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Foreword 

Historically, science and engineering domains periodically experience revolutionary 
ideas that completely change the way we think about the domain. A few decades ago, 
it was the introduction of nanoengineering materials and the emergence of predictive 
multiscale modeling. Today we are in the cusp of a similar revolution. Advances in 
machine learning and artificial intelligence are now enabling tasks that would have 
seemed impossible just a short while ago, or would have been taking decades to 
achieve. Impacts of these new tools include the discovery of novel drugs, ultrahigh 
strength alloys, automated design of composites, efficient quantum accuracy simu-
lations, bioinspired design, and knowledge transfer across domains, just to name a 
few. The new book by Prof. Krishnan, Prof. Kodamana, and Dr. Bhattoo provides 
an excellent introduction into the emerging field of machine learning for materials 
discovery. This book bridges a gap and acts as an enabler for the adoption of machine 
learning by material scientists, engineers, and students. 

The book offers an excellent pedagogical approach towards the use of machine 
learning for materials discovery. The book is written in a lucid fashion, and accessible 
to audience ranging from undergraduate students to scientists. The book does not 
assume any prior knowledge in the domain of machine learning, and is self-sufficient. 
The second part of the book covers the basics of machine learning theory including 
supervised and unsupervised strategies with examples from the materials domain. 
An excellent feature of the book is that theory on machine learning is followed by 
codes that allows instructors, students, and practitioners to try the approaches in a 
hands-on fashion. The third section discusses a wide range of applications giving 
an overview of different avenues where machine learning can be used for materials 
discovery. 

While research aspect of the topic is interesting, it is equally, if not more, important 
to train the next-generation materials scientists to be skilled in machine learning and 
artificial intelligence, especially to being able to critically discern the best modeling
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strategies among a broad set of tools. I believe this book can give an impetus for the 
adoption of machine learning in materials science curricula across many universities. 
I hope you will enjoy reading this excellent book as much as I did. 

Markus J. Buehler 
Massachusetts Institute of Technology (MIT) 

Cambridge, USA



Preface 

The last decade in materials science has seen a major wave of change due to the advent 
of machine learning and artificial intelligence. While there have been significant 
advances in machine learning for the materials domain, a vast majority of students, 
researchers, and professionals working on materials still do not have access to the 
theoretical backgrounds of machine learning. This can be attributed partially to the 
intricate mathematical treatments commonly followed in many machine learning 
textbooks and the use of general examples that lack relevance to materials science-
related applications. 

This textbook aims to bridge this gap by providing an overview of machine 
learning in materials modeling and discovery. The textbook is well-suited for a diverse 
audience, including undergraduates, graduates, and industry professionals. The book 
is also structured as foundational and can be used as a textbook covering the basics 
and advanced techniques while giving hands-on examples using Python codes. 

The book is structured into three parts. Part I gives an introduction to the evolu-
tion of machine learning in the materials domain. Part II focuses on building the 
foundations of machine learning, with various tailor-made examples accompanied 
by corresponding code implementations. In the part III, emphasis is given to several 
practical applications related to machine learning in the materials domain. 

Although several use cases from the literature are covered, the book also integrates 
examples from the authors’ research whenever possible. This deliberate choice is 
motivated by accessible data and first-hand details of available codes that might not 
readily exist in the literature. We believe such a treatment facilitates comprehen-
sive information about practical implementation while striking a balance with the 
theoretical exposition. 

The field of machine learning is growing at an exponential pace, and it is impos-
sible to cover all the state-of-the-art methods. This book by no means is exhaustive. 
Rather, this book is an attempt to capture the essence of the basics of machine learning 
and make the readers aware of the foundations so that they can either delve into the 
deeper aspects of machine learning or focus on the applications to the materials 
domain using existing approaches to solve an impactful problem in the domain.
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We hope you enjoy the book and find it useful for your journey in materials 
discovery. 

New Delhi, India 
August 2023 

N. M. Anoop Krishnan 
Hariprasad Kodamana 

Ravinder Bhattoo
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Chapter 1 
Introduction 

Abstract Materials form the basis of human civilization. With the advance of com-
putational algorithms, computational power, and cloud-based services, materials 
innovation is accelerating at a pace never witnessed by humankind. In this chapter, 
we briefly introduce the materials discovery approaches using AI and ML that has 
enabled some breakthrough in our understanding of materials. We list some publicly 
available databases on materials and some of the applications where AI and ML has 
been used to design and discover novel materials. The chapter concludes with a brief 
outline of the book. 

1.1 Materials Discovery 

The progress of human civilization has been closely related to the discovery and 
usage of new materials. Materials have shaped how we interact with the world, from 
the stone to the silicon age. This is exemplified by the fact that the different ages of 
human history have been named after the prominent materials used in those eras–the 
stone age, the bronze age, and the iron age. A surge of new materials such as glass, 
steel, ceramics, concrete, and polymers marked the period during and after the iron 
age. Thus, everything we see around us, from pins and pots to rockets and robots, 
has been made possible due to the discovery of materials. As we advance, materials 
are sure to play a crucial role in the sustainable development of humans, with the 
most negligible impact on the planet, in areas such as renewable energy, health care, 
agriculture, and even arts and culture. 

However, the importance of materials discovery was formally accepted only in the 
1950s with the proposition of materials as a separate engineering domain. During 
world war II and the ensuing cold war, countries realized that materials were the 
bottleneck in advancing military, space, and medical technologies. Thus, materials 
science emerged as the first discipline formed out of the fusion and collaborations of 
multiple disciplines from basic sciences and engineering, focusing on understanding 
material response leading to materials discovery. While the early focus of materials 
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Fig. 1.1 Flow chart of traditional materials discovery based on what-if scenarios. Intuition and 
expert knowledge is used to cleverly pose the what-if questions that can potentially lead to the 
discovery of novel materials 

science remained in metallurgy, it was soon expanded to other domains such as 
ceramics, polymers, and later to composites, nano-materials, and bio-materials. 

The earlier approaches for materials discovery relied on trial-and-error approaches 
driven either by physics or strong intuition developed through years of experience. 
In such cases, the idea of what-if scenarios was used for discovering materials with 
tailored properties, as shown in Fig. 1.1. This approach would start from a “what-if” 
question on one or more aspects of the tetrahedron materials: processing, struc-
ture, property, and performance. A set of candidate solutions would be proposed 
based on the available knowledge and intuitions. These solutions would be tested 
using experimental synthesis and characterizations. If a candidate solution meets the 
expected performance, the new material is manufactured, verified, validated, certi-
fied, and deployed in the industry. If any of the candidate solutions do not meet the 
expected performance, the iteration is continued until a desired candidate is discov-



1.1 Materials Discovery 5

ered. As a trivial example, consider the following. Carbon can improve the hardness 
and strength of steel–what if we increase the carbon content of steel? Experimen-
tal studies reveal that the increase in carbon content improves steel’s hardness and 
strength. However, higher carbon content makes steel brittle and less weldable! Thus, 
although the new candidate meets the expected performance in terms of strength, it 
induces some undesirable side-effects on other properties. Hence, the candidate may 
not be accepted. Thus, the what-if scenarios required detailed and time-consuming 
experimental characterization and analysis of new materials, significantly increas-
ing the cost and time required for materials discovery. In these cases, the typical 
timescale associated with the discovery of new material was 20–30 years from the 
initial research to its first use. 

The invention of computers and in-silico approaches came as a breakthrough in 
materials discovery in the second half of the twentieth century. Monte Carlo (MC) 
algorithms and molecular dynamics (MD) simulations, both proposed in the 1950s, 
became valuable tools for understanding materials response under different scenar-
ios. These approaches reduced the number of actual experiments to be carried out, 
accelerating materials discovery. At the same time, slowly but steadily, researchers 
also started realizing the importance of compiling and documenting the materials 
data generated by the experiments and simulations. The first attempts to this extent 
were the Cambridge Structural Database (CSD) and Calculation of Phase Diagrams 
(CALPHAD) around the 1970s. These databases enabled the development of a quan-
titative structure-property relationships (QSPR) approach in materials. The QSPR 
approaches primarily relied on correlations and simple linear or polynomial regres-
sions that allowed the discovery of patterns from the available data, which ultimately 
provided insights into materials response. 

List of Publically Available Materials Databases 

1. CSD: Cambridge Structural Database 
2. CALPHAD 
3. Granta Design 
4. Pauling File 
5. ICSD: Inorganic Crystal Structure Database 
6. ESP: Electronic Structure Project 
7. AFLOW: Automatic-Flow for Materials Discovery 
8. MatNavi 
9. AIST: National Institute of Advanced Industrial Science and Technology 

Databases 
10. COD: Crystallography Open Database 
11. MatDL: Materials Digital Library 
12. The Materials Project 
13. CMR: Computational Materials Repository 
14. Springer Material 
15. OpenKIM 
16. NREL CID: NREL Center for Inverse Design 
17. MGI: Materials Genome Initiative

CSD: Cambridge Structural Database
 -2047 34183 a -2047
34183 a
 
https://www.ccdc.cam.ac.uk/solutions/csd-core/components/csd/
CALPHAD
 -2047 35525
a -2047 35525 a
 
https://www.nist.gov/programs-projects/calphad-data-informatics
Granta Design
 -2047 36613 a -2047 36613 a
 
https://www.ansys.com/products/materials/granta-selector
Pauling File
 -2047 38182 a -2047 38182 a
 
https://paulingfile.com/
ICSD: Inorganic Crystal Structure Database
 -2047 39510 a -2047 39510 a
 
https://icsd.products.fiz-karlsruhe.de/en
ESP: Electronic Structure Project
 -2047 40838 a -2047
40838 a
 
http://gurka.fysik.uu.se/ESP/
AFLOW: Automatic-Flow for Materials Discovery
 -2047 42167
a -2047 42167 a
 
http://www.aflowlib.org/
MatNavi
 -2047 43495
a -2047 43495 a
 
https://mits.nims.go.jp/en/
AIST: National Institute of Advanced Industrial Science and Technologyprotect penalty -@M  Databases
 -2047 44583 a -2047 44583 a
 
https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi
COD: Crystallography Open Database
 -2047 47240 a -2047 47240 a
 
https://www.crystallography.net/cod/
MatDL: Materials Digital Library
 -2047 48808 a -2047
48808 a
 
https://www.kent.edu/cmi/materials-digital-library-pathway-matdl
The Materials Project
 -2047 50137
a -2047 50137 a
 
https://materialsproject.org/
CMR: Computational Materials Repository
 -2047 51465 a -2047
51465 a
 
https://cmr.fysik.dtu.dk/
Springer Material
 -2047 52793
a -2047 52793 a
 
https://materials.springer.com/
OpenKIM
 -2047 54122 a -2047
54122 a
 
https://openkim.org/
NREL CID: NREL Center for Inverse Design
 -2047 55450 a -2047 55450 a
 
https://www.nrel.gov/research/data-tools.html
MGI: Materials Genome Initiative
 -2047 56779 a -2047 56779 a
 
https://www.nist.gov/mgi
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18. MatWeb 
19. MATDAT 
20. CEPDB: The Clean Energy Project Database 
21. CMD: Computational Materials Network 
22. Catalysis Hub 
23. OQMD: Open Quantum Materials Database 
24. Open Material Databases 
25. NREL MatDB 
26. Citrine Informatics 
27. Exabyte.io 
28. NOMAD: Novel Materials Discovery Laboratory 
29. Marvel 
30. Thermoelectrics Design Lab 
31. MaX: Materials Design at the Exascale 
32. CritCat 
33. Khazana 
34. Material Data Facility 
35. MICCOM: Midwest Integrated Center for Computational Materials 
36. MPDS: Materials Platform for Data Science 
37. CMI2: Center for Materials Research by Information Integration 
38. HTEM: High Throughput Experimental Materials Database 
39. JARVIS: Joint Automated Repository for Various Integrated Simulations 
40. OMDB: Organic Materials Database 
41. aNANt 
42. Atom Work Adv 
43. FAIR Data Infrastructure 
44. Materiae 
45. Materials Zone 
46. MolDis 
47. QCArchive: The Quantum Chemistry Archive 
48. PyGGi: Python for Glass Genomics 

The next breakthrough in materials discovery could be attributed to the inter-
net revolution, which democratized the access to data for everyone. This period 
also saw a surge in the development of experimental and computational databases 
which started serving as information repository and cook-book for material synthesis. 
Figure 1.2 shows the databases that are available and their geographical distribution. 
The availability of these databases also inspired the automated search for correlations 
in composition–structure–processing–property relationships of the materials. Thus, 
the stage was set for the use of machine learning for materials discovery with all the 
relevant ingredients in place, namely, 

1. availability of large amounts data, 
2. computational power to process and “learn” the data, and 
3. extremely non-linear composition–structure–property relationships along with 

the poor understanding of physics governing these relationships in materials.

MatWeb
 -2047 -1688 a -2047
-1688 a
 
http://www.matweb.com/
MATDAT
 -2047 -581 a -2047 -581
a
 
https://www.matdat.com/
CEPDB: The Clean Energy Project Database
 -2047 748 a -2047 748 a
 
https://www.matter.toronto.edu/basic-content-page/data-download
CMD: Computational Materials Network
 -2047
2316 a -2047 2316 a
 
https://www.asminternational.org/web/cmdnetwork
Catalysis Hub
 -2047 3644
a -2047 3644 a
 
https://www.catalysis-hub.org/
OQMD: Open Quantum Materials Database
 -2047 4973 a -2047 4973 a
 
http://oqmd.org/
Open Material Databases
 -2047 6301 a -2047 6301 a
 
http://openmaterialsdb.se/
NREL MatDB
 -2047 7629 a -2047 7629 a
 
https://materials.nrel.gov/
Citrine Informatics
 -2047 8718 a -2047 8718 a
 
https://citrine.io/
Exabyte.io
 -2047 10046 a -2047
10046 a
 
https://exabyte.io/
NOMAD: Novel Materials Discovery Laboratory
 -2047 11615 a -2047 11615
a
 
https://nomad-lab.eu/about/scope
Marvel
 -2047 12943 a -2047
12943 a
 
https://www.materialdatacenter.com/ms/en/Marvel/SCG+Chemicals+Co%252E%2C+Ltd/6537
Thermoelectrics Design Lab
 -2047 14031 a -2047 14031 a
 
https://tedesignlab.org/
MaX: Materials Design at the Exascale
 -2047 15600 a -2047
15600 a
 
http://www.max-centre.eu/
CritCat
 -2047 16928 a -2047 16928 a
 
http://www.critcat.eu/
Khazana
 -2047 18016 a -2047
18016 a
 
https://khazana.gatech.edu/
Material Data Facility
 -2047 19344 a -2047 19344 a
 
https://materialsdatafacility.org/
MICCOM: Midwest Integrated Center for Computational Materials
 -2047 20913 a -2047 20913 a
 
http://miccom-center.org/
MPDS: Materials Platform for Data Science
 -2047 22241 a -2047 22241 a
 
https://mpds.io/#start
CMI2: Center for Materials Research by Information Integration
 -2047 23330 a -2047
23330 a
 
https://www.nims.go.jp/MII-I/en/about/index_m.html
HTEM: High Throughput Experimental Materials Database
 -2047 24898 a -2047
24898 a
 
https://data.nrel.gov/submissions/75
JARVIS: Joint Automated Repository for Various Integrated Simulations
 -2047 26226 a -2047 26226 a
 
https://jarvis.nist.gov/
OMDB: Organic Materials Database
 -2047 27555 a -2047
27555 a
 
https://omdb.mathub.io/
aNANt
 -2047 28883 a -2047 28883 a
 
http://anant.mrc.iisc.ac.in/
Atom Work Adv
 -2047
29971 a -2047 29971 a
 
https://atomwork-adv.nims.go.jp/
FAIR Data Infrastructure
 -2047 31300 a -2047
31300 a
 
https://www.fair-di.eu/
Materiae
 -2047 32628 a -2047
32628 a
 
https://materiae.iphy.ac.cn
Materials Zone
 -2047 33956 a -2047 33956 a
 
https://www.materials.zone/
MolDis
 -2047 35285 a -2047 35285 a
 
https://moldis.tifrh.res.in/datasets.html
QCArchive: The Quantum Chemistry Archive
 -2047 36613 a -2047
36613 a
 
https://qcarchive.molssi.org/
PyGGi: Python for Glass Genomics
 -2047 38182
a -2047 38182 a
 
https://pyggi.substantial.ai/
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Fig. 1.2 Material database timeline and geographical region of origin. Reprinted with permission 
from [ 1] 

1.2 Physics- and Data-Driven Modeling 

Models are simplified replicas of real-world scenarios with attention to the features 
or phenomena of interest. For example, a ball-and-stick model of atoms aims to 
show the relative atomic positions for a given lattice, while completely ignoring 
the dynamics, electronic structure, and other details of an atomic system. Figure 1.3 
shows the ball and stick model for benzene with the chemical formula C. 6H. 6. Note that 
the black balls represent the carbon atom while the white ones represent hydrogen 
atoms. Further, the alternating single and double bonds are represented beautifully 
by single and double sticks connecting the carbon atoms. Such models can be very 
useful for giving a quick understanding of complex molecular structures and are 
hence used commonly for teaching purposes. 

While a ball-and-stick model is a physical model, phenomenons are typically 
expressed through mathematical models. Traditional models in materials and engi-
neering disciplines have relied on mathematical equations derived based on physical 
theories or laws. This approach has been widely accepted for centuries and has stood 
the test of time. Some of the widely used mathematical models in materials science 
include laws of thermodynamics, Fick’s laws, Avrami equation, Arrhenius equa-
tion, Gibbs–Thomson equation, Bragg’s law, and Hooke’s law. Thus, the physical 
models are derived based on existing theories and can be explained using reason-
ing to understand the phenomenon. However, the physical models have traditionally 
been limited to simple systems. The extremely complex and non-linear nature of 
advanced materials have remained elusive to physical models as well as in-silico 
models. Understanding the response of these materials require high-fidelity high-
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Fig. 1.3 Ball and stick model of benzene (C. 6H. 6) 

throughput experiments and simulations, which are highly prohibitive in terms of 
cost and manpower. 

An alternate approach that has emerged recently is the data-driven approach. Here, 
the data is used to first identify the model and then fit the parameters of the model. 
Data-driven models are not based on physical theories and hence are occasionally 
termed as “black-box” models. It is interesting to note that although, data-driven 
models such as machine learning was first proposed at the same time as MC and 
MD simulations in 1950s, it has started finding wide-spread applications in materi-
als engineering only for the past two decades. The inertia to not accept data-driven 
models, despite their fast, accurate, and efficient ability to learn patterns from data, 
could be attributed to their black-box nature. In other words, the data-driven mod-
els cannot be explained using known physics, they can only be tested for unknown 
scenarios. However, the advances in machine learning coupled with the availability 
of large-scale data on materials have shown the potential of data-driven approaches 
for materials discovery. In addition, the development of explainable machine learn-
ing algorithms, which allows the interpretation of black-box models, has allowed 
domain experts to interpret the black-box models. This allows the interpretation of 
the features “learned” by the model, thereby, giving insights into the inner workings 
of the models. Overall, data-driven approaches have shown significant potential to
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accelerate materials discovery and reduce the discovery-to-deployment period from 
20 years to 10 years or even lesser. 

1.3 Introduction to Machine Learning 

Machine learning (ML) refers to the branch of study which focuses on developing 
algorithms that “learns” the hidden patterns in the data. In contrast to physics-based 
models, ML uses the data for both model development and model training. Further, 
it improves the model in a recursive fashion using a predictor-corrector approach 
without being explicitly programmed to do the specific task. As such, large amounts 
of data is required for the ML models to learn the patterns reasonably–the more the 
data, the better the ML model is. ML has already been widely used in our day-to-day 
life for several applications such as face recognition, email spam detection, personal 
assistants, automated chat-bots, and fraud detection. To achieve these tasks, ML uses 
different classes of algorithms as detailed below. 

Algorithms in ML can be broadly classified into supervised, unsupervised, and 
reinforcement learning. Supervised learning refers to those which learns the function 
that maps a set of input-output data. The examples of this approach include predicting 
the Young’s modulus or density of an alloy based on the composition and processing 
or classifying a set of materials into conductor or insulator. It may be noticed in the 
first task the output Young’s modulus can take continuous values as a function of the 
composition and processing and hence, is known as regression. Whereas in the second 
task, the output can either be conductor or insulator, and hence is a classification task. 
Note that the classification problems can be multi-class as well having more than two 
classes, for example, conductor, insulator, superconductor, and semi-conductor. The 
crucial aspect in supervised learning is the availability of a labeled dataset on which 
the model can be trained. The accuracy of the model depends highly on the accuracy 
of the dataset among other factors. Some commonly used supervised models are 
linear and polynomial regressions, logistic regression, decision trees, random forest 
(RF), XGBoost, support vector (SVR), neural network (NN), and Gaussian process 
regression (GPR). 

In unsupervised learning, the algorithm tries to find out patterns from the features 
of the data. In this case, there is no labeled training set that is used. Some of the 
main approaches in unsupervised learning include clustering and anomaly detection. 
Clustering refers the automated grouping of materials based on their similarity to 
each other based on the features provided. Clustering may be used to remove an 
outlier in the data, or to identify subgroups in the data. Some of the unsupervised 
models include k-means, DBSCAN, OPTICS (inspired from DBSCAN), t-SNE, and 
principal component analysis (PCA). 

Reinforcement learning, although holds a great potential, is relatively less explored 
in materials discovery. Reinforcement learning relies on a carrot-and-stick policy 
where an agent is trained to take actions that maximizes the cumulative reward. Thus, 
reinforcement learning tries to combine the existing knowledge and exploration in
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a judicious fashion to maximize the reward. Reinforcement learning can be used 
to identify optimal process parameters for material synthesis and characterization, 
and also to explore novel materials with superior properties such as room temper-
ature superconductors or ultra-stable glasses. Some of the reinforcement learning 
algorithms include Q-learning, and State-action-reward-state-action (SARSA). In 
this book, we will be primarily focusing only on supervised and unsupervised algo-
rithms. These algorithms are discussed in detail in Part II. Reinforcement learning 
is briefly outlined in Sect. 8.7. 

1.4 Machine Learning for Materials Discovery 

Machine learning has found applications in accelerating the discovery of a variety 
of materials as well as to gain deep insights into the material response [ 2– 6]. Here, 
we briefly review some of the applications where ML has successfully solved some 
of the open problems or has outperformed classical approaches. These applications 
are discussed in detail in Part III. 

1.4.1 Property Prediction 

One of the most commonly used application of ML is property prediction. This is 
a major problem for almost all materials such as alloys, ceramics, glasses, poly-
mers, and nanomaterials as the property of a material can be a complex, non-convex 
function of composition, structure, and processing [ 3, 7– 14]. For some properties 
such as hardness, it can also be a function of the testing method and testing param-
eters [ 15]. To predict material properties, first a clean dataset of input features and 
output property of interest need to be prepared. Note that the input features can be 
simple chemical composition, or more complex features such as the periodic table 
based descriptors. The input features can also be a combination of multiple features 
engineered using additional unsupervised ML techniques. Once a clean dataset is 
prepared, supervised ML is used to train models that can predict the property of 
interest. 

Figure 1.4 shows the predicted values of density, Young’s modulus, Vicker’s hard-
ness, and shear modulus of oxide glasses with respect to the experimental values [ 16]. 
The dataset consists of 50,000 oxide glasses with multiple components. We observe 
that the the predicted values for this large dataset exhibit a good agreement with 
respect to the experimental values for all the properties. In addition, the 95% confi-
dence interval of the error histogram shown in the inset confirms that the predictions 
indeed exhibit a very low error in comparison to the range of values considered. 
Similar approaches have been widely used for the prediction of properties of several
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Fig. 1.4 Predicted values of a density, b Young’s modulus, c Vicker’s hardness, and d shear modulus 
of oxide glasses with respect to the experimental values. The R. 2 values of training, validation, 
and test are shown. The inset shows the histogram of error in the prediction along with the 95% 
confidence interval 

materials including ceramics, metal alloys, metallic glasses, 2D materials, polymers, 
and even proteins. 

1.4.2 Materials Discovery 

While property prediction allows one to explore the properties of hitherto unknown 
composition, it necessarily does not directly provide a recipe of new materials. Mate-
rials discovery a more challenging problem having constraints on multiple properties 
and components. For instance, a desired alloy for automotive applications should be 
light-weight, hard, strong, tough, ductile, and easily weldable. Many of these prop-
erties are conflicting. Effectively, this problem translates to solving the inverse of 
property prediction. Here, we need to predict the candidate composition and process-
ing parameters corresponding to a target property. To this extent, surrogate model


