Peter Grundke

Integrated Market and Credit Portfolio Models

nbf neue betriebswirtschaftliche forschung Band 361

Peter Grundke

Integrated Market and Credit Portfolio Models

Risk Measurement and Computational Aspects

With a foreword by Univ.-Prof. Dr. Thomas Hartmann-Wendels

GABLER EDITION WISSENSCHAFT

Bibliographic information published by Die Deutsche Nationalbibliothek Die Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.d-nb.de>.

Habilitationsschrift Universität zu Köln 2006

1st Edition 2008

All rights reserved

© Betriebswirtschaftlicher Verlag Dr. Th. Gabler | GWV Fachverlage GmbH, Wiesbaden 2008

Editorial Office: Claudia Jeske

Gabler-Verlag is a company of Springer Science+Business Media. www.gabler.de

No part of this publication may be reproduced, stored in a retrieval system or transmitted, mechanical, photocopying or otherwise without prior permission of the copyright holder.

Registered and/or industrial names, trade names, trade descriptions etc. cited in this publication are part of the law for trade-mark protection and may not be used free in any form or by any means even if this is not specifically marked.

Cover design: Regine Zimmer, Dipl.-Designerin, Frankfurt/Main Printed on acid-free paper Printed in Germany

ISBN 978-3-8349-0875-9

Preface

Banks are exposed to various kinds of risks; among them are credit default risks, market price risks and operational risks the most important ones. Aggregating these different risk exposures to a comprehensive risk position is an important, yet challenging and up to now unresolved task. Banks' current state of the art in risk management is still far away from achieving a fully integrated view of the risks they are exposed to. This shortfall traces back to both, to conceptual problems of constructing an appropriate risk model and to the computational burden of calculating a loss distribution.

The approach presented in this book takes credit default risk as a starting point. By integrating market risks, a general credit risk model is constructed that comprises the standard industry credit risk models as special cases. Within the framework of this general credit risk model, the effects of simplifying assumptions that are typical for standard credit risk models can be analyzed. Important insights gained by this analysis are that neglecting market price risks and losses given default correlated to default rates can cause a significant understatement of value at risk figures.

While solving the conceptual problems of designing an integrated risk model has its own merits for scientific purposes, it is of limited use for practical applications as long as the computational problems remain unsolved. As the value at risk of a complex credit risk model cannot be determined analytically, simulation techniques that are both, sufficiently precise and not too time-consuming, are needed. Fourier transformations and importance sampling are two simulation procedures that proved to be successful in cutting down the computational burden in pure credit risk models and pure market risk models, respectively. A natural approach therefore is to analyze the power of these procedures for an integrated risk model. Unfortunately, both procedures loose much of their advantages when they are applied outside of simplified model settings. As a result, the necessity of developing improved simulation techniques becomes evident.

vi Preface

The analysis presented in this book paves the way for the development of more powerful risk models. The results are important for both, for academics interested in designing more satisfying risk models and for practitioners in charge of solving the computational problems associ-

ated with the implementation of risk models.

Cologne, December 2007

Thomas Hartmann-Wendels

Acknowledgments

This book was written while I was a scientific assistant of Professor Dr. Thomas Hartmann-

Wendels at the Chair of Banking at the University of Cologne. It was accepted as my habilita-

tion thesis by the Faculty of Management, Economics and Social Sciences at the University of

Cologne in October 2006.

My special thanks go to Professor Dr. Thomas Hartmann-Wendels for providing an excellent

research environment, his permanent support, and for giving me the necessary academic free-

dom with respect to this work. I also wish to thank Professor Dr. Dieter Hess for serving as a

referee for my habilitation thesis.

To finish the project 'Habilitation', the help of many people is needed. Now, it is a pleasure

for me to thank them. As already during the work for my PhD thesis, Wolfgang Spörk contin-

ued to do an excellent job in helping to preserve the necessary motivation. Stefanie Martens

undertook the cumbersome task of checking the manuscript for typos and improving the Eng-

lish writing style. Thanks to both of them.

For the success of this work, it is crucial to have the necessary support and encouragement in

the private background. I thank my parents, Renate and Bernward Grundke, as well as Han-

nelore and Horst Martens for giving me this support and encouragement. Of course, the larg-

est part of the support was provided by my wife Kristina who had to bear periods of my men-

tal (and physical) absence. Thanks for your patience, understanding and permanent confi-

dence that I am on the right way. Hence, this book is dedicated to Kristina and our new-born

star Lennard.

Cologne, December 2007

Peter Grundke

Contents

List of Tables	xiii
List of Figures	xv
List of Acronyms	xvii
List of Symbols	xix
1 Introduction	1
1.1 Motivation	1
1.2 Structure	4
2 The Integrated Market and Credit Portfolio Model	7
2.1 General Approach	7
2.2 Industry Standards as Special Cases	9
2.3 Example of an Integrated Market and Credit Portfolio Model	11
3 Effects of Integrating Market Risk into Credit Portfolio Moo	dels 19
3.1 Introduction	19
3.2 Review of the Literature	20
3.3 Modifications of the Base Case Model	25
3.3.1 Inhomogeneities	25
3.3.2 Discrete Mixture of Normal Distributions for the	
Systematic Credit Risk Factor Z	27
3.3.3 Multivariate <i>t</i> – Distribution of the Asset Returns	29
3.3.4 A Simple Contagion Model	31
3.3.5 An Enhanced Recovery Model	33

3.4 Numerical Results	38
3.4.1 Parameters	38
3.4.2 Results for the Base Case Model	42
3.4.3 Results for the Modified Base Case Model	46
3.4.3.1 Results for Inhomogeneous Credit Portfolios	46
3.4.3.2 Results for a Discrete Mixture of Normal Distributions for th	ie
Systematic Credit Risk Factor Z	49
3.4.3.3 Results for a Multivariate t – Distribution of the Asset Return	ns 51
3.4.3.4 Results for the Simple Contagion Model	53
3.4.3.5 Results for the Enhanced Recovery Model	54
3.4.4 Additional Stress Tests	56
3.5 Conclusions	60
4 On the Applicability of Fourier-Based Methods to Integrated Market and Credit Portfolio Models	63
Market and Credit Portfolio Models	
Market and Credit Portfolio Models 4.1 Introduction	63
Market and Credit Portfolio Models 4.1 Introduction 4.2 Review of the Literature	63 66
Market and Credit Portfolio Models 4.1 Introduction 4.2 Review of the Literature 4.3 General Computation Approach	
Market and Credit Portfolio Models 4.1 Introduction 4.2 Review of the Literature 4.3 General Computation Approach 4.4 Numerical Results	
Market and Credit Portfolio Models 4.1 Introduction 4.2 Review of the Literature 4.3 General Computation Approach 4.4 Numerical Results 4.4.1 Parameters	
Market and Credit Portfolio Models 4.1 Introduction 4.2 Review of the Literature 4.3 General Computation Approach 4.4 Numerical Results 4.4.1 Parameters 4.4.2 Methodology	
Market and Credit Portfolio Models 4.1 Introduction 4.2 Review of the Literature 4.3 General Computation Approach 4.4 Numerical Results 4.4.1 Parameters 4.4.2 Methodology 4.4.3 Results for a Portfolio of Defaultable Zero Coupon Bonds	
Market and Credit Portfolio Models 4.1 Introduction 4.2 Review of the Literature 4.3 General Computation Approach 4.4 Numerical Results 4.4.1 Parameters 4.4.2 Methodology 4.4.3 Results for a Portfolio of Defaultable Zero Coupon Bonds 4.4.4 Results for a Portfolio of European Call Options with Counterparty Ri	
Market and Credit Portfolio Models 4.1 Introduction 4.2 Review of the Literature 4.3 General Computation Approach 4.4 Numerical Results 4.4.1 Parameters 4.4.2 Methodology 4.4.3 Results for a Portfolio of Defaultable Zero Coupon Bonds 4.4.4 Results for a Portfolio of European Call Options with Counterparty Ri 4.5 Discussion	
Market and Credit Portfolio Models 4.1 Introduction 4.2 Review of the Literature 4.3 General Computation Approach 4.4 Numerical Results 4.4.1 Parameters 4.4.2 Methodology 4.4.3 Results for a Portfolio of Defaultable Zero Coupon Bonds 4.4.4 Results for a Portfolio of European Call Options with Counterparty Ri 4.5 Discussion 4.6 Importance Sampling Techniques for the Fourier-Based Approach	
Market and Credit Portfolio Models 4.1 Introduction 4.2 Review of the Literature 4.3 General Computation Approach 4.4 Numerical Results 4.4.1 Parameters 4.4.2 Methodology 4.4.3 Results for a Portfolio of Defaultable Zero Coupon Bonds 4.4.4 Results for a Portfolio of European Call Options with Counterparty Ri 4.5 Discussion 4.6 Importance Sampling Techniques for the Fourier-Based Approach 4.6.1 Importance Sampling for the Probability Estimator	
Market and Credit Portfolio Models 4.1 Introduction 4.2 Review of the Literature 4.3 General Computation Approach 4.4 Numerical Results 4.4.1 Parameters 4.4.2 Methodology 4.4.3 Results for a Portfolio of Defaultable Zero Coupon Bonds 4.4.4 Results for a Portfolio of European Call Options with Counterparty Ri 4.5 Discussion 4.6 Importance Sampling Techniques for the Fourier-Based Approach 4.6.1 Importance Sampling for the Probability Estimator. 4.6.2 Importance Sampling for the Estimators of the	
Market and Credit Portfolio Models 4.1 Introduction 4.2 Review of the Literature 4.3 General Computation Approach 4.4 Numerical Results 4.4.1 Parameters 4.4.2 Methodology 4.4.3 Results for a Portfolio of Defaultable Zero Coupon Bonds 4.4.4 Results for a Portfolio of European Call Options with Counterparty Ri 4.5 Discussion 4.6 Importance Sampling Techniques for the Fourier-Based Approach 4.6.1 Importance Sampling for the Probability Estimator	

5 Importance Sampling for Integrated Market and	
Credit Portfolio Models	99
5.1 Introduction	99
5.2 Review of the Literature	101
5.3 Importance Sampling Techniques for the General Approach	104
5.3.1 General Remarks about Importance Sampling	104
5.3.2 Application of a Two-Step-Importance Sampling Technique	107
5.3.3 Discussion of the Two-Step-Importance Sampling Technique	119
5.3.4 Modification: Insertion of a Third Step	124
5.3.5 Combination of the Three Steps	131
5.4 Numerical Results	135
5.4.1 Parameters	136
5.4.2 Results for a Portfolio of Defaultable Zero Coupon Bonds	136
5.4.3 Results for a Portfolio of European Call Options with Counterparty Risk.	147
5.4.4 Comparison of the Fourier-Based Approach with Full Monte Carlo	
Simulation Combined with Importance Sampling	151
5.5 Conclusions	154
6 Conclusions	157
Appendices	161
Appendix 1	161
Appendix 2	163
Appendix 3	164
Riblingraphy	167

List of Tables

Table 3.1:	Share of Obligors in Each Rating Grade in a Credit Portfolio with an "Average" Credit Quality	26
Table 3.2:	Transition Matrix	40
Table 3.3:	Descriptive Statistics for the Multivariate Normally Distributed Credit Spreads	41
Table 3.4:	Risk Measures for Different Values of the Asset Return Correlation $\rho_{\scriptscriptstyle R}$ and Different Initial Ratings	43
Table 3.5:	Risk Measures for Different Values of the Correlation Parameters $\rho_{X_r,R},~\rho_{X_r,S}$ and $\rho_{Z,S}$	45
Table 3.6:	Risk Measures for Inhomogeneous Exposures	48
Table 3.7:	Risk Measures for Inhomogeneous Asset Return Correlations	50
Table 3.8:	Risk Measures for a Discrete Mixture of Normal Distributions for the Systematic Credit Risk Factor Z	51
Table 3.9:	Risk Measures for a Multivariate t – Distribution of the Asset Returns with Different Degrees of Freedom ν	52
Table 3.10:	Risk Measures for the Simple Contagion Model	53
Table 3.11:	Risk Measures for an Enhanced Recovery Model	55
Table 3.12:	Risk Measures for Additional Stress Tests	56
Table 3.13:	Influence of the Various Risk Types on the Risk Measures	59
Table 3.14:	Overview on the Sensitivity of the Risk Measures and the Underestimation Effect	61
Table 4.1:	Percentiles of a Homogeneous Portfolio of Defaultable Zero Coupon Bonds	76
Table 4.2:	Percentiles of an Inhomogeneous Portfolio of Defaultable Zero Coupon Bonds	77

xiv List of Tables

Table 4.3:	Influence of the Number of Risk Factors for an Inhomogeneous Portfolio of Defaultable Zero Coupon Bonds	78
Table 4.4:	Percentiles of a Portfolio of European Call Options with Counterparty Risk on Risk-Free Zero Coupon Bonds	83
Table 4.5:	Comparison of the Monte Carlo and the Fourier-Based Approach for a Default Mode Model	87
Table 4.6:	Percentiles of an Inhomogeneous Portfolio of Defaultable Zero Coupon Bonds with Importance Sampling for the Fourier-Based Approach	92
Table 5.1:	Standard Error Ratios for Percentile Estimators with the Two-Step-IS Technique	141
Table 5.2:	Relative Importance of the IS technique for the Two Systematic Risk Factors	142
Table 5.3:	Standard Error Ratios for Expected Shortfall Estimators with the Two-Step-IS Technique	143
Table 5.4:	Stress Tests for the Standard Error Ratios for Percentile Estimators with the Two-Step-IS Technique	144
Table 5.5:	Standard Error Ratios for Percentile Estimators with the Three-Step-IS Technique	146
Table 5.6:	Admissible Intervals for the Initial Guess y and Optimal θ Values	148
Table 5.7:	Standard Error Ratios for Percentile Estimators of an Interest Rate Option Portfolio with the Two-Step-IS Technique	149
Table 5.8:	Standard Error Ratios for Percentile Estimators of an Interest Rate Option Portfolio with the One-Step-IS Technique	151
Table 5.9:	Comparison of the Monte Carlo Approach Combined with Importance Sampling and the Fourier-Based Approach for a Homogeneous Portfolio of Defaultable Zero Coupon Bonds	
Table 5.10:	Comparison of the Monte Carlo Approach Combined with Importance Sampling and the Fourier-Based Approach for an Inhomogeneous Portfolio of Defaultable Zero Coupon Bonds	

List of Figures

Figure 4.1:	Run Time versus Standard Error of Percentile Estimators for a Homogeneous Portfolio of Defaultable Zero Coupon Bonds	0
Figure 4.2:	Run Time versus Standard Error of Percentile Estimators for an	
	Inhomogeneous Portfolio of Defaultable Zero Coupon Bonds	1
Figure 4.3:	Accuracy of the Delta-Gamma Approximation for Option Prices 8	4
Figure 4.4:	Optimization Problem with Constant Credit Spreads when Importance	
	Sampling is Applied to the Probability Estimators	3
Figure 4.5:	Optimization Problem with Constant Credit Spreads when Importance	
	Sampling is Applied to the Estimation of the Unconditional	
	Characteristic Functions	7

List of Acronyms

AR(2) second-order autoregressive process

FFT Fast Fourier Transformation

IRB internal ratings-based IS importance sampling

 LGD_n loss given default of obligor n

OTC over-the-counter

QRN quasi random numbers

VaR Value-at-Risk

wtr without transition risk

List of Symbols

1	1 $C^{T}C^{-1}$ 1 11 C^{-1}
b	product $\delta^T C$ in the delta-gamma approximation $L^{wtr,\Delta,\Gamma}(X,H)$ of the
	credit portfolio loss at the risk horizon H without transition risk
b_m	component of the vector b
$b_{s,c}$	factor weight of factor Z_c in sector s in the Credit Portfolio View
	model
\mathbb{C}	complex numbers
С	matrix product of the matrices \tilde{C} and U
C	number of systematic credit risk factors
C_n $\tilde{\mathbb{C}}$	collateral value of obligor <i>n</i>
	matrix of the Cholesky decomposition of the covariance matrix Σ_X
$C(\cdot)$	price of an European call option with counterparty risk
$ ilde{C}(\cdot)$	price of an European call option without counterparty risk
$\tilde{C}(\cdot)$ $C^{\Delta,\Gamma}(\cdot)$	delta-gamma approximation of a price of an European call option with counterparty risk
$ ilde{C}^{\Delta,\Gamma}(\cdot)$	delta-gamma approximation of a price of an European call option with-
	out counterparty risk
c	convexity of a bond
C_n	loss incurred by a default of obligor n in a default mode model
$\overset{"}{D}$	number of simulation runs (also: number of defaults in the simple conta-
	gion model)
d	modified duration of a bond
d_{1}, d_{2}	parameters of the price of an European call option
E	number of exposure buckets
F_{i}	face value of a zero coupon bond issued by an obligor whose initial rat-
,	ing is j
F_n	face value of the zero coupon bond issued by obligor n
$F_{\nu}^{''}(z,x)$	exponent of the upper boundary of the optimization problem which has
	exponent of the upper boundary of the optimization problem which has
<i>y</i> · · · ·	to be solved for finding the IS means for the systematic risk factors
$f(\cdot)$	to be solved for finding the IS means for the systematic risk factors
$f(\cdot)$	to be solved for finding the IS means for the systematic risk factors probability density function
•	to be solved for finding the IS means for the systematic risk factors
$f(\cdot)$	to be solved for finding the IS means for the systematic risk factors probability density function conditional probability of obligor n to migrate from rating grade i to k within the risk horizon
$f(\cdot)$ $f_{n,i,k}(\cdot)$	to be solved for finding the IS means for the systematic risk factors probability density function conditional probability of obligor n to migrate from rating grade i to k within the risk horizon joint distribution of the systematic credit and market risk factors
$f(\cdot)$ $f_{n,i,k}(\cdot)$ G G^{c}	to be solved for finding the IS means for the systematic risk factors probability density function conditional probability of obligor n to migrate from rating grade i to k within the risk horizon joint distribution of the systematic credit and market risk factors joint distribution of the systematic credit risk factors Z
$f(\cdot)$ $f_{n,i,k}(\cdot)$ G	to be solved for finding the IS means for the systematic risk factors probability density function conditional probability of obligor n to migrate from rating grade i to k within the risk horizon joint distribution of the systematic credit and market risk factors joint distribution of the systematic credit risk factors Z group $i \in \{1, 2\}$
$f(\cdot)$ $f_{n,i,k}(\cdot)$ G G^{C} G_{i} G^{M}	to be solved for finding the IS means for the systematic risk factors probability density function conditional probability of obligor n to migrate from rating grade i to k within the risk horizon joint distribution of the systematic credit and market risk factors joint distribution of the systematic credit risk factors Z group $i \in \{1,2\}$ joint distribution of the systematic market risk factors X
$f(\cdot)$ $f_{n,i,k}(\cdot)$ G G^{C} G_{i}	to be solved for finding the IS means for the systematic risk factors probability density function conditional probability of obligor n to migrate from rating grade i to k within the risk horizon joint distribution of the systematic credit and market risk factors joint distribution of the systematic credit risk factors Z group $i \in \{1, 2\}$
$f(\cdot)$ $f_{n,i,k}(\cdot)$ G G^{C} G_{i} G^{M} $g(\cdot)$	to be solved for finding the IS means for the systematic risk factors probability density function conditional probability of obligor n to migrate from rating grade i to k within the risk horizon joint distribution of the systematic credit and market risk factors joint distribution of the systematic credit risk factors Z group $i \in \{1,2\}$ joint distribution of the systematic market risk factors Z probability density function risk horizon
$f(\cdot)$ $f_{n,i,k}(\cdot)$ G G^{C} G_{i} G^{M} $g(\cdot)$ H	to be solved for finding the IS means for the systematic risk factors probability density function conditional probability of obligor n to migrate from rating grade i to k within the risk horizon joint distribution of the systematic credit and market risk factors joint distribution of the systematic credit risk factors Z group $i \in \{1,2\}$ joint distribution of the systematic market risk factors X probability density function
$f(\cdot)$ $f_{n,i,k}(\cdot)$ G G^{C} G_{i} G^{M} $g(\cdot)$ H	to be solved for finding the IS means for the systematic risk factors probability density function conditional probability of obligor n to migrate from rating grade i to k within the risk horizon joint distribution of the systematic credit and market risk factors joint distribution of the systematic credit risk factors Z group $i \in \{1,2\}$ joint distribution of the systematic market risk factors X probability density function risk horizon step size for the Simpson integration rule

k within the risk horizon

xx List of Symbols

I	identity matrix
$Im(\cdot)$	imaginary part of a complex number
i	credit quality (also: imaginary unit of the complex numbers)
i_n	instrument issued by obligor <i>n</i>
K	number of credit qualities (ratings)
k	credit quality
L(H)	credit portfolio loss at the risk horizon H
$L_{(d)}(H)$	d^{th} order statistic of the credit portfolio loss $L(H)$
$L^{wtr}(X,H)$	credit portfolio loss at the risk horizon H without transition risk
$L^{wtr,\Delta,\Gamma}(\mathbf{X},H)$	delta-gamma approximation of the credit portfolio loss $L^{wtr}(X, H)$ at th ^e
() ,	risk horizon H without transition risk
$L_n(H)$	loss of instrument n at the risk horizon H
$L_n^{wtr}(X,H)$	loss of instrument n at the risk horizon H without transition risk
$L_{n,k}^{''}(H) X$	conditional loss of instrument n at the risk horizon H when its issuer is
<i>n</i> , <i>n</i> · · ·	in rating class k
l_n	exposure of obligor n in a default mode model
<i>l</i> (S)	likelihood ratio
M	number of market risk factors
\mathbb{N}	natural numbers
N	number of instruments (obligors, issuers) in the credit portfolio
N_{i}	number of obligors in group $i \in \{1, 2\}$
$N(\mu, \sigma^2)$	normal distribution with mean μ and variance σ^2
n	identification of an obligor (also: number of grid points for the Gauss-
	Legendre integration rule)
n_j	number of bonds whose issuers have the initial rating j
P	real-world probability measure
$ ilde{P}$	risk-neutralized pricing measure (also: IS probability measure)
$egin{aligned} & extstyle P_{_{ extstyle n}} \ & ilde{P}_{ heta}(\cdot) \end{aligned}$	vector of parameters relevant for the instrument issued by obligor n
	conditional IS transition probability measure with twisting parameter θ
$P_{\mu(S)}$	IS probability measure for the systematic credit risk factors Z, which
	depends on the realization of the market risk factors S
p	confidence level of a Value-at-Risk (also: probability of a percentile)
$p_n(\cdot)$	price of a credit-risky instrument issued by obligor <i>n</i>
$\tilde{p}(\cdot)$	price of a default risk-free zero coupon bond
Q(S)	quadratic approximation (without constant) of the credit portfolio loss $L^{wtr}(X,H)$ at the risk horizon H without transition risk
q_{ik}	unconditional probability to migrate from rating grade i to k within one
	year
q_K^n	unconditional one-year default probability of obligor n
\mathbb{R}	real numbers
\mathbb{R}_{+}	non-negative real numbers
\mathbb{R}^{c}	C – dimensional vector of real numbers
R_k^i	asset return threshold for a rating transition from i to k
R_n	asset return of obligor n

List of Symbols xxi

$Re(\cdot)$	real part of a complex number
$R(X_r, H, T)$	stochastic risk-free spot yield for the time interval $[H,T]$
$R(\infty)$	return of a risk-free zero coupon bond with infinite time to maturity
r(t)	(risk-free) short rate at time t
$S = (S_1, \dots, S_M)$	vector of independent standard normally distributed random variables
$S_k(H,T)$	stochastic credit spread of rating class k for the time interval $[H,T]$
S	segment in the Credit Portfolio View model
T_n	maturity date of the zero coupon bond issued by obligor n (without in-
	dex n: identical maturity date for all obligors)
T_n^C	expiration date of an European call option issued by counterparty n
"	(without index n : identical expiration date for all obligors)
t	point of time or period of time (also: argument of a characteristic func-
	tion, grid point)
$t_{\nu}(\cdot)$	cumulative density function of the t -distribution with ν degrees of
V . ,	freedom
$t_{\nu}^{-1}(\cdot)$	inverse cumulative density function of the t -distribution with v de-
V ()	grees of freedom
U	orthogonal matrix whose columns are the eigenvectors of the matrix
	$0.5 ilde{C}^{T}\Gamma ilde{C}$
U_n	random variable which drives the stochastic collateral value of obligor n
w"	centrally χ^2 – distributed random variable with ν degrees of freedom
$W_r(t)$	standard Brownian motion of the (risk-free) short rate process at time t
707	under the real-world probability measure <i>P</i>
X_n	exercise price of an European call option issued by obligor n
	(risk-free) interest rate factor
$X_r \ X_r^{(d)}$	realization of the (risk-free) interest rate factor X_r in the d^{th} simulation
_r	run
X_{r,η_0}	(risk-free) interest rate factor, which is relevant for the price of the un-
r, η_0	derlying of an European call option issued by a counterparty with initial
	rating η_0
$X = (X_1, \dots, X_M)$	stochastic vector of systematic market risk factors at the risk horizon H
$X^{0} = (X_{1}^{0},, X_{M}^{0})$	vector of systematic market risk factors at $t = 0$
x_r	realization of the (risk-free) interest rate factor
Y_n	random variable which is independent from the random variable U_n ,
n	which drives the stochastic collateral value of obligor n (also: default
	indicator of obligor n)
Z	systematic credit risk factor
$Z^{(d)}$	realization of the systematic credit risk factor Z in the d th simulation
2	run
$Z = (Z_1,, Z_C)$	stochastic vector of systematic credit risk factors
	realization of the systematic credit risk factor
Z	realization of the systematic erealt risk factor

xxii List of Symbols

Greek Symbols

α	parameter of a beta-distributed random variable
α_{n}	sensitivity in the linear factor representation of the random variable U_n ,
	which drives the stochastic collateral value of obligor n (without index
	<i>n</i> : identical sensitivity for all obligors)
$\alpha_{p\%}(L(H))$	p% – percentile of the credit portfolio loss variable $L(H)$
$\hat{\alpha}_{p\%}(L(H))$	estimator of the $p\%$ -percentile of the credit portfolio loss variable
	L(H)
β	parameter of a beta-distributed random variable
$oldsymbol{eta}_{\scriptscriptstyle n}$	sensitivity in the linear factor representation of the random variable U_n ,
	which drives the stochastic collateral value of obligor n (without index
1 0	n: identical sensitivity for all obligors)
$1-\beta$	confidence level of a confidence interval for percentile estimators
Γ	matrix of the second derivatives of $L^{wtr}(X, H)$ with respect to the market risk factors X
$\Gamma_{n,m}$	second derivative of $L^{wtr}(X, H)$ with respect to the market risk factors
1 n,m	X_n and X_m
$\Gamma(\cdot)$	Gamma function
γ	probability of the mixing parameter λ of a discrete mixture of normal
,	distributions
γ_n	sensitivity in the linear factor representation of the random variable U_n ,
	which drives the stochastic collateral value of obligor n (without index
	<i>n</i> : identical sensitivity for all obligors)
δ	vector of the first derivatives of $L^{wtr}(X,H)$ with respect to the market
	risk factors X
$\delta_{_n}$	recovery rate of obligor (issuer) n (also: first derivative of $L^{wtr}(X, H)$
	with respect to the market risk factor X_n)
\mathcal{E}_n	idiosyncratic risk of obligor <i>n</i>
η_n	idiosyncratic collateral value risk of obligor <i>n</i>
η_0^n	rating of obligor n at time $t = 0$
$\eta_H^n \ heta$	rating of obligor n at the risk horizon H mean level of the short rate process (also: twisting parameter)
$ heta^{wtr}$	twisting parameter of the delta-gamma approximation of the credit port-
V	folio loss $L^{wtr}(X,H)$ without transition risk
$\theta_{_{\scriptscriptstyle V}}$	optimal twisting parameter corresponding to the argument y in the ex-
- y	cess probability $P(L(H) > y)$
$ heta_{v^*}^{wtr}$	optimal twisting parameter of the delta-gamma approximation of the
,	credit portfolio loss $L^{wtr}(X,H)$ without transition risk corresponding to
	the argument y^* in the excess probability $P(L(X,H)^{wtr} > y^*)$
$\theta_{y}(Z,X)$	optimal conditional twisting parameter corresponding to the argument y
	in the excess probability $P(L(H) > y)$
ϑ	angle in the Euler formula for a complex number
\mathcal{O}_{s}	noise term of sector s in the CreditPortfolioView model

List of Symbols xxiii

	Cd. Last act
K	mean reversion parameter of the short rate process
Λ	diagonal matrix containing the eigenvalues of the matrix $0.5\tilde{C}^T\Gamma\tilde{C}$
λ	market price of interest rate risk (also: mixing parameter of a discrete
	mixture of normal distributions)
$\lambda_{_{m}}$	eigenvalue of the matrix $0.5\tilde{C}^T\Gamma\tilde{C}$
$\lambda(Z)$	sum of the conditional default probabilities
μ	vector of IS means of the systematic risk factors
μ_{δ}	mean of the beta-distributed recovery rate
$\mu_{h(X)}$	mean of $h(X)$
$\hat{\mu}_{h(X)}$	estimator of the mean of $h(X)$
$\hat{\mu}_{h(X)} \ \hat{\mu}^{ar{P}}_{h(X)}$	IS estimator of the mean of $h(X)$
$\mu_{\scriptscriptstyle k}$	credit spread mean of rating class k
μ_{n}	mean of the random variable U_n , which drives the stochastic collateral
	value of obligor n (without index n : identical mean for all obligors)
$\mu_c^{\rm Z}$	IS mean of the systematic credit risk factor Z_c under the IS distribution
$\mu_{\scriptscriptstyle m}^{\scriptscriptstyle m X}$	IS mean of the market risk factor X_m under the IS distribution
μ_{ι}^{cont}	credit spread mean of rating class k in the simple contagion model
$\mu_Y^{2 step}$	IS mean of the interest rate factor X_r for the two-step-IS technique
$egin{aligned} egin{aligned} egin{aligned} eta_{X}^{\mathcal{L}} & $	IS mean of the interest rate factor X_r for the three-step-IS technique
$\mu_z^{2 step}$	IS mean of the systematic credit risk factor Z for the two-step-IS tech-
	nique
$\mu_Z^{3 step}$	IS mean of the systematic credit risk factor Z for the three-step-IS tech-
. 2	nique
$\mu_{\scriptscriptstyle m}(heta^{\scriptscriptstyle wtr})$	mean of the market risk factor S_m under the IS distribution for the delta-
· m · ·	gamma approximation of the credit portfolio loss $L^{wtr}(X,H)$ without
	transition risk
$\mu(heta^{\scriptscriptstyle wtr})$	mean vector of the market risk factors S under the IS distribution for the
• • •	delta-gamma approximation of the credit portfolio loss $L^{wtr}(X,H)$ with-
	out transition risk
$\mu(S)$	vector of IS means of the systematic credit risk factors Z, which de-
• ` ` /	pends on the realization of the market risk factors S
$\mu^{IS}(y)$	mean vector of the systematic risk factors under the IS distribution,
• •	which depends on the argument y in the probability term $P(\Pi(H) < y)$
	that is estimated
$\mu^{i,IS}(y)$	mean vector of the systematic risk factors under the IS distribution when
r 0)	the imaginary part of the characteristic function is estimated
$\mu^{r,IS}(y)$	mean vector of the systematic risk factors under the IS distribution when
1 0)	the real part of the characteristic function is estimated
v	number of degrees of freedom of a t – distribution
$\Pi(H)$	value of the credit portfolio at the risk horizon H
$\Pi(H)^{\Delta,\Gamma}$	delta-gamma approximation of the value of the credit portfolio at the risk
\	horizon H
$ ho_{\scriptscriptstyle R}$	asset return correlation
$ ho_{_{R,i}}$	asset return correlation in group $i \in \{1, 2\}$
r R,i	

xxiv List of Symbols

$ ho_{\scriptscriptstyle S}^{\scriptscriptstyle k,j}$	correlation between the credit spreads of rating class k and j
$ ho_{\scriptscriptstyle U,R}$	correlation between the random variable U_n , which drives the stochastic
	collateral value of obligor n , and the asset return of obligor n
$ ho_{_{X_r,R}}$	correlation between the interest rate factor X_r and the asset returns
$\hat{ ho}_{\scriptscriptstyle X_r,R}$	modified correlation between the interest rate factor X_r and the asset re-
	turns when the latter ones are modeled by a t – distribution
$ ho_{_{X_r,S}}$	correlation between the interest rate factor X_r and the credit spreads
$ ho_{\scriptscriptstyle Z,S}$	correlation between the systematic risk factor Z and the credit spreads
$\hat{ ho}_{\scriptscriptstyle Z,S}$	modified correlation between the systematic risk factor Z and the credit
	spreads when the asset returns are modeled by a t – distribution
$ ho_{\scriptscriptstyle Z_i,S}$	correlation between the systematic risk factor Z_i ($i \in \{1,2\}$), which is
	part of a discrete mixture of normal distributions, and the credit spreads
$rac{\Sigma}{\Sigma_{ m X}}$	covariance matrix of the systematic risk factors
	covariance matrix of the market risk factors X
$\Sigma(heta^{\scriptscriptstyle wtr})$	covariance matrix of the market risk factors S under the IS distribution
	for the delta-gamma approximation of the credit portfolio loss
	$L^{wtr}(X,H)$ without transition risk
$\sigma_{_k}$	credit spread volatility of rating class k
$\sigma_{_n}$	standard deviation of the random variable U_n , which drives the stochas-
	tic collateral value of obligor n (without index n : identical standard de-
	viation for all obligors)
$\sigma_{_r}$	volatility parameter of the (risk-free) short rate process
$egin{array}{c} \sigma_r \ \sigma_\delta^2 \ \sigma^2(Z_i) \end{array}$	variance of the beta-distributed recovery rate
$\sigma^2(Z_i)$	variance of the systematic risk factor Z_i ($i \in \{1,2\}$), which is part of a
	discrete mixture of normal distributions
$\sigma_{\scriptscriptstyle mn}^{\scriptscriptstyle 2}(heta^{\scriptscriptstyle wtr})$	covariance of the market risk factors S_m and S_n under the IS distribution
	for the delta-gamma approximation of the credit portfolio loss
	$L^{wtr}(X,H)$ without transition risk
$\sigma(\Pi(H))$	standard deviation of the credit portfolio value at the risk horizon
$ au_n$	default time of issuer <i>n</i>
ν	parameter of the price of an European call option
$\Phi(\cdot)$	cumulative density function of the standard normal distribution
$\Phi^{^{-1}}(\cdot)$	inverse cumulative density function of the standard normal distribution
$\phi(\cdot)$	density function of the standard normal distribution
$\varphi_{X}(\cdot)$	characteristic function of a random variable X
$arphi_{\Pi(H)\mid Z, X}(\cdot)$	conditional characteristic function of the credit portfolio value $\Pi(H)$
$\psi_{L(H)}(\theta)$	cumulant generating function of the credit portfolio loss $L(H)$
$\psi_{_{L(H)\mid \mathrm{Z,X}}}(heta)$	conditional cumulant generating function of the credit portfolio loss $L(H)$
$\psi_{\scriptscriptstyle O}(heta^{\scriptscriptstyle wtr})$	cumulant generating function of the quadratic approximation $Q(S)$ of
· z · · ·	the credit portfolio loss $L^{wtr}(X,H)$ at the risk horizon H without transi-
	tion risk
$\omega_{n,c}$	factor weight of factor Z_c for obligor n in the CreditRisk ⁺ model
11,0	e e e

Chapter 1

Introduction

1.1 Motivation

Banks are exposed to many different risk types due to their business activities. Among these risk types are credit risk, market risk, operational risk, and business risk. The task of the risk management division is to measure all these risks and to determine the necessary amount of economic capital that is needed as a buffer to absorb losses associated with each of these risks. Most frequently, economic capital is understood as a Value-at-Risk (VaR) number. Thus, it is the amount of capital needed to absorb unexpected losses within a given time period up to a specified probability.

Predominantly, the necessary amount of economic capital is determined for each risk type separately. That is why the problem arises how to combine these various amounts of capital to a single number. Within the so-called building-block approach stipulated by the regulatory authorities, the amount of regulatory capital that banks have to hold for the different risk types are just added. This is a quite conservative approach because it ignores diversification effects between the risk types. Internal models, which can capture the diversification effects between different (market) risk types, are only allowed for determining the regulatory capital for the market risk of the trading book (see *Basel Committee on Banking Supervision* (1996)). As a

FX risks represent an exception in so far as internal models are allowed for determining the regulatory capital of this risk type for positions in the trading book as well as in the banking book.