Advances in Experimental Medicine and Biology 1441

Silke Rickert-Sperling Robert G. Kelly Nikolaus Haas *Editors*

Congenital Heart Diseases: The Broken Heart

Clinical Features, Human Genetics and Molecular Pathways

Second Edition

Advances in Experimental Medicine and Biology

Volume 1441

Series Editors

Wim E. Crusio, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS and University of Bordeaux, Pessac Cedex, France

Haidong Dong, Departments of Urology and Immunology, Mayo Clinic, Rochester, MN, USA

Heinfried H. Radeke, Institute of Pharmacology and Toxicology, Clinic of the Goethe University Frankfurt Main, Frankfurt am Main, Hessen, Germany

Nima Rezaei, Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran

Ortrud Steinlein, Institute of Human Genetics, LMU University Hospital, Munich, Germany

Junjie Xiao, Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China

Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.

Advances in Experimental Medicine and Biology has been publishing exceptional works in the field for over 40 years, and is indexed in SCOPUS, Medline (PubMed), EMBASE, BIOSIS, Reaxys, EMBiology, the Chemical Abstracts Service (CAS), and Pathway Studio.

2022 CiteScore: 6.2

Silke Rickert-Sperling • Robert G. Kelly • Nikolaus Haas Editors

Congenital Heart Diseases: The Broken Heart

Clinical Features, Human Genetics and Molecular Pathways

Second Edition

Editors Silke Rickert-Sperling Cardiovascular Genetics Charité - Universitätsmedizin Berlin Berlin, Germany

Nikolaus Haas LMU Ludwig Maximilian University, Klinikum der Universität München München, Bayern, Germany Robert G. Kelly Aix Marseille Université Institut de Biologie du Dévelopment de Marseille Marseille, France

ISSN 0065-2598 ISSN 2214-8019 (electronic) Advances in Experimental Medicine and Biology ISBN 978-3-031-44086-1 ISBN 978-3-031-44087-8 (eBook) https://doi.org/10.1007/978-3-031-44087-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2016, 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

Foreword of the 1st Edition

As is indicated in its title, the book you are about to read is concerned with the congenitally malformed heart. Approximately eight neonates in every thousand born alive present with such a "broken heart". This number has changed little since Maude Abbott, when describing the first plate in her Atlas devoted to congenitally malformed hearts, commented that "An understanding of the elementary facts of human and comparative embryology is essential to an intelligent grasp of the ontogenetic problems of congenital cardiac disease". Paul Dudley White, when writing the foreword to her Atlas, commented that it had been left to Abbott to "make the subject one of such general and widespread interest that we no longer regard it with either disdain or awe as a mystery for the autopsy table alone to discover and to solve". It is perhaps surprising, therefore, to realise that it has taken nearly a century for us to achieve the necessary understanding of the "elementary facts" emphasised by Abbott. Indeed, it is not that long since, in company with my very good friend and collaborator Anton Becker, we suggested that interpretations based on embryology might prove to be a hindrance, rather than a help, in understanding the congenitally malformed heart. The contents of this book show how much has changed in the years that have passed since we made that comment, such that we now need to eat our words.

As is revealed by the multiple chapters of this book, the recent advances made in the fields of cardiac embryology and molecular genetics have been truly spectacular. It was these fields that were expertly summarised in the volumes edited by Rosenthal and Harvey. The details contained in the central part of this book, related to central molecular pathways, recapitulate and extend those reviews. Such extensive knowledge of the genetic and molecular background, however, is of limited value if these interpretations cannot properly be translated into the findings observed on a daily basis by those who diagnose and treat the individual cardiac lesions. The first part of this book, therefore, provides a necessarily brief overview of normal cardiac development, while the final chapters then incorporate the developmental and molecular findings into the clinical manifestations of the abnormal morphogenesis.

I know from my own experience how difficult it is to obtain such chapters from multiple authors, who nowadays are themselves under greater pressure to produce primarily in the peer-reviewed realm. The editors, therefore, are to be congratulated on assembling such a panoply of authoritative texts. As might be expected, not all of the texts are of comparable length or content. The critical reader will note that several of the topics addressed remain contentious, and that opinions continue to vary between the chosen experts. This is no more than to be expected, since the topics remain very much moving targets. One hopes, therefore, that this is but the first edition of a work which itself, for the first time, seeks to provide in detail the scientific background to the specific lesions that continue to break the normal heart. As the pages of this book demonstrate, we still have much to do if we are fully to understand the mechanics of normal as opposed to abnormal cardiac development.

London, UK August 2015 Robert H. Anderson

Foreword of the 2nd Edition

It has been now 8 years since the publication of the first edition of "The Broken Heart". In writing the foreword to the first edition, I cited the importance placed by Maude Abbott, certainly the first, if not the most influential, of dedicated pediatric cardiac morphologists, on an appreciation of normal cardiac development as the basis for understanding the anatomy of the congenitally malformed heart. It remains, of course, a firm grasp of the underlying anatomical substrate that underscores the correct diagnosis and treatment of the various phenotypes encountered when the heart is congenitally malformed. In continuing my foreword, I pointed to the time taken to achieve the necessary understanding of the elementary facts highlighted by Abbott. I then further emphasized how the contents of the first edition demonstrated the spectacular advances made in the fields of cardiac molecular genetics over the turn of the twenty-first century. Further improvements are now to be found in the revised chapters of this second edition.

In the first edition of the book, the important chapter on normal cardiac development had "necessarily been brief". It has been markedly expanded in the second edition. In this regard, I should acknowledge my bias, since I am one of the co-authors of this chapter. Its importance, nonetheless, lies in the fact that it is based on a detailed analysis of temporal development of the human heart during the embryonic period. It matches a companion study of the same material now published in "Communications in Biology", but accounts for the changes in systematic rather than longitudinal fashion. The two accounts are complementary. In my obviously biased opinions, I do believe that the chapter and its partner manuscript now provide all the material required to fulfill the expectations of Maude Abbott. Most importantly, it represents the necessary anatomical skeleton on which to assemble the extensive information provided in the central section of the book devoted to molecular and genetic advances. As the editors emphasize in their own preface, this central part has now also been expanded to include chapters on singlecell transcriptomics, stem cells, organoids, and cardiac metabolism. These initial parts of the book then set the scene for understanding the "meat" of the practice of pediatric cardiology, namely the clinical features, the underlying genetic alterations, the related animal models, and the molecular pathways of the different lesions that together make up congenital heart disease.

I have now been involved in the investigation of these various entities for more than half a century. It is encouraging to note that, slowly but surely, the controversies that surrounded many of these lesions when I started in the field are being resolved. I commented on such controversies in my foreword to the first edition. I suggested that the topics remained as "moving targets". Readers of this second edition will discover that, in the period between the editions, the targets have become much easier to hit. This reflects the ability, developed over the past decade, for clinicians to provide three-dimensional illustrations of the underlying anatomy by means of virtual dissection, or creation of models, of datasets obtained during life. These advances also receive appropriate emphasis in this second edition. The appearance of this second edition itself points to the success of the first edition, which provided in detail the scientific background to the specific lesions that continue to break the normal heart. As the pages of the second edition demonstrate, we continue to increase our understanding of the mechanics of normal as opposed to abnormal cardiac development.

London, UK July 2023 Robert H. Anderson

Preface

In the fifteenth century, Leonardo Da Vinci made the first drawing of partial anomalous pulmonary venous connection, and 300 years later, Karl von Rokitansky described ventricular septal defects. Since then, the understanding of congenital heart diseases (CHDs) has rapidly evolved, encompassing clinical recognition, therapeutic opportunities, and the exploration of their developmental and genetic origins.

The initial wave of progress focused on enhancing clinical diagnosis and therapy through anatomical, physiological, and surgical considerations. Consequently, the mortality rate for patients with CHD decreased to below 1 in 100,000 cases, giving rise to a new group of adult patients with corrected and palliated CHD.

The subsequent wave of progress shifted attention toward the developmental, genetic, and molecular aspects of CHDs. Valuable insights were gained by studying animal models alongside humans, leading to the discovery of numerous genes, signaling pathways, and other molecular and hemodynamic factors. The developmental perspective served as a crucial starting point for these investigations.

After decades of basic research primarily utilizing animal models, the focus has shifted toward the human phenotype. Technological advancements have overcome previous limitations, enabling the study of complex biological questions and systems. Additionally, there is a growing recognition that improving human health is a central aim of life science research. This book consolidates clinical, genetic, and molecular knowledge into a single volume, with a particular emphasis on the observed human phenotype during development and in the disease state. Its intended audience encompasses both basic scientists and physicians. Furthermore, it aims to contribute to the current third wave of progression, where the basic science of cardiovascular development is translated into clinical diagnosis and therapy of CHDs.

To achieve this goal, the book is structured into three main parts. The first part provides an introduction to the development of the heart and its vessels. The second part offers an overview of molecular pathways influencing the development of multiple cardiovascular structures. Lastly, the book adopts a textbook-like structure in the third part, focusing on different types of congenital heart diseases. Each chapter delves into their clinical features, underlying genetic alterations, related animal models, and pathways. In this second edition, published eight years after the first edition, every chapter has been thoroughly updated to reflect the rapid pace of discovery and technological innovation in the field of CHD research. New chapters have been included, covering topics such as single-cell transcriptomics—a revolutionary approach that offers unprecedented insights into cellular heterogeneity and differentiation pathways. Stem cell and organoid approaches to study CHD are also discussed, as they accelerate mechanistic understanding and hold therapeutic potential. Additionally, cardiac metabolism has emerged as a highly dynamic driver of cardiac development and is explored in a dedicated chapter. Furthermore, the book presents the 3D-reconstruction of human heart development, showcasing both its beauty and complexity. Finally, the clinical chapters have been expanded significantly, incorporating additional pathological details and new illustrations. Each clinical chapter now features a section highlighting the diagnostic imaging approaches best suited for analyzing specific forms of CHD.

We extend our deepest gratitude to all the contributors to this volume, whose expertise and state-of-the-art accounts have enriched this book.

Berlin, Germany Marseille, France Rochester, MN, USA Munich, Germany April 2024 Silke Rickert-Sperling Robert G. Kelly David J. Driscoll Nikolaus Haas

Contents

Part I Introduction

1	Human Cardiac Development	3
2	Human Genetics of Congenital Heart Defects	57
3	Cardiac Development and Animal Models of Congenital Heart Defects	77
4	Normal Cardiac Anatomy and Clinical Evaluation Nikolaus A. Haas, David J. Driscoll, and Silke Rickert-Sperling	87
Part	t II Development of the Heart and Its Vessels	
5	Cardiac Progenitor Cells of the First and Second Heart	
	Fields	103
6	Neural Crest	125
7	Inflow Tract Development	145
8	Epicardium and Coronary Vessels Adrián Ruiz-Villalba, Juan Antonio Guadix, and José M. Pérez-Pomares	155
9	Establishment of Cardiac Laterality George C. Gabriel, Yijen L. Wu, and Cecilia W. Lo	167
10	Development of the Cardiac Conduction System Lieve E. van der Maarel and Vincent M. Christoffels	185

11	Hemodynamics During Development and Postnatal Life Martina Gregorovicova, S. Samaneh Lashkarinia, Choon Hwai Yap, Viktor Tomek, and David Sedmera	201
12	Evolutionary Aspects of Chamber Formation and Septation Bjarke Jensen and Antoon F. M. Moorman	227
13	Deciphering Congenital Heart Disease Using Human InducedPluripotent Stem CellsHao Zhang and Joseph C. Wu	239
14	Cardiac Development at a Single-Cell Resolution	253
Par	t III Central Molecular and Cellular Pathways	
15	Inter- and Intracellular Signaling Pathways	271
16	Cardiac Transcription Factors and Regulatory Networks Marcel Grunert, Cornelia Dorn, and Silke Rickert-Sperling	295
17	Posttranscriptional Regulation by Proteins and Noncoding RNAs	313
18	Epigenetics	341
19	Cardiac Metabolism	365
20	Environmental Signals	397
21	The Contractile Machines of the Heart Ingo Morano	417
22	Technologies to Study Genetics and Molecular Pathways Marcel Grunert, Cornelia Dorn, Ana Dopazo, Fátima Sánchez-Cabo, Jésus Vázquez, Silke Rickert-Sperling, and Enrique Lara-Pezzi	435
Par	t IV Atrial Septal Defect	
		101

23 Clinical Presentation and Therapy of Atrial Septal Defect 461 Nikolaus A. Haas, David J. Driscoll, and Silke Rickert-Sperling

24	Human Genetics of Atrial Septal Defect Lars A. Larsen and Marc-Phillip Hitz	46
25	Molecular Pathways and Animal Models of Atrial Septal Defect	48
	Rachel A. Magnan, Lillian Kang, Karl R. Degenhardt, Robert H. Anderson, and Patrick Y. Jay	
Par	t V Ventricular Septal Defect	
26	Clinical Presentation and Therapy of Ventricular Septal Defect	49
27	Human Genetics of Ventricular Septal Defect	50
28	Ventricular Septal Defects: Molecular Pathways and Animal Models	53
Par	t VI Atrioventricular Septal Defect	
29	Clinical Presentation and Therapy of Atrioventricular Septal Defect	55
30	Human Genetics of Atrioventricular Septal Defect Cheryl L. Maslen	55
31	Molecular Pathways and Animal Models of Atrioventricular Septal Defect Andy Wessels	57
Par	t VII Total Anomalous Pulmonary Venous Return	
32	Clinical Presentation and Therapy of Total Anomalous Pulmonary Venous Return Nikolaus A. Haas, David J. Driscoll, and Silke Rickert-Sperling	58
33	Total Anomalous Pulmonary Venous Connections,Human Genetics	59
34	TAPVR: Molecular Pathways and Animal Models Robert E. Poelmann, Monique R. M. Jongbloed, and Marco C. DeRuiter	59

Part	t VIII Tetralogy of Fallot and Double Outlet Right Ventricle	
35	Clinical Presentation and Therapy of Tetralogy of Fallot and Double-Outlet Right Ventricle	617
36	Human Genetics of Tetralogy of Fallot and Double-OutletRight VentricleCornelia Dorn, Andreas Perrot, Marcel Grunert,and Silke Rickert-Sperling	629
37	Molecular Pathways and Animal Models of Tetralogy of Fallot and Double Outlet Right Ventricle	645
Part	t IX d-Transposition of the Great Arteries	
38	Clinical Presentation and Therapy of d-Transposition of the Great Arteries Nikolaus A. Haas, David J. Driscoll, and Silke Rickert-Sperling	663
39	Human Genetics of d-Transposition of Great Arteries Lucile Houyel	671
40	Molecular Pathways and Animal Models of d-Transposition of the Great Arteries Eleanor Gill and Simon D. Bamforth	683
Part	X Defects of Situs	
41	Clinical Presentation and Therapy of Anomalies of the Situs Nikolaus A. Haas, David J. Driscoll, and Silke Rickert-Sperling	699
42	Human Genetics of Defects of Situs Andreas Perrot and Silke Rickert-Sperling	705
43	Molecular Pathways and Animal Models of Defects in Situs George C. Gabriel and Cecilia W. Lo	719
Part	XI Semilunar Valve and Aortic Arch Anomalies	
44	Clinical Presentation and Therapy of Semilunar Valve and Aortic Arch Anomalies	741
45	Human Genetics of Semilunar Valve and Aortic Arch Anomalies Matina Prapa and Siew Yen Ho	761

46	Molecular Pathways and Animal Models of Semilunar Valve and Aortic Arch Anomalies	777
Par	t XII Coronary Artery Anomalies	
47	Clinical Presentation and Therapy of Coronary Artery Anomalies	799
48	The Genetics of Human Congenital Coronary Vascular Anomalies Almudena Ortiz Garrido, Beatriz Picazo, Juan Antonio Guadix, Adrián Ruiz-Villalba, and José M. Pérez-Pomares	811
49	Congenital Coronary Blood Vessel Anomalies: Animal Models and the Integration of Developmental Mechanisms Juan Antonio Guadix, Adrián Ruiz-Villalba, and José M. Pérez-Pomares	817
Par	t XIII Truncus Arteriosus	
50	Clinical Presentation and Therapy of Truncus Arteriosus Nikolaus A. Haas, David J. Driscoll, and Silke Rickert-Sperling	835
51	Human Genetics of Truncus Arteriosus	841
52	Molecular Pathways and Animal Models of Truncus Arteriosus Eleanor Gill and Simon D. Bamforth	853
Par	t XIV Tricuspid Atresia and Univentricular Heart	
53	Clinical Presentation and Therapy of Tricuspid Atresia and Univentricular Heart	869
54	Human Genetics of Tricuspid Atresia andUniventricular HeartAbdul-Karim Sleiman, Liane Sadder, and George Nemer	875
55	Molecular Pathways and Animal Models of Tricuspid Atresia and Univentricular Heart	885

Part XV	Ebstein	Anomaly
---------	---------	---------

56	Clinical Presentation and Therapy of Ebstein Anomaly Nikolaus A. Haas, David J. Driscoll, and Silke Rickert-Sperling	903
57	Human Genetics of Ebstein Anomaly Farbod Sedaghat-Hamedani, Gregor U. Andelfinger, and Benjamin Meder	909
58	Molecular Pathways and Animal Models of Ebstein's Anomaly	915
Part	t XVI Hypoplastic Left Heart Syndrome	
59	Clinical Presentation and Therapy of Hypoplastic Left Heart	
	Syndrome	931
60	Human Genetics of Hypoplastic Left Heart Syndrome Constanze Pfitzer, Katharina R. L. Schmitt, and Woodrow D. Benson	937
61	Molecular Pathways and Animal Models of Hypoplastic Left Heart Syndrome	947
Part	XVII Cardiomyopathies	
62	Clinical Presentation and Therapy of Cardiomyopathies Nikolaus A. Haas, David J. Driscoll, and Silke Rickert-Sperling	965
63	Human Genetics of Cardiomyopathies	977
64	Molecular Pathways and Animal Models of Cardiomyopathies Buyan-Ochir Orgil and Enkhsaikhan Purevjav	991
Part	t XVIII Arrhythmias	
65	Clinical Presentation and Therapy of Arrhythmias Nikolaus A. Haas, David J. Driscoll, and Silke Rickert-Sperling	1023
66	Human Genetics of Cardiac Arrhythmias Eric Schulze-Bahr and Sven Dittmann	1033
67	Molecular Pathways and Animal Models of Arrhythmias Tyler L. Stevens, Sara Coles, Amy C. Sturm, Catherine A. Hoover, Maegen A. Borzok, Peter J. Mohler, and Mona El Refaey	1057
Pers	spective	1091
Inde	ex	1095

Contributors

Gregor U. Andelfinger Cardiovascular Genetics, Department of Pediatrics, CHU Sainte Justine, Université de Montréal, Montréal, QC, Canada

Robert H. Anderson Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK

Cardiovascular Research Center, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK

Amelia E. Aranega Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain

Simon D. Bamforth Newcastle University Biosciences Institute, Newcastle upon Tyne, UK

Newcastle University, Newcastle upon Tyne, UK

Woodrow D. Benson Department of Pediatrics, Herma Heart Center, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI, USA

Maegen A. Borzok Department of Natural Sciences, Mansfield University of Pennsylvania, Mansfield, PA, USA

Margaret Buckingham Department of Developmental and Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, Paris, France

Vincent M. Christoffels Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Sara Coles Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA

Karl R. Degenhardt Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

Marco C. DeRuiter Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands

Sven Dittmann Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany

Gergana Dobreva ECAS (European Center for Angioscience), Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, Mannheim, Germany

German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/ Mannheim, Germany

Ana Dopazo Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain

Cornelia Dorn Cardiovascular Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany

David J. Driscoll Division of Pediatric Cardiology, Department of Pediatrics, Mayo Clinic College of Medicine, Rochester, MN, USA

Lauren Duan Stanford University, Cardiovascular Institute, Stanford, CA, USA

Jonathan A. Epstein Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, Epigenetics Institute and the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

Anthony B. Firulli Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA

Diego Franco Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain

George C. Gabriel Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Francisco X. Galdos Stanford University, Cardiovascular Institute, Stanford, CA, USA

Almudena Ortiz Garrido Hospital Materno Infantil-Hospital Carlos de Haya, Málaga, Spain

Eleanor Gill Newcastle University Biosciences Institute, Newcastle upon Tyne, UK

Newcastle University, Newcastle upon Tyne, UK

William R. Goodyer Department of Pediatrics, Stanford University, Stanford, CA, USA

Martina Gregorovicova Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic

Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic

Marcel Grunert Cardiovascular Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany

DiNAQOR AG, Schlieren, Switzerland

Juan Antonio Guadix Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain

Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain

Instituto de Biomedicina de Málaga (IBIMA)-Hospital Carlos de Haya, Málaga, Spain

Nikolaus A. Haas Department of Pediatric Cardiology and Intensive Care, Ludwig Maximilians University, Munich, Germany

Joerg Heineke German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany

ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, Mannheim, Germany

Jill P. J. M. Hikspoors Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands

Marc-Phillip Hitz Institute of Medical Genetics, University Medicine Oldenburg, Oldenburg, Germany

Department of Paediatric Cardiology, University Hospital Kiel, Kiel, Germany

Siew Yen Ho Cardiac Morphology, Royal Brompton & Harefield Hospitals, London, UK

Catherine A. Hoover Department of Natural Sciences, Mansfield University of Pennsylvania, Mansfield, PA, USA

Arjan C. Houweling Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands

Lucile Houyel Pediatric and Congenital Cardiology Unit, Necker-Enfants Malades Hospital – M3C, University of Paris, Paris, France

Department of Congenital and Pediatric Cardiology, Necker-Enfants Malades Hospital-M3C, APHP, Paris, France

Université Paris Cité, Paris, France

Rajan Jain Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, Epigenetics Institute and the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

Patrick Y. Jay Alnylam Pharmaceuticals, Cambridge, MA, USA

Bjarke Jensen Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, The Netherlands

Monique R. M. Jongbloed Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands

Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands

Lillian Kang Department of Surgery, Duke University, Durham, NC, USA

Robert G. Kelly Aix Marseille Université, Institut de Biologie du Dévelopment de Marseille, Marseille, France

S. Eleonore Köhler Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands

Nutmethee Kruepunga Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands Department of Anatomy, Mahidol University, Bangkok, Thailand

Wouter H. Lamers Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands

Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands

Enrique Lara-Pezzi Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain

Lars A. Larsen Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark

S. Samaneh Lashkarinia Department of Bioengineering, Imperial College, London, UK

Carissa Lee Stanford University, Cardiovascular Institute, Stanford, CA, USA

Ronald H. Lekanne Deprez Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands

Cecilia W. Lo Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Siobhan Loughna School of Life Sciences, University of Nottingham, Nottingham, UK

Lieve E. van der Maarel Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Rachel A. Magnan Department of Pediatrics, Goryeb Children's Hospital, Morristown, NJ, USA

Silvia Martin-Puig Department of Vascular Pathophysiology, National Center for Cardiovascular Research, CNIC, Madrid, Spain

Department of Metabolic, Immune and Cardiovascular Disease, Institute for Biomedical Research "Alberto Sols", National Spanish Research Council, CSIC, Madrid, Spain

Cheryl L. Maslen Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA

Benjamin Meder Institute for Cardiomyopathies Heidelberg, Universitätsklinikum Heidelberg, Innere Medizin III - Kardiologie, Angiologie und Pneumologie, Heidelberg, Germany

Ivan Menendez-Montes Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA

Peter J. Mohler The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA

Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA

Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA

Greet M. C. Mommen Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands

Antoon F. M. Moorman Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, The Netherlands

Ingo Morano Max-Delbrück Center for Molecular Medicine and University Medicine Charité Berlin, Berlin, Germany

George Nemer Faculty of Medicine, American University of Beirut, Beirut, Lebanon

College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon

Division of Genomics and Translational Biomedicine, Hamad Bin Khalifa University, Doha, Qatar

Buyan-Ochir Orgil Division of Cardiology, Department of Pediatrics, The Heart Institute, University of Tennessee Health Science Center, Memphis, TN, USA

José M. Pérez-Pomares Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain

Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain

Instituto de Biomedicina de Málaga (IBIMA)-Hospital Carlos de Haya, Málaga, Spain

Andreas Perrot Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany

Cardiovascular Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany

Constanze Pfitzer Department of Congenital Heart Disease/Paediatric Cardiology, German Heart Center Berlin, Berlin, Germany

Beatriz Picazo Hospital Materno Infantil-Hospital Carlos de Haya, Málaga, Spain

Robert E. Poelmann Department of Integrative Zoology, Institute of Biology, University of Leiden, Leiden, The Netherlands

George A. Porter, Jr Departments of Pediatrics (Cardiology), Pharmacology and Physiology, and Medicine (Aab Cardiovascular Research Institute), University of Rochester Medical Center, Rochester, NY, USA

Alex V. Postma Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, The Netherlands Department of Human Genetics, Amsterdam University Medical Centres, Amsterdam, The Netherlands

Matina Prapa Department of Clinical Genetics, St George's University Hospitals NHS Foundation Trust, London, UK

Enkhsaikhan Purevjav Division of Cardiology, Department of Pediatrics, The Heart Institute, University of Tennessee Health Science Center, Memphis, TN, USA

Alireza Raissadati Stanford University, Cardiovascular Institute, Stanford, CA, USA

Mona El Refaey The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA

Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA

Silke Rickert-Sperling Cardiovascular Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany

Adrián Ruiz-Villalba Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain

Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain

Instituto de Biomedicina de Málaga (IBIMA)-Hospital Carlos de Haya, Málaga, Spain

Liane Sadder Faculty of Medicine, American University of Beirut, Beirut, Lebanon

Tahmina Samad Stanford University, Cardiovascular Institute, Stanford, CA, USA

Fátima Sánchez-Cabo Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain

Katharina R. L. Schmitt Department of Congenital Heart Disease/Paediatric Cardiology, German Heart Center Berlin, Berlin, Germany

Erik Schulze-Bahr Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany

Farbod Sedaghat-Hamedani Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, Heidelberg, Germany

David Sedmera Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic

Kamel Shibbani Division of Cardiology, Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA

Abdul-Karim Sleiman Faculty of Medicine, American University of Beirut, Beirut, Lebanon

Tyler L. Stevens The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA

Amy C. Sturm Genomic Medicine Institute, Geisinger, Danville, PA, USA

Bijoy D. Thattaliyath Department of Pediatrics, Stead Family Children's Hospital, University of Iowa, Iowa, IA, USA

Viktor Tomek Pediatric Cardiology, Motol University Hospital, Prague, Czech Republic

Jésus Vázquez Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain

Nicholas Wei Stanford University, Cardiovascular Institute, Stanford, CA, USA

Andy Wessels Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA

Arthur A. M. Wilde Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands

Anna Wilsdon School of Life Sciences, University of Nottingham, Nottingham, UK

Clinical Geneticist at Nottingham Clinical Genetics Department, Nottingham University Hospitals, City Hospital, Nottingham, UK

Joseph C. Wu Stanford Cardiovascular Institute, Stanford, CA, USA Division of Cardiovascular Medicine, Department of Medicine, Stanford, CA, USA Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA

Sean M. Wu Stanford University, Cardiovascular Institute, Stanford, CA, USA

Yijen L. Wu Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Xinxiu Xu Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Hisato Yagi Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Hiroyuki Yamagishi Division of Pediatric Cardiology, Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan

Choon Hwai Yap Department of Bioengineering, Imperial College, London, UK

Hao Zhang Stanford Cardiovascular Institute, Stanford, CA, USA

List of Abbreviations

22q11DS	22q11.2 deletion syndrome
A	Atrium
AAA	Aortic arch anomalies
ACTC1	Cardiac alpha-actin
ACVR	Activin A receptor
AD	Arterial duct
ADAM19	ADAM metallopeptidase domain 19
ADAR	Adenosine deaminase that acts on RNA
ADP	Adenosine diphosphate
AGS	Alagille syndrome
AICD	Automatic internal cardiac defibrillator
ALCAPA	Anomalous origin of the left coronary artery from the
	pulmonary artery
AKT	V-akt murine thymoma viral oncogene homolog
AngII	Angiotensin II
ANP	Atrial natriuretic peptide
ANK2	Ankyrin B
ANKRD1/CARP	Ankyrin repeat domain 1, cardiac muscle
Ao	Aorta
AP	Action potential
ARVC	Arrhythmogenic right ventricular cardiomyopathy
ASD	Atrial septal defect
ATFB	Atrial fibrillation
ATP	Adenosine triphosphate
AV	Atrioventricular
AVB	Atrioventricular bundle
AVC	Atrioventricular canal
AVN	Atrioventricular node
AVSD	Atrioventricular septal defect
BA	Bulbus arteriosus
BAF	Brg1-associated factor
BAV	Bicuspid aortic valve
BBS	Bardet-Biedl syndrome

BDM	2,3-butanedione monoxime
BET	Bromodomain and extra terminal
BMP	Bone morphogenetic protein
BNP	Brain natriuretic peptide
bpm	Beat per minutes
BRAF	v-Raf murine sarcoma viral oncogene homolog B
BRG1	SWI/SNF-related, matrix-associated, actin-dependent regulator
Ditor	of chromatin, subfamily a, member 4 (also known as brahma-
	related gene 1)
BRGDA	Brugada syndrome
BWIS	Baltimore Washington Infant Study
CAA	Coronary artery anomalies
CACN	Calcium channel, voltage-dependent, L type
CAD	Coronary atherosclerotic disease
CaMK	Calmodulin-dependent kinase
cAMP	Cyclic adenosine monophosphate
CALM	Calmodulin
CASQ	Calsequestrin
CAT	Common arterial trunk
CAVV	Common atrioventricular valve
CBP	CREB-binding protein
CC	Cardiac crescent
CCDC	Coiled-coil domain containing
CCS	Cardiac conduction system
CCV	Common cardiac vein
CCVA	Congenital coronary vascular anomalies
CF	Cephalic folds
CFC1	Cripto, FRL-1, Cryptic family 1 (CRYPTIC)
CFD	Computational fluid dynamics
CGH	Comparative genomic hybridization
CHARGE	Coloboma of the eye, Heart defects, Atresia of the nasal
	choanae, Retarded growth and/or development, Genital and/or
	urinal abnormalities, and Ear anomalies
CHD	Congenital heart disease/defect
CHD7	Chromodomain helicase DNA-binding protein 7
CHF	Congestive heart failure
ChIP	Chromatin immunoprecipitation
CITED2	Cbp/P300-interacting transactivator, with Glu/Asp-rich
	carboxy-terminal domain 2
CNCCs	Cardiac neural crest cells
CNV	Copy number variation
CoA	Celiac artery
CoA	Coarctation of the aorta
CPVT	Catecholaminergic polymorphic ventricular tachycardia
CRE	Cre recombinase

CRELD1	Cysteine-rich protein with EGF-like domains 1
CRISPR	Clustered regularly interspaced short palindromic repeats
CTD	Conotruncal defects
CTGF	Connective tissue growth factor
CTVM	Canine tricuspid valve malformation
CX	Connexin
DA	Dorsal artery
DCM	Dilated cardiomyopathy
DGC	Dystrophin-glycoprotein complex
DMP	Dorsal mesenchymal protrusion
DNA	Deoxyribonucleic acid
DNAH	Dynein, axonemal, heavy chain
DNMT	DNA methyltransferases
DORV	Double outlet right ventricle
dpf	Days post fertilization
DPF3	D4 Zinc and double PHD fingers family 3 (also known as
DITS	Baf45c)
DSC2	Desmocollin 2
DSG2	Desmoglein 2
DSP	Desmoplakin
Dvl2	Disheveled segment polarity protein 2
E	Embryonic day
ECs	Endocardial cushions
ECG	Electrocardiogram
ECM	Extracellular matrix
EGFR	Epidermal growth factor receptor
ELC	Essential myosin light chain
ELN	Elastin
EMT	Epithelial-to-mesenchymal transition
ENU	N-ethyl-N-nitrosourea
EPDC	Epicardially derived cells
EPO	Erythropoietin
ErbB	Erythroblastic leukemia viral oncogene homolog
ERK	Extracellular signal-regulated kinase
ERS	Early repolarization syndrome
ESC	Embryonic stem cells
ET1	Endothelin 1
EVC	Ellis-van-Creveld
FA	Folic acid
FACS	Fluorescence-activated cell sorting
FDA	Food and Drug Administration
FGF	Fibroblast growth factor
FGFR	Fibroblast growth factor receptor
FHF	First heart field
FHL1	Four and a half LIM domains protein 1
	r · · ·

	•	•	٠	
vvv	L	I	н	
~~ v	I	I	L	

FISH	Fluorescence in situ hybridization
FOX	Forkhead box
FOG2	Friend of GATA 2
GATA	GATA binding protein
GATA4	GATA-binding protein 4
GBX	Gastrulation brain homeobox
GDF1	Growth differentiation factor
GFP	Green fluorescent protein
GJA5	Gap junction protein, alpha 5, 40 kDa (connexin 40)
GPCR	G-protein coupled receptors
GRP	Gastrocoel roof plate
GWAS	Genome-wide association study
H3K4me3	Trimethylation of histone H3 at lysine 4
H3K4me2	Dimethylation of histone H3 at lysine 4
H3K4me1	Monomethylation of histone H3 at lysine 4
H3K24ac	Acetylation of histone H3 at lysine 24
H3K27ac	Acetylation of histone H3 at lysine 27
H3K27me3	Trimethylation of histone H3 at lysine 27
HAND	Heart and neural crest derivatives expressed
HAT	Histone acetyltransferase
HDAC	Histone deacetylase
HCM	Hypertrophic cardiomyopathy
HCN4	Hyperpolarization activated cyclic nucleotide-gated potassium
	channel 4
HE	Hematoxylin and eosin
HES1	Hes family BHLH transcription factor 1
HEY	Hes-related family bHLH transcription factor with YRPW motif
HH	Hamburger—Hamilton stage
HIF	Hypoxia-inducible factor
HLHS	Hypoplastic left heart syndrome
HOX	Homeobox genes
hpf	Hours post fertilization
HT	Heart tube
HV	Hepatic vein
IAA	Interrupted aortic arch
IC	Inner curvature
IGF1	Insulin-like growth factor 1
INO80	Inositol requiring 80
IP3	Inositol-1,4,5-triphosphate
IPCCC	International Pediatric and Congenital Cardiac Code
iPSCs	Induced pluripotent stem cells
IRX	Iroquois homeobox
ISL1	ISL LIM homeobox 1 (Islet 1)
IUGR	Intrauterine growth restrictions
IVC	Inferior caval vein

IVF	Idiopathic ventricular fibrillation
IVS	Interventricular septum
JAG1	Jagged 1
JNK	c-Jun N-terminal kinase
JUP	Junctional plakoglobin
KLF	Krüppel-like factor
KLF2	Krüppel-like factor 2
KCNE	Potassium channel, voltage-gated subfamily E regulatory beta
Reive	subunit
KCNJ	Potassium channel, inwardly rectifying subfamily J
KCNQ	Potassium channel, voltage-gated KQT-like subfamily Q
LA	Left atrium
LAL	Left atrial ligation
LAo	Left aortic arch
LBB	Left bundle branch
LCC	Left common carotid
LEFTY	Left-right determination factor
LEOPARD	Lentigenes, ECG conduction abnormalities, Ocular
	hypertelorism, Pulmonic stenosis, Abnormal genitalia,
	Retardation of growth and sensorineural Deafness
LIF	Leukemia inhibitory factor
LMNA	Lamin A/C
lncRNA	Long non-coding RNA
LPA	Left pulmonary artery
LPM	Lateral plate mesoderm
LLPM	Left lateral plate mesoderm
LPu	Left pulmonary artery
LQTS	Long QT syndrome
L-R	Left-to-right shunt
LRO	Left-right organizer
LSA	Left subclavian artery
LTCC	L-type calcium channel
LV	Left ventricle
LVNC	Left ventricular noncompaction
MAPCA	Major aortopulmonary collateral arteries
MBD	Methyl-CpG binding domain-based
MDM2	Murine double minute 2
MED13L	Mediator complex subunit 13-like
MEF2C	Myocyte enhancer factor 2C
MEK2	kinase 2
MERS	Middle east respiratory syndrome
MESP1	Mesoderm posterior 1 homolog
MHC	Myosin heavy chain
MI	Myocardial infarction
MMP	Matrix metalloproteinases