new 
equipment; type tests on a small percentage of test objects to ensure the PD is within requirements; 
and routine tests (quality assurance or QA tests) done on every new piece of equipment to ensure 
the that each test object meets manufacturer’s production standards, international or national 
standards, and/or customer specifications. The manufacturer’s production standards may exceed 
the requirements of international or customer requirements.

The second category can be either off line or online testing. In online testing, the test equipment 
is energized from the power system.

1.3.1  Factory PD Testing

Virtually all electrical equipment that uses at least some solid or liquid insulation and that is rated 
above about 3 kV (phase- to- phase, rms), may be given a routine factory PD test at rated or higher 
voltage before the equipment is shipped. Thus, either the original equipment manufacturer (OEM) 
of power cables, transformers, air-  and gas- insulated switchgear will voluntarily perform PD tests 
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as part of their factory quality assurance program, or the end user (eventual owner of the equipment) 
may require a PD test before shipment.

As mentioned above, and as discussed in some detail in Sections 3.6 and 3.7, PD will damage 
organic insulation materials such as polyethylene, rubber, epoxy, and oil/paper composites. The 
electron and ion bombardment of organic materials leads to electrical treeing or surface electrical 
tracking. With sufficient time, the tree or track will cause a phase- to- ground or phase- to- phase 
fault, and thus equipment failure. The main purpose of a factory PD test is to ensure that HV 
equipment using organic insulation has no PD during normal operation, and, therefore, cannot fail 
prematurely due to PD. In addition, if the PD activity in a specific piece of equipment is higher 
than occurs in the same equipment made in the past by the OEM, even though it meets require-
ments, it may be an indication that the components or the manufacturing process has changed. 
This is a signal to the OEM to investigate the root cause of the increase in PD activity to avoid simi-
lar problems with future production. For example, if the partial discharge extinction voltage 
(PDEV, Sections 3.6.1, 8.7.5, and 10.2) test is lower than normal in a few reels of XLPE power cable, 
it may mean that the extrusion process is not using the correct pressure, flow rate, etc.; the polyeth-
ylene pellets are contaminated; the curing cycle is wrong, etc., and therefore the manufacturing 
process should be corrected before more cable is made.

The presence of PD- like electrical interference (Chapter 9) that can lead to false indications of 
high PD levels in on site or online tests (Sections 1.3.2 and 1.3.3) tends not to be too much of a 
problem for factory tests. This is because the tests can often be done in an electromagnetically 
shielded area, use an interference- free AC test supply, and/or the source of the interference can be 
eliminated by doing the tests when most sources of interference are not operating (e.g. at night or 
on weekends).

Power cables (PE, XLPE, EPR, EPDM, as well as oil- paper insulated cables), capacitors (using 
polymer films impregnated with a liquid), and liquid- filled power transformers (mainly oil- paper 
composites) all use purely organic insulation as the main insulation material. Thus, as far back as 
1926, researchers were investigating the use of PD (or as they called it “ionization” testing as a QA 
tool in factories) [1]. In the 1950s, what today would be recognized as factory PD tests were becom-
ing more established, as discussed by Dakin [2]. Today, most equipment that is primarily insulated 
with organic insulation has associated standardized PD test procedures, often with minimum 
acceptable levels of PDIV or PDEV. The standards are prepared by IEEE (Institute of Electrical and 
Electronic Engineers), IEC (International Electrotechnical Commission), and various national 
standards bodies. Chapters 12–15 identify the relevant QA test procedures for each type of high- 
voltage equipment.

Air- insulated metalclad switchgear (AIS) and gas- insulated switchgear (GIS) use air and SF6, 
respectively, as the main insulation. However, the high- voltage busbars are usually supported by 
organic- insulated components such as fiberglass- reinforced polyester boards (AIS) or epoxy spac-
ers (GIS). Such switchgear may also include insulating rods to operate switches, potential trans-
formers (PTs), and current transformers (CTs) that employ molded epoxy. PD tests on these 
components are essential to ensure that the switchgear does not fail in service. In addition, metal-
lic debris may be present because of the manufacturing process that can lead to corona (and even 
bouncing metallic particles in GIS). Thus, PD testing has long been required for assembled AIS and 
GIS in most countries to ensure equipment reliability, using associated standardized tests 
(Chapters 13 and 14).

Rotating machines have always been in a special class for factory QA testing. As discussed in 
Chapter 16, the high- voltage insulation in motor and generator stator windings is a composite of 
mica tapes bonded together with epoxy (epoxy- mica insulation). Mica, being inorganic, is extremely 
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resistant to PD attack, and stator windings using mica tapes have been known to withstand low 
and moderate levels of PD in service for many decades. As a result, even though there are IEEE and 
IEC standards for factory PD testing, there are no international standards for acceptable and unac-
ceptable PD activity for new equipment. Instead, OEMs often perform PD testing on newly manu-
factured stator windings (especially on air- cooled motors and turbine generators), as a means of 
ensuring the manufacturing process has not changed, rather than as an acceptance test.

1.3.2  Onsite/Off line PD Tests

Some types of new equipment, because of their physical size, must be assembled at the utility or 
industrial plant where it will be used. This includes large AIS, almost all GIS, cable circuits once 
joints and terminations are installed, and most hydro generator stator windings. Thus, the final “fac-
tory” test or “commissioning” offline PD test must be conducted at the enduser location (“on site”) to 
verify the quality of assembly. This is also the case for large liquid- filled power transformers, since 
often the insulating liquid is added only when the transformer has been delivered to the enduser site.

However, probably the more common reason for performing PD tests at the enduser site is to 
determine if the electrical insulation is degrading, and maintenance may be required. This requires 
a baseline test (which could be the commissioning tests mentioned in the previous paragraph), fol-
lowed by off line tests on the equipment over the years to detect if the PD inception voltage or the 
extinction voltage is decreasing; or the PD magnitude at a specific test voltage is increasing over time.

The key aspect of on site/off line tests is that the high- voltage equipment is disconnected from the 
power system, and a 50/60 Hz high- voltage test supply is brought to site and used to energize the 
capacitance of the test object. As an alternative to 50/60 Hz voltage, sometimes the high- voltage 
equipment may be energized using 0.1 Hz AC or an oscillating damped wave voltage. Another 
alternative consists of a portable variable- frequency resonant test set, where an inductance is made 
resonant with the test object capacitance. For power transformers, the high- voltage winding is 
often energized by exciting the low- voltage winding with an external power supply operating at 
few hundred Hz (Section 15.8). In all cases, the HV test voltage supply must have the kVA capabil-
ity to raise the voltage of at least one phase of the HV equipment to the test voltage, which often is 
higher than the rated line- to- ground operating voltage.

The other important requirement is that PD- like interference (also called disturbances) must be 
minimal to measure PD from the test object alone. With on site/off line PD testing, the test voltage 
supply is expected to be interference- free, eliminating an important source of interference. 
However, on site PD tests are still susceptible to RF signals coming from any other PD, arcing, or 
sparking elsewhere in the enduser plant/station. This may greatly increase the false indication rate 
or reduce the sensitivity to test object PD, compared to factory PD tests. Methods to reduce the 
influence of such external interference are discussed in Sections 8.4 and 9.3.

1.3.3  Online PD Testing and Continuous Monitoring

In the past few decades, online PD testing, where the high- voltage equipment is self- energized, i.e. 
energized from the power system, is becoming more popular. The purpose is to detect any aging 
that has led to an increase in PD activity, and thus a greater risk of HV equipment failure, without 
having to shut down the HV equipment for an off line test. Since PD is an important indicator of 
insulation aging or cause of failure for many types of equipment, regular online testing of the PD 
facilitates condition- based maintenance (CBM), a powerful method for determining when mainte-
nance or replacement is needed.
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For online PD testing, most types of PD sensors must be pre- installed during an outage (i.e. the 
HV equipment is disconnected from the power system) for personnel safety reasons. Online PD 
testing comes in two flavors: periodic testing with a portable instrument or continuous monitoring 
with a permanently installed instrument (Section 8.6).

The most difficult aspect of online PD testing is dealing with PD- like interference from the 
power system, as well as other disturbances from arcing and sparking within the plant or substa-
tion. Some of the interference can be exceptionally hard to separate, since it is actually PD or 
corona from other equipment in the plant or substation, plus the signal levels of such sources can 
exceed the level of the PD signals in the equipment of interest by several orders of magnitude. An 
example would be harmless PD occurring on the surface of a transformer ceramic bushing due to 
rain or snow, or from a sharp protrusion on an adjacent overhead line. If this PD is confused with 
PD from within the transformer or within the transformer bushing, an asset manager may believe 
the transformer windings are in trouble, and schedule costly but unnecessary maintenance. As 
discussed in Chapter 9, there are many hardware-  and software- based methods to suppress such 
disturbances. Many of these are specific for the type of equipment to be tested and are discussed in 
detail in Chapters 12–16.

1.4   PD Test Standards

As might be suspected in a technology that has been used for more than 100 years, and where the 
consequences of failure due to PD may result in losses of tens of millions of dollars, there has been 
considerable effort over the decades to create and revise PD test standards. Perhaps the oldest 
standard that is directly relevant is the (USA) National Electrical Manufacturers Association 
(NEMA) Standard 107, “Methods of Measuring Radio Noise” in 1940 [3]. This standard was cre-
ated to provide a standardized method of measuring the interference from transmission line 
corona on broadcast radio signals. However, it was also used as an early standardized method for 
researchers measuring PD in power transformers and bushings  [2]. NEMA 107 is revised from 
time to time and still in current use.

The best- known PD standard is IEC 60270 [4], which has been adopted as a national standard by 
many countries. This horizontal standard specifies a general- purpose method for off line PD meas-
urement in the low- frequency range (up to about 1 MHz), on any type of test object, and applied 
either in the factory or for on site, off line testing. It was developed in the 1960s and published in 
1968 (where it was originally called IEC 270) [4]. A few years later, in 1973, a very similar standard 
was published by the American Society for Testing Materials: ASTM D 1868 [5]. IEEE also pro-
duced a similar general- purpose PD test procedure in 1973: IEEE 454, which was subsequently 
withdrawn, as well as IEEE C37.301, which is IEC 60270 adopted for use in switchgear. All these 
standards are concerned with the measurement of PD in the 30 kHz to 1 MHz frequency range, 
using either “narrow band” or “wideband” frequency measurement (Section 6.5.2). The main out-
put of the test is the magnitude of the PD pulses in terms of the apparent charge of each PD pulse. 
The PD sensor is most often a PD- free coupling capacitor (typically in the range of 100–1000 pF) in 
parallel with the test object with a detection impedance; or a high- frequency current transformer 
(HFCT) on the ground side of the test object. These standards also inform how to convert the 
detected millivolt (mV) signal to apparent charge (picoCoulombs) for capacitive test objects. IEC 
60270 is discussed in detail in Chapter 6.

In 2016, the first general- purpose (applicable for all types of apparatus) guidance was published 
covering electrical PD measurement in the frequency range between 3 and 3000 MHz, that is well 


