“-,.‘__; - _— --"'\."'. ..

Lean Game

m
Development

Apply Lean Frameworks to the
Process of Game Development

Second Edition

Julia Naomi Rosenfield Boeira

ApPress’

Lean Game
Development

Apply Lean Frameworks
to the Process of Game
Development

Second Edition

Julia Naomi Rosenfield Boeira

Apress’

Lean Game Development: Apply Lean Frameworks to the Process of Game
Development, Second Edition

Julia Naomi Rosenfield Boeira
Winnipeg, MB, Canada

ISBN-13 (pbk): 978-1-4842-9842-8 ISBN-13 (electronic): 978-1-4842-9843-5
https://doi.org/10.1007/978-1-4842-9843-5

Copyright © 2024 by Julia Naomi Rosenfield Boeira

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jessica Vakili

Development Editor: James Markham

Coordinating Editor: Spandana Chatterjee

Copy Editor: Kezia Endsley

Cover image from Freepik (www.freepik.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit https://www.apress.com/gp/services/source-code.

Paper in this product is recyclable

https://doi.org/10.1007/978-1-4842-9843-5

To all women and non-binary folks who
work as game developers.

Table of Contents

About the AUthOrccscemmssmnmssnsmmsssnmmsssssssssssssssnsssssnsssssnnssssnnssssnnsns xi
Acknowledgments.......ccccrussssssmnsnmmmmsssssssssssnnssssssssssssssssnnsssssssssssnnnnns Xiii
Chapter 1: Introduction..........cccvnnmmmssssnnmnmnmmmmsssssssnn—————————————— 1
Why Lean Game Development, Not Agile Game Development?.........cccvvververnenn. 2
How Do Lean and Agile Relate to the Game World?..........ccceervvvrrinienesenseniennns 4
Games and Software Relate Much More Deeply........ccocvvvvrinnsninccniennsensenenns 4
What Kind of Game Is Software Development?cccovvvrininnsnvnncnnsnscnenns 6
Where Did We GO WIONG?cocccerererenrresesessessssesesssse s sesesssssssesessssssessssssssssssnnes 7
1T304 S 10
Chapter 2: First Steps with Leancccccinnnnnmnmsssssssnnnnnmmssssssssssssnns 1
Seven Key PrinCiples 0f LEaN......c.ccvvvvververiereninsensesesessessese e ssssessessessessssesseses 11
[T L [T0=T o] S 13
How Does Lean Inception Apply 10 GAMES?ccccevvververiererenrerseressesessererees 15

(022 8 OO 16
How Does a Lean PMO Apply t0 GAMES?.......ccccvcerevrininenssnnsessessesessessesnas 16

LEAN DEVOPS ...t e e e 17
How Does Lean DevOps Apply t0 GAMES?........cccvievrvninennsinsenseseesessessesnns 17
KANDAN ... e 17
How Can You Take Advantage of SCrum?.......ccocvvvvrievnnninennnensessesesessensessens 18
Continuous INTEGration..........ccccvcvverevnrrreriere s e e e sees 20
From Build-Measure-Learn to Lean Game............ccoceererernenmseresesssssssesesesssssneaes 20

TABLE OF CONTENTS

Looking Deeper at the INCEPLioNccccvvvvervenninirrrr s 24
How Does It ApplY 10 GAMES?......coevvveriererr e sse e e saesessesaesaes 24
Test-Driven Development..........cccovvvncnininnsnsne e 25
Lean and GAMEScceoereerererererene s se s s e se e sesesenns 26
SUMMANY....ceiiierrriserese s e e e s e nre e s 26
Chapter 3: An Inception in Practice........cccovrmmmnsssnnmsnnnnnssssssssssssssnnnns 27
INCeption DEfiNed..........ccvvveriesrreser e 27
Anatomy of an INCEPLIONcccevvvrvrire e 29
DEfiNING GOAIScovevveererreriererrere s s se e s a e e saesae e e naennes 29
RESEAICHING.....cccerverreerere et 30
Generating INSIGTScovvivrir 30

3T V10 (0] 0411 o R 36
Creating HYPOthESEScccvevvreririrsire e s sa s 38
The Game, from the Inception Point of VIEW........cccecvvrvnininnninienevesseniennens 38
1] 4= 7 38
Chapter 4: MVPs: Do We Really Need Them?.......cccuseenressssnnnssssssnnnnss 39
MVP and MVG DEfiNEdccceeuvermrmrnrnensnenenenesesesesesesesssssssssssssssssssssssssssssssenenes 39
BUIlding Prototypes........ccoeererererenereeresee s 41
The PO’s Role in MVPS/Prototypes.........cocuererenmrrnsmsesssessssssessssessesssssnssessssssssnens 42
Getting MOre from LESS......cccuuverinernesrnesersse s e s sens 46
Recognizing When a Game IS Not Viable........ccccovvvveriennnnsenennnensersesesessensenaens 48
ThIinking SIMPIE FirSt.......ccviviririererrserrere s e se s ssssssessessesssssssessees 50
From the MVP Canvas to Lean Game Development...........cccccoovvevrienereccrenscnens 51
MVGs and Prototypes of Super Jujuba Sisters..........cccovvvnvnrniiinnniniennsnsenens 53
Dividing YOUr MVGS.......ccoueocrercrereereeeresesese e se s sennis 55
Splitting the MVGS or InCrements.........ccoovvncninnsnsnsness s sesennens 56
SUMMANY....ceeiecerrrisere s s e e s e e e nre e s 56

TABLE OF CONTENTS

Chapter 5: MVPS in PractiCe.......ccusemmrmssnnnnmmssssnnnssssssnsssssssssnssssssnnnnss 57
Guerrilla Games: From FPS Killzone to the Open World of Horizon Zero Dawn...57
CoNCEPLioN PRASE........cccuvevereerertccerirerere ettt 58
TRUNGEIAW.cccerecee e s 58
OPENWOIIA ... s 60
Vegetation Navigation.........c.ccccvverninininiennsense e sessesnens 63
Finally, the Proof of CONCept.......ccccoevrrinrenre e 64
PreproduCtion ... s 65
PrOQUCTION ... s 66

L (1T 66
(DL T B 0] S 68
The Foundation for Dead CellSccveerererernsenesenesesesessesesssessssesessesessenens 68
Dead Cells MUHRIPIAYET........cooveeeerererreerenesesese e sesse e se e sennes 69
Abandoning the TOwer DEfenSe........cccvvrrerrnsesesesesesesessesesesessesesessesesssnens 70

THE NEW MVP ... nsnnens 71
Notes on the Game Design Document for MVP.........cccoeerecrniennnenennesenensennns 71
1] 4= O 74
Chapter 6: Generating Hypothesesccccinnssemmnmnssssnnnmnsssssnnsssssnnnns 75
When Hypotheses Are Not Created from the Inception..........cocvevvvierevensenienaene 77
11T 111 T o O 78
Chapter 7: Test-Driven Developmentccccvnemmnnnssssssnnssssssssssssssnnns 79
TDD DEfINEAcveerereereeereeesenese e s nenneneas 80
Tests Are Good, So Why Is There So Much Poorly Tested Code?..........ccueerernnene 83
AppPlying TDD t0 GAMES.....cccvrererrrerrneserresersssessssesessasessssessssesssssssssssessssssssssssssanes 84
Overcoming the HUFIEScovcrnericner e 88
Making TDD Better........ccooueerrrrererrenerranerrsessssesessesessssessssesessssessssesessessssssessnnes 89
1] 4= O 94

vii

TABLE OF CONTENTS

Chapter 8: Continuous Integration............cccirnssemnnnnssssnnnmnssssssssssnnnns 95
Why Continuous INtegration?...........ccoecvrevninsrinccnreser e sesneens 95
Integrating Cl with Task Man@gersccooeevrrerrinnernseseniesese s sesessesessenes 98
Using Continuous INtegration...........c.ccorecerenerescrnsesesese e 98

A Team’s Responsibilities Regarding Cl..........cccoovvnvnininnnnnsniennnnensensennens 100
COde VEISIONINGccovrreerreerrssesesesesesesessessssssessnns 102
Automated BUildccceeeeernesrieninese e 104
SUMMAIY..c.ueiteitrerere s e e s s e e s s sae s e e e s e e aesae e s e saesaene e e nannnens 105
Chapter 9: The World Between Design and Buildccccesseeenninssnnns 107
A Little Bit 0f DESION ...oocevvievererrrr s 108
A Little Bit of BUIIcceeeeeeeeeeeeessssssssssssssssse e e sssssssssssssnnns 109
Pretty Beautiful, But HOW IS [t DONE?ccoomreeereerese s 110
SUMMANY....ceiveerirerenese s s e s sr s nns e se e nenssnenns 119
Chapter 10: Test, Code, Test........ccusmmmmmmssnnnmmmssssnnnmsssssnnsssssssnssssssnnns 121
TESHING TYPLS...erreereeerrrrererre e nr s nn e 121
TESE CASESvvvucciseressse et 123
Coding GAME AMTWOIK ...cccevuerreierrerereressere s s s ssessessssessessessssssessesnsssssensessens 125
Coding the Game SOFtWArEccccvcerrvrrerrr e 127
TSt AULOMALIONc.ceeecereeereec e 131
SUMMANY....ceiieeriresesese s sr s s e se e nenssnenns 133
Chapter 11: Measuring and Analyzingcccusssssssssnssssssssssssssssnnsnnes 135
WayS 10 MBASUIEccceeereerresirere e 135
ANAIYEICS ... e e e e nne 137
Measuring Through FeedbackK..........c.ccvvrrrriennnniniennsrsere s 138
What's FEEADACK?cvviiririrrciiri e 139

How t0 Give FEedhaCK...........cccvrrmiincirrs s 140

viii

TABLE OF CONTENTS

Measuring Through Hypotheses ... 141
ANAIYZING.....oiiiiirr e s 143
Measuring Your Hypothesis of the Female Audience Reach........................ 144
Measuring Your Hypotheses on Basic Featuresccccevvvvninenniensennens 146
3101111 T 147
Chapter 12: Creating Ideas for Iterating......cccoosvemeemmmrresssssssssnnnnnnnnas 149
ACHION HEBMS ... e 149
Example of a SKetChing SESSIoN..........cccvevrnrennennnese s 151
The Features Are Okay, but the Game Is Not Funccovvvvrivevncniennens 151
First [deation...........cccvveernenninernse s 152
The Game Is Fun But Very Difficult to Playc.ccccvvriniennsnininnnsenieniennens 152
Second 1A AtiON........cccvieereerrrese e 153
Rethink the Limitations on Game Development..........cccccvvriennvnveniennsensenens 154
Converting Ideas into EPIicS and STOMIEScccccvvevrerevenserserenessensesessesessenensens 155
310111117 S 158
Chapter 13: Consolidating Knowledge Before Expanding..........ueu.. 159
Automated TESHINGccoveeerecrre e 160
AGIIITY ..ottt 162
Art and RErationscccevcernvesnenmnss s 164
SAVING TIME..eiierere e rerre e e s ae e se s s a e e e s aesae e e e naenne e 165
CONtINUOUS DEIIVEIY ...veereereerterererereseesesessesssssssessessessssessessesssssssessesssssssensessens 165
Pushing FOrWard...........ccouvreniinsnn s 166
What Is @ Minimum Lovable GAME? ..o 167
BeNEfits Of MLGSc.cccverererreccreris e ses 168
3101111 T o R 168

ix

TABLE OF CONTENTS

Chapter 14: More About GAMES........cccvrsssnnnsrsssssnnsssssssnssssssssnsnsssssnns 171
BOOK REBCAPcovveririeririrc it 174
Chapter 15: Automated Testing with Unityccccinnssennnnnsssnnnnnsssnnns 175
Configuring Unity Test ENVIroNment..........c.ccoconvninnnnnnnniess s sensessens 176
Writing Your FirSt TESt......ccccviniircrr s snssessesnens 180

LR {0 g oSSR 184
DOCKENZING UNILY.....ccovecrircereneresse s sesse e sesse e se s e sensssensenens 185
Configuring GItHUDccovverrece s 187
Deploying ArtifaCtS.......cucvvrererinernse e s 201
Configuring GitHUD Pages........c.covirernimnneninese s 202

The Deploy SCHPL ... nnens 203
SUMMAIY..c.ueiteitrerere s e e s s e e s s sae s e e e s e e aesae e s e saesaene e e nannnens 205
Chapter 16: Testing Gameplayccccrrrmsssnnnmmsssssnnsmsssssnssssssssssssssssnns 207
Testing Keyboard INPut ..o 207
Create a Moving Script with Rigidbodycccveerrvrnrrieriennsensereresessensenees 208
Dependency INJECLIONcccvvvcene i 219

Play MOAE TESTS......ccvverrerrrererierrir s s s sr e s sa e s n 222
Testing Character Controller and First-Person Camera............ccovverveveerersersenens 226
Character CONTrOIIENccceeeerereneerererer s es 227
Testing a First Person Camera...........ccoouvcvrenrencrnsesenesesssesesesessssesssesenns 234
Testing Character Controller MOVEMENL...........ccocorenernsrnerereneree e 254
Making the Player MOVccoverrcrreerecrer e 255
APPIYING GraVILY.....coeeeereeeeeesererese e 273
SUMMANY ...t s e s e e e e s 289
INA@X.ciiiisssnnnnnnnnnnnnssssssssnnnnnnnssssssssnsnnnnnnnssssssssnnnnnnnnnnsssssssnnnnnnnnnnssssssnn 291

About the Author

Julia Naomi Rosenfield Boeira has been a
software engineer for almost two decades,
focusing on game development, Rust, and
online services. Currently, she works as a team
lead at Ubisoft; previously she worked as tech
lead engineer for an online service. She has
also worked with premium Agile consultancy
companies such as Thoughtworks and is
extremely active on GitHub with a focus on
game development and Rust.

Acknowledgments

This book would not have been possible without the support of my family:
Diego, Kinjo, and Ffonxios; the contributions of Jay Kim, Evan Boehler, and
Vitor Severo Leaes, who helped me review the book and gave me awesome
feedback; to all the great Lean and Agile discussions I had with Paulo
Caroli, Enzo Zuccoloto, and Marcelo Porcino at Thoughtworks; to the Rust
in PoA Community: Julio, Douglas, Ruan, and Eva; to my parents who have
always supported me and my studies; to my colleagues at Ubisoft: Evan,
Denys, David, Madison, Poliana, Lune, Ryan N, Ryan H, Ryan E, Jesse M.,
and Sue; and, lastly, to my friends who helped me in this journey: Isabela
Goes, Eva Pace, Thais Hamilton, Alexandra Perreira, Diego Ferreira, and
Icaro Motta.

xiii

CHAPTER 1

Introduction

This book’s goal is to present a new way of developing games to teams with
little or no experience in Agile or Lean methodologies. In addition to that,
this book uses a fictional game, which is the combination of three other
anonymous games that were produced with the techniques presented in
this book. Unfortunately, it is not possible to go into more detail about
these games due to NDAs (agreements of secrecy).

Note The word Lean comes from the Toyota Production System,
which is a systematic method for waste minimization without
sacrificing productivity. Also, the concept of Lean was popularized

by the book The Lean Startup, by Eric Ries, which aimed to create
startup business models following five concepts, which are discussed
later. This book specifically focuses heavily on Lean techniques from
a game development point of view.

If you have some experience with game development, now is the time
to put it aside. It’s time to let go of the things you know and, with an open
mind, learn something new, or at least from someone else’s point of view.
The goal of this book is to provide you with a game production model that
prevents waste, reduces bugs, and offers continuous reviews. The book
even offers a sequence of steps to eliminate unnecessary tasks. When I
developed this methodology, I was thinking of small- to mid-sized game
companies, but it can be used in large enterprises as well.

© Julia Naomi Rosenfield Boeira 2024 1
J. N. Rosenfield Boeira, Lean Game Development,
https://doi.org/10.1007/978-1-4842-9843-5_1

https://doi.org/10.1007/978-1-4842-9843-5_1

CHAPTER 1 INTRODUCTION

Besides that, I like to believe that this book is focused on small- to mid-
sized indie game development companies—that is, perhaps, the group
that would enjoy the most advantage by this methodology. Of course,
large companies can also take advantage of the methodologies presented
here; however, larger companies typically have more difficulty adapting
these methodologies, since they have more bureaucratic processes, more
vertical opinions, and more secrecy around their projects, making them
more resistant to changes. In addition, they often need outside help to
identify their strengths and weaknesses, as well as help to identify which
points in the process are good or bad, since their more hierarchical nature
usually prevents bottom-top improvements. Therefore, this book can be a
tool for large companies in middleware projects, specific features, art, and
tooling.

Why Lean Game Development, Not Agile
Game Development?

Lean is something beyond Agile. In fact, many game companies have been
unsuccessful in their first attempts to adopt Agile methodologies. This has
generated some weird confusion about Scrum and Agile, which can be
observed with tons of blog posts bashing Agile, mostly Scrum, for game
development.

Another important factor is that many companies confuse Agile
methodologies with Scrum, considering Scrum the only Agile tool
available. The same happens with extreme programming (XP), and
this confusion can have disastrous results. In fact, it's common to see
companies adopting Scrums but not adopting the basic principles of Agile,
which overloads the development teams. Another common case is those

small “flexibilities” in the wrong direction of Scrum, which generate an

CHAPTER 1 INTRODUCTION

even more waterfall process. How many times have I heard “This is not
true Scrum!,” “This is not really Agile,” and “Now we have become Extreme
Go Horse.”!

Lean game development can meet the main needs of the game
industry, but there are certain game-related aspects to take into account.
For instance, game production is never 100 percent efficient, since you
can’t predict every possible problem, and it is far more difficult to find the
“minimum” in a minimum viable product (MVP) in game development
than in other industries. If you set fixed deadlines, the best you can expect
is to get very close to them because unexpected problems and unexpected
changes in scope will continue to happen, even after the deadlines. It’s
necessary to behave organically regarding changes, building in the ability
to adapt to the environment.

Lean game development offers a methodological alternative to game
development that can help you eliminate waste, get results as fast as
possible, strengthen and empower teamwork, and get a better view of the
whole work. How do you improve this visualization of the work? Kanban
(which literally means a visualization card) is a classic tool that Lean
development teams use.

That said, it’s important to emphasize that in no way are Lean, Scrum,
XP, or Kanban exclusive. They can be used together, thereby enjoying the
best features of each.

Thttps://medium.com/@dekaah/22-axioms-of-the-extreme-go-horse-
methodology-xgh-9fa739ab55b4

https://medium.com/@dekaah/22-axioms-of-the-extreme-go-horse-methodology-xgh-9fa739ab55b4
https://medium.com/@dekaah/22-axioms-of-the-extreme-go-horse-methodology-xgh-9fa739ab55b4

CHAPTER 1 INTRODUCTION

How Do Lean and Agile Relate to the
Game World?

Lean game development is, above all, strongly inspired by Agile and can
take advantage of Agile’s tools to develop software. Therefore, let’s look at
the Agile Manifesto and interpret it to represent the vision of games. For
such, I suggest the following point of view for games:

o Individuals and interactions over processes and tools
e Games running over comprehensive documentation?
o Audience collaboration over sales

o Spontaneous development over following a strict plan

Games and Software Relate Much
More Deeply

To successfully understand Lean game development, you should first
understand that digital games are also software and that software can be
seen as a cooperative game of innovation and communication. Games
are not only for children and teens; games are used to describe everything
from romantic experiences to advanced military strategies, and they can
also be used as another form of software development.

2www.gamedeveloper.com/disciplines/agile-game-development-part-3-
working-game-vs-gdd

http://www.gamedeveloper.com/disciplines/agile-game-development-part-3-working-game-vs-gdd
http://www.gamedeveloper.com/disciplines/agile-game-development-part-3-working-game-vs-gdd

CHAPTER 1 INTRODUCTION

GAMES FOR MILITARY STRATEGIES

The Blitzkrieg board game was used for a long time to help train army officers.
The game is set in World War II, in which two armies confront each other:
Great Blue and Big Red. There are five countries, but the alliances are not built
strictly and can vary depending on how the game is played.

The game has three modes: simple, advanced, and tournament. One of the
most interesting aspects is that advanced mode offers many combat units,
such as infantry, artillery, armored, assault, shots, bombing, and so on.

Unfortunately, the game is usually hard to find, maybe because it’s old, and
it usually takes a couple of days to finish gameplay. Figure 1-1 shows the
(vigantic) board of the game with the different colored pieces.

Figure 1-1. Avalon Hill’s Blitzkrieg boardSource:
boardgamegeek.com

http://boardgamegeek.com

CHAPTER 1 INTRODUCTION

When someone proposes to play a game, hundreds of alternatives come
to mind: tic-tac-toe, checkers, chess, poker, 21, hide-and-seek, ping pong,
and so on. Games usually fall into certain categories that help players
realize how they are played and what the goals are.

e Zero-sum: These are games in which each user plays on an
opposite side, and if one side wins, the other loses. Examples
include checkers and tic-tac-toe.

e Non-zero-sum: These are games with multiple winners and
losers. Examples include poker and hide-and-seek.

e Positional- These are games where the overall state of the game
can be determined by looking at the board. Examples include
chess and tic-tac-toe.

e Competitive: Games in which there’s a clear notion of winning
and losing.

e (Cooperative: In these games, people play together to win, or
until they find it necessary.

e Finite: These are games that have an end.

e [nfinite: These are games where the primarily intention is to
keep playing. In other words, the goal is to remain in the game.

What Kind of Game Is Software Development?

Many people see software development as a positional game, with a cycle
of small victories and a clear goal. But a software development game is
much more than positions on a board and much more than a team trying
to overcome obstacles until the project can launch.

Software development is a cooperative game, in which all pieces must
help each other in order to reach each one of the goals. Think of a survival
game, in which each member of the team has a specific and unique skill

6

CHAPTER 1 INTRODUCTION

that is useful to the group’s survival. The software development process is
similar to the concept of a cooperative game. There should be no leader;
instead, a group of people unite to make the best decisions and divide
tasks the best way possible to survive (win).

Where Did We Go Wrong?

Unfortunately, over time, people got the idea that stricter and heavier
methodologies, with more control and more artifacts, would be “safer”
for a project’s development. However, no one likes to play games with
hundreds of rules that need to be remembered every minute in order for
the player to perform correctly.

The best games are those that can be played in a relaxed way so that
if a rule is broken, there won’t be any big consequences for the result.
Furthermore, games that allow the player to be creative and imaginative
tend to provide much more cooperation. You just have to observe kids
playing board games to realize this.

Taking this into consideration, why not apply this to software
development? Let’s look at an example of the negative effect that rigidity
and heaviness can have on the classic board game Monopoly. Imagine
that, besides the players, you have a person solely responsible for
administering the bank, one for administering the real estate, another
one for administering the real estate bank, one for administrating your life
(chance cards), one police officer for administering prisons and the flow of
characters, another one to roll the dice, and so on.

This type of model is the software development model used in most
companies: it’s highly hierarchical, it has several types of control over
individuals, it has strict rules, micromanagement is encouraged, it’s
difficult to play, and it’s aimed at exploring others. How can this model
be superior to a relaxed, fun, creative, and cooperative model? The Agile
Manifesto, the framework, and the methodology should not be applied

CHAPTER 1 INTRODUCTION

in arigid and immutable way. After all, a game should allow for fun,
cooperation, and creativity.

Probably, this presumption that heavier methodologies are safer
comes from the assumption that project managers can’t look at the code
and evaluate the degree of development, the status, and the project
situation. Adding weight and rigidity to the model won’t make the fear and
insecurity regarding the project better, however. In fact, the consequence
will be making your team delay their work and miss the deadline.

To achieve satisfactory results, always keep in mind that developing
software is a team game, in which the production manager is not superior
to anyone else. Remember, there are ways to document while the code is
being written, and there are ways to visualize the software development
without increasing the pressure on the team. A production manager
shouldn’t think of the team as people to boss around and coordinate, but
rather as colleagues that they need to help.

The following are some prejudices of the game industry regarding the
Agile methodology*:

e Test automation in games is much more complex than
in other software industries.

o The game visual aspect cannot be tested automatically.

e Making open betas and demos for kids to test the game
is much cheaper.

e The current business model in the sector is based on
feature-complete games.

o “Idon’tlike Scrum,” because Scrum was the answer to
Agile methodologies.

o The game’s sequences and sequels are not iterations.

Swww . gamedeveloper.com/programming/agile-game-development-is-hard

https://www.gamedeveloper.com/programming/agile-game-development-is-hard

CHAPTER 1 INTRODUCTION

e Artcannot be iterated, and games are art.

o Games are developed so that the users play longer, not
to save time like in e-commerce.

o Itisimpossible to create an automated test pyramid for
games, especially large productions.

e From a production’s point of view, continuous delivery

is not attractive to games.

All of these points are discussed in depth in later chapters, but I think
it’s important to point out now why each of them is wrong:

o Testautomation may be more complex, but it is
certainly as or more valuable than in other industries.

o Gameplay tests and tests that identify errors in
images, as well as how close an image is to ideal, are
fundamental features for games. These kinds of tests
are regularly done in mobile development and frontend
development. For games, we have a few resources that
can help measure this, like OpenCV.

e Having children test games, even if it generates some
degree of satisfaction in them, is morally wrong and can
greatly affect the reception of a game. If they are your
target audience, be sure to have parents involved.

e Scrum most definitely is not the only Agile
methodology.

o Later, you will see that art is a creative and iterative process.

e You want users to play longer, but spend less time
trying to learn the game, where and when to click, and
its mechanics.

CHAPTER 1 INTRODUCTION

o Notonlyis it possible to test games, I wrote a book on
automated testing for games.

e In the old days, when the game came in a cartridge and
there was no Internet to update the game, this phrase
could even make sense. Nowadays, some games are
released without even being ready.

Thus, it's important to understand the basics of Lean and remind yourself
that software development is a cooperative and fun game, in which all pieces
are important. It's a game that always produces more knowledge. Ideally, it must
be managed organically and with low hierarchy to prevent waste (of human
potential, of time, of excessive documentation, of conflicts, of stress, etc.).

This book covers several aspects of Lean development—such as the
basic aspects, the inception, and MVPs—and applies them to games. You
also learn how to use test-driven development, how to use continuous
integration in games, and how to generate hypotheses. Lastly, you see how
design and build* are different and learn more about tests, measurement
and analysis, and the generation of ideas.

Summary

In this chapter, I talked about the relationship of Lean and Agile in the
game development world. I also discussed the deeper relationship that
games and software have, including how software development can be
seen as a game.

* A general reference to software engineering and its practices.

10

CHAPTER 2

First Steps with Lean

This chapter explains Lean in a deeper sense and how it relates to
game development. It also presents a visualization of the Lean game
development cycle. Finally, the chapter introduces some places where
Lean game development can take advantage of Agile methodologies.

Seven Key Principles of Lean

When starting to talk about Lean in more detail, it’s important to cover the

seven key principles of Lean:

Eliminate waste: This includes avoiding the following:
producing disorderly and unnecessary inventory and
requirements, giving excessive importance to defects
that don't affect the user experience, processing
unnecessary information, and creating long wait times.
To reach those goals, avoid unnecessary code and
features. Another important consideration is to not
start more activities than can be completed.

From a business point of view, it’s necessary

to elaborate on the requirements so they are

easily understood and to avoid changing them
constantly. Especially avoid bureaucracy. Inefficient
communication can lead to misunderstandings

© Julia Naomi Rosenfield Boeira 2024
J. N. Rosenfield Boeira, Lean Game Development,
https://doi.org/10.1007/978-1-4842-9843-5_2

11

https://doi.org/10.1007/978-1-4842-9843-5_2

CHAPTER 2

12

FIRST STEPS WITH LEAN

regarding the job to be done. From a developer’s

point of view, it's important to ensure that the job is
complete and that you don’t end up with defects and
quality issues in the finished code. But maybe the most
important issue is to prevent unnecessary changes in
the job tasks.

Build with quality: Quality problems lead to waste;
in addition, it’s a waste to test something more than
once. To avoid quality problems, you can use pair
programming and test-driven development. Both are
fundamental tools, and both are e described in the
coming chapters of this book.

Generate knowledge: Generate knowledge while you're
working so that the whole team can follow the software
development process and have the technical ability to
deal with problems. A usual way to generate knowledge
is through pair programming and code reviews. Wikis,
dev huddles, and docs are other tools you can use to
share knowledge.

Postpone commitment: Complex solutions should not
be treated rashly, and irreversible decisions should not
be made hastily.

Deliver fast: It's common for people to spend a lot of
time thinking about requirements that may or may
not come up. Workers can also become mentally
blocked or start thinking of solutions with excessive
engineering. You can avoid this problem by gathering
the right people, keeping things simple, and using
teamwork.

CHAPTER 2 FIRST STEPS WITH LEAN

e Respect people: The workplace should be pleasant, so
never forget to be courteous with people. No matter
what your position is in the company, you must always
seek for equity between roles.

e Optimize the whole: This principle seems simple and
intuitive, but it’s usually not taken into account. It’s
important to identify failures, propose solutions to
them, and look for feedback. A whole is not made solely
by its parts but by people interacting.

While using the following methodologies, it’s always important to keep
these Lean principles in mind.

Lean Inception

An interesting stage of software development in the Lean methodology is
the Lean inception. Briefly, the inception is a workshop, done typically in
a week, with many activities of alignment and goal setting. The product
evolution ends up being represented by a minimum viable product (MVP)
and a sequence of iterations over the MVP, each with its own features. If
the team has enough time, defining alternative MVPs in case of failure is
also a nice strategy.

The main goal is to define the scope of what is being created so that
the team has a clear view of the path to follow, that is, the minimum game
that needs to be built to generate results and verify its viability. If an MVP
proves to be non-viable, new MVPs can be generated. Figure 2-1 provides
insight into an MVP and its sequences. The MVP 1 part corresponds to the
people who are going to prove that your MVP is worth it, known as early
adopters. They will cut their own grass with the best tool available, while
MVP 8 will allow people to cut the grass in a football field.

13

CHAPTER 2 FIRST STEPS WITH LEAN

Another important point to learn from Figure 2-1 is that the MVP is not
only about how feasible or how valuable the product is, but how delightful
and usable is. When considering an MVP, you need to add elements
from all of these aspects (feasibility, value, delightfulness, and usability).
Another, more recent, idea is the MLP (Minimum Lovable Product), which
differentiates itself from an MVP by focusing on delivering something that
is more effective in an already saturated market.!

Figure 2-1. MVPs must occur incrementally, so that each increment
provides a new return. Source: https://caroli.org/en/mvp-examples

'https://medium.com/codica/what-is-a-minimum-lovable-product-and-
how-to-build-one-22cb61f67e8a

14

https://medium.com/codica/what-is-a-minimum-lovable-product-and-how-to-build-one-22cb61f67e8a
https://medium.com/codica/what-is-a-minimum-lovable-product-and-how-to-build-one-22cb61f67e8a
https://caroli.org/en/mvp-examples

CHAPTER 2 FIRST STEPS WITH LEAN

MVP CANVAS

The MVP canvas gathers elements from design thinking, Lean startup, and
business directives. It's a template to validate new ideas and question existing
ones. It’s divided into seven branches.

MVP vision: What product vision must this MVP deliver?

Metrics for hypothesis validation: How do you measure the results of this
MVP? And from what business point of view?

Outcome statement. What knowledge are you seeking with this MVP?

Features: What do you intend to build with this MVP? Which actions can be
taken in order to simplify the MVP?

Personas and platforms. For whom is this MVP?
Journeys: Which user journeys will be improved in this MVP?
Cost and schedule: What are the cost and schedule for this MVP?

Read more at www.caroli.org/.

How Does Lean Inception Apply to Games?

The main tasks of the Lean inception are to come up with the game
features, its basic game design, and the tools to be used. In short,
there’s a whole series of possible applications of the inception. It’s also

important to get the whole team engaged to increase motivation and build

empowerment in the group. A more horizontal team is more engaged, has

more respect for what is being developed, and enjoys a greater sense of

ownership over the product.

15

http://www.caroli.org/

CHAPTER 2 FIRST STEPS WITH LEAN

Lean PMO

The project management office (PMO) is a group of people (or even a single
individual) responsible for keeping an integrated vision of the strategic
plan throughout the whole product development, including managing
deadlines, project rescoping, and costs. These people are responsible

for gathering the company’s portfolio to guide, plan, and organize the
activities of the projects in the best way possible.

A Lean PMO manages the game development and organizes and
keeps track of requests and MVPs. The PMO does this by taking into
consideration the body of work, without getting mired in Agile technical
details, like with what can happen with extreme programming (XP),
Scrum, and Kanban.

The PMO’s main role is to guarantee the continuous delivery of the
game. This person/group needs to be aware of the whole and not the
details and periodically monitor the product development.

How Does a Lean PMO Apply to Games?

When it comes to game development, the Lean PMO is usually the team
that gives the go-ahead for a game to move to the next stage, release

an open beta or demo, or the game launch itself. This may vary when
considering the company size, as larger companies tend to have more
steps and be less Lean. Talking about continuous delivery when the game
is not yet on the market might seem like shooting yourself in the foot, but
continuous delivery doesn’t necessarily have to be for the gamer. The
idea behind this is managing the development steps, so that the product
continues to evolve and receive feedback.

16

CHAPTER 2 FIRST STEPS WITH LEAN

Lean DevOps

The function of DevOps is to connect the practices of DevOps to the Lean
MVP perspective (which is explained in the next chapter). DevOps refers to
the practices that the team uses while creating and delivering the game.

DevOps doesn’t have to be executed by a single person; it can be used
by a group of people, by different people in different moments, and in
different practical activities. It includes working with features and user
stories. Some teams have specific people on the project who lead DevOps
initiatives, such as the tool team.

How Does Lean DevOps Apply to Games?

You can, for instance, designate people who are responsible for organizing
and applying the techniques, methodologies, and tools that the team has,
as well as guiding the game’s deployment.

Kanban

Kanban is based on Toyota’s just-in-time model. The method consists of
visualizing the workflow and acting on the process in order to not overload
the members of the team. The process is exposed to the team members
using the visual management approach, from the early stages to the final
delivery.

Physical or virtual boards can be used, such as Trello. Some Kanbans
are divided into columns and rows, but not all of them need to be. There
are some very creative implementations; just search for and use the one
that matches your team’s needs.

A Kanban is composed of several “cards,” with each one representing
an action that must be taken. The action’s degree of completion is marked
on a panel, usually called the Heijunka board. This system has some

17

CHAPTER 2 FIRST STEPS WITH LEAN

advantages; it’s easy to identify waste and can lead to faster cycles that
increase productivity. When associated with virtual boards and processes,
collecting information about cycles is very efficient; in the case of physical
boards, it depends on the feeling and expertise of each team.

Color coding can indicate the status of the card and enable people to
identify delays, allowing them to be solved first. Different cards in the same
zone usually mean a failing flow and must be resolved. Many companies
automate parts of the process with light signals on machines/user stories
that are struggling with certain tasks. I worked with a developer experience
team that developed an internal tool connecting Jira with Grafana to alert
teams about user stories that they were struggling with.

From my point of view, this helps eliminate long daily meetings, as the
board state is visible to everyone; the need of a Scrum Master, as blockers
are visible and transparent to the whole team; and other wastes. Laborious
tasks can often be divided into smaller ones, also increasing efficiency.

The work-in-progress (WIP) concept is used to limit activities that
will be “pulled” in the Kanban method. From the Kanban’s point of view,
the next activity is only pulled when the WIP has work capacity. The WIP
restrictions identify bottlenecks and possible problem areas in the process,
helping to make team decisions (you can read more at waw.caroli.org/).

A common concept to deal with work that is blocked is to label the task
with a Blocked tag or label to communicate flow issues to the team and
leadership—and, if necessary, take on another task until the blockage is
resolved.

How Can You Take Advantage of Scrum?

As you probably know, Scrum is an Agile framework for completing and
managing complex projects. It is highly recommended for projects that
have requirements that change rapidly.

18

http://www.caroli.org/

