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Chapter 1 

DATA IRREGULARITIES AND STRUCTURAL 
COMPLEXITIES IN DEA 

Wade D. Cook1 and Joe Zhu2 
1Schulich School of Business, York University, Toronto, Ontario, Canada, M3J 1P3, 
wcook@shulich.yorku.ca 
 
 
2Department of Management, Worcester Polytechnic Institute, Worcester, MA 01609,
jzhu@wpi.edu 
 
 
 

 
Abstract: Over the recent years, we have seen a notable increase in interest in data 

envelopment analysis (DEA) techniques and applications. Basic and advanced 
DEA models and techniques have been well documented in the DEA 
literature. This edited volume addresses how to deal with DEA 
implementation difficulties involving data irregularities and DMU structural 
complexities. Chapters in this volumes address issues including the treatment 
of ordinal data, interval data, negative data and undesirable data, data mining 
and dimensionality reduction, network and supply chain structures, modeling 
non-discretionary variables and flexible measures, context-dependent 
performance, and graphical representation of DEA. 

Key words: Data Envelopment Analysis (DEA), Ordinal Data, Interval Data, Data Mining, 
Efficiency, Flexible, Supply Chain, Network, Undesirable 

1. INTRODUCTION 

Data envelopment analysis (DEA) was introduced by Charnes, Cooper 
and Rhodes (CCR) in 1978. DEA measures the relative efficiency of peer 
decision making units (DMUs) that have multiple inputs and outputs, and 
has been applied in a wide range of applications over the past 25 years, in 
settings that include hospitals, banks, maintenance crews, etc.; see Cooper, 
Seiford and Zhu (2004). 



 
As DEA attracts ever-growing attention from practitioners, its application 

and use become a very important issues. It is, therefore, important to deal 
with computation/data issues in DEA. These include, for example, how to 
deal with inaccurate data, qualitative data, outliers, undesirable factors, and 
many others. It is as well critical, from a managerial perspective, to be able 
to visualize DEA results, when the data are more than 3-dimensional. 

The current volume presents a collection of articles that address data 
issues in the application of DEA, and special problem structures with respect 
to the nature of DMUs. 

2. DEA MODELS 

In this section, we present some basic DEA models that will be used in 
later chapters. For a more detailed discussion on these and other DEA 
models, the reader is referred to Cooper, Seiford and Zhu (2004), and other 
DEA textbooks. 

Suppose we have a set of n peer DMUs, { jDMU : j = 1, 2, …, n}, which 
produce multiple outputs yrj, (r = 1, 2, ..., s), by utilizing multiple inputs xij, (i 
= 1, 2, ..., m). When a oDMU  is under evaluation by the CCR ratio model, 
we have (Charnes, Cooper and Rhodes, 1978) 
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In this model, inputs xij and outputs yrj are observed non-negative data1, 

and rμ  and iv  are the unknown weights, or decision variables. 
A fully rigorous development would replace 0, ≥ir vu  with 

 
1 For the treatment of negative input/output data, please see Chapter 4. 
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where ε  is a non-Archimedean element smaller than any positive real 

number. 

Model (1) can be converted into a linear programming problem 
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In this model, the weights are usually referred to as multipliers. Therefore, 

model (2) is also called a multiplier DEA model. The dual program to (2) 
can be expressed as 
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Model (3) is referred to as the envelopment model. To illustrate the 

concept of envelopment, we consider a simple numerical example used in 
Zhu (2003) as shown in Table 1-1 where we have five DMUs representing 
five supply chain operations. Within a week, each DMU generates the same 
profit of $2,000 with a different combination of supply chain cost and 
response time. 
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Table 1-1. Supply Chain Operations Within a Week 

 Inputs Output 
DMU Cost ($100) Response time (days) Profit ($1,000) 

1 1 5 2 
2 2 2 2 
3 4 1 2 
4 6 1 2 
5 4 4 2 
Source: Zhu (2003). 
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Figure 1-1. Five Supply Chain Operations 

Figure 1-1 presents the five DMUs and the piecewise linear DEA 
frontier. DMUs 1, 2, 3, and 4 are on the frontier--or the envelopment frontier. 
If we apply model (3) to DMU5, we have, 

Min θ 
Subject to 
1 λ1 + 2λ2 +4λ3 +6λ4 +4λ5 < 4θ 
5 λ1 + 2λ2 +1λ3 + 1λ4 +4λ5 < 4θ 
2 λ1 + 2λ2 +2λ3 +2λ4 +2λ5 > 2 
λ1, λ2, λ3,λ4, λ5 > 0 

 
This model has the unique optimal solution of *θ  = 0.5, *

2λ  = 1, and *
jλ  = 0 

(j ≠ 2), indicating that DMU5 needs to reduce its cost and response time to 
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the amounts used by DMU2 if it is to be efficient This example indicates that 
technical efficiency for DMU5 is achieved at DMU2. 

Now, if we apply model (3) to DMU4, we obtain *θ  = 1, *
4λ  = 1, and *

jλ  
= 0 (j ≠ 4), indicating that DMU4 is on the frontier. However, Figure 1-1 
indicates that DMU4 can still reduce its response time by 2 days to achieve 
coincidence with DMU3. This input reduction is usually called input slack. 
 The nonzero slack can be found by using the following model 
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where *θ  is determined by model (3) and is fixed in model (4). 
 

For DMU4 with *θ  = 1, model (4) yields the following model, 
 

Max −
1s + −

2s + +
1s  

Subject to 
1 λ1 + 2λ2 +4λ3 +6λ4 +4λ5 + −

1s = 6 *θ  = 6 
5 λ1 + 2λ2 +1λ3 + 1λ4 +4λ5 + −

2s  = 1 *θ  = 1 
2 λ1 + 2λ2 +2λ3 +2λ4 +2λ5 - +

1s = 2 
λ1, λ2, λ3,λ4, λ5, −

1s , −
2s , +

1s  > 0 
 

The optimal slacks are *
1
−s  = 2, *

2
−s = *

1
+s  = 0, with *

3λ  = 1 and all other *
jλ  = 

0. 
We now have 
 

Definition 1 (DEA Efficiency): The performance of oDMU  is fully (100%) 
efficient if and only if both (i) *θ  = 1 and (ii) all slacks *−

is = *+
rs = 0. 

 
Definition 2 (Weakly DEA Efficient): The performance of oDMU  is 
weakly efficient if and only if both (i) *θ  = 1 and (ii) *−

is  ≠  0 and/or *+
rs  ≠ 0 

for some i and r in some alternate optima. 
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Model (4) is usually called the second stage calculation of an 
envelopment model. In fact, the envelopment model can be written as: 
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where the −

is  and +
rs  are slack variables used to convert the inequalities in 

(3) to equivalent equations. This is equivalent to solving (5) in two stages by 
first minimizing θ , then fixing θ  = *θ  as in (4), where the slacks are to be 
maximized without altering the previously determined value of θ  = *θ . 
Formally, this is equivalent to granting “preemptive priority” to the 
determination of *θ  in (3). In this manner, the fact that the non-
Archimedean element ε  is defined to be smaller than any positive real 
number is accommodated without having to specify the value of ε  (Cooper, 
Seiford and Zhu, 2004). 

The above models are called input-oriented DEA models, as possible 
input reductions are of interest while the outputs are kept at their current 
levels. Similarly, output-oriented models can be developed. These models 
focus on possible output increases while the inputs are kept at their current 
levels. The interested reader should refer to Cooper, Seiford and Zhu (2004). 

The models in Table 1-2 are also known as CRS (constant returns to 
scale) models.  If the constraint ∑ =

n
j j1λ  = 1 is adjoined, they are referred to 

as variable returns to scale (VRS) models (Banker, Charnes, Cooper, 1984). 
This is due to the fact that ∑ =

n
j j1λ  = 1 changes the shape of DEA frontier, 

and is related to the concept of returns to scale. 

Chapter 1



7
 

 Table 1-2. CCR DEA Model 
Input-oriented 

Envelopment model  Multiplier model 
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3. DATA AND STRUCTURE ISSUES 

The current volume deals with data irregularities and structural 
complexities in applications of DEA. 

 
Chapter 2 (by Cook and Zhu) develops a general framework for 

modeling and treating qualitative data in DEA and provides a unified 
structure for embedding rank order data into the DEA framework. It is 
shown that the existing approaches for dealing with qualitative data are 
equivalent. 
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Chapter 3 (by Chen and Zhu) discusses how to use the standard DEA 
models to deal with imprecise data in DEA (IDEA), concentrating on 
interval and ordinal data. There are two approaches in dealing with such 
imprecise inputs and outputs. One uses scale transformations and variable 
alternations to convert the non-linear IDEA model into a linear program, 
while the other identifies a set of exact data from the imprecise inputs and 
outputs and then uses the standard linear DEA model.  The chapter focuses 
on the latter IDEA approach that uses the standard DEA model. It is shown 
that different results are obtained depending on whether the imprecise data 
are introduced directly into the multiplier or envelopment DEA model; the 
presence of imprecise data invalidates the linear duality between the 
multiplier and envelopment DEA models. The approaches are illustrated 
with both numerical and real world data sets. 

 
Chapter 4 (by Pastor and Ruiz) presents an overview of the different 

existing approaches dealing with the treatment of negative data in DEA. 
Both the classical approaches and the most recent contributions to this 
problem are presented. The focus is mainly on issues such as translation 
invariance and units invariance of the variables, classification invariance of 
the units, as well as efficiency measurement and target setting. 

 
Chapter 5 (by Ruggiero) discusses existing approaches to measuring 

performance when non-discretionary inputs affect the transformation of 
discretionary inputs into outputs.  The suitability of the approaches depends 
on underlying assumptions about the relationship between non-discretionary 
inputs and outputs.   One model treats non-discretionary inputs like 
discretionary inputs but uses a non-radial approach to project inefficient 
decision making units (DMUs) to the frontier holding non-discretionary 
inputs fixed. Other approaches use multiple stage models with regression to 
control for the effect that non-discretionary inputs have on production. 

 
Chapter 6 (by Hua and Bian) discusses the existing methods of treating 

undesirable factors in DEA. Under strongly disposable technology and 
weakly disposable technology, there are several approaches for treating 
undesirable outputs in the DEA literature. One such approach is the 
hyperbolic output efficiency measure that increases desirable outputs and 
decreases undesirable outputs simultaneously. Based on the classification 
invariance property, a linear monotone decreasing transformation is used to 
treat the undesirable outputs. A directional distance function is used to 
estimate the efficiency scores based on weak disposability of undesirable 
outputs. This chapter also presents an extended DEA model in which 
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undesirable outputs and non-discretionary inputs are considered 
simultaneously. 

 
Chapter 7 (by Piot-Lepetit and Le Moing) highlights the usefulness of the 

directional distance function in measuring the impact of the EU Nitrate 
directive, which prevents the free disposal of organic manure and nitrogen 
surplus. Efficiency indices for the production and environmental 
performance of farms at an individual level are proposed, together with an 
evaluation of the impact caused by the said EU regulation. This chapter 
extends the previous approach to good and bad outputs within the framework 
of the directional distance function, by introducing a by-product (organic 
manure), which becomes a pollutant once a certain level of disposability is 
exceeded.  

 
Chapter 8 (by Adler and Golany) presents the combined use of principal 

component analysis (PCA) and DEA with the stated aim of reducing the 
curse of dimensionality that occurs in DEA when there is an excessive 
number of inputs and outputs in relation to the number of decision-making 
units. Various PCA-DEA formulations are developed in the chapter utilizing 
the results of principal component analyses to develop objective assurance 
region type constraints on the DEA weights. The first set of models applies 
PCA to grouped data representing similar themes, such as quality or 
environmental measures. The second set of models, if needed, applies PCA 
to all inputs and separately to all outputs, thus further strengthening the 
discrimination power of DEA. A case study of municipal solid waste 
managements in the Oulu district of Finland, which has been frequently 
analyzed in the literature, will illustrate the different models and the power 
of the PCA-DEA formulation. 

 
Chapter 9 (by Dulá) deals with the extension of data envelopment 

analysis to the general problem of mining oriented outliers. DEA is firmly 
anchored in efficiency and productivity paradigms. This research claims new 
application domains for DEA by releasing it from these moorings. The same 
reasons why efficient entities are of interest in DEA apply to the geometric 
equivalent in general point sets since they are based on the data’s magnitude 
limits relative to the other data points. A framework for non-parametric 
frontier analysis is derived from a new set of first principles. 

 
Chapter 10 (by Adler, Raveh and Yazhemsky) presents the results of 

DEA in a two-dimensional plot. Presenting DEA graphically, due to its 
multiple variable nature, has proven difficult and some have argued that this 
has left decision-makers at a loss in interpreting the results. Co-Plot, a 
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variant of multi-dimensional scaling, locates each decision-making unit in a 
two-dimensional space in which the location of each observation is 
determined by all variables simultaneously. The graphical display technique 
exhibits observations as points and variables (ratios) as arrows, relative to 
the same center-of-gravity. Observations are mapped such that similar 
decision-making units are closely located on the plot, signifying that they 
belong to a group possessing comparable characteristics and behavior.  

 
Chapter 11 (by Cook, Liang, Yang and Zhu) presents several DEA-based 

approaches for characterizing and measuring supply chain efficiency. The 
models are illustrated in a seller-buyer supply chain context, when the 
relationship between the seller and buyer is treated leader-follower and 
cooperative, respectively. In the leader-follower structure, the leader is first 
evaluated, and then the follower is evaluated using information related to the 
leader’s efficiency. In the cooperative structure, the joint efficiency which is 
modeled as the average of the seller’s and buyer’s efficiency scores is 
maximized, and both supply chain members are evaluated simultaneously. 

 
Chapter 12 (by Färe, Grosskopf and Whittaker) describes network DEA 

models, where a network consists of sub-technologies.  A DEA model 
typically describes a technology to a level of abstraction necessary for the 
analyst’s purpose, but leaves out a description of the sub-technologies that 
make up the internal functions of the technology. These sub-technologies are 
usually treated as a “black box”, i.e., there is no information about what 
happens inside them.  The specification of the sub-technologies enables the 
explicit examination of input allocation and intermediate products that 
together form the production process.  The combination of sub-technologies 
into networks provides a method of analyzing problems that the traditional 
DEA models cannot address.  

 
Chapter 13 (Morita and Zhu) presents a context-dependent DEA 

methodology, which refers to a DEA approach where a set of DMUs is 
evaluated against a particular evaluation context. Each evaluation context 
represents an efficient frontier composed of DMUs in a specific performance 
level. The context-dependent DEA measures the attractiveness and the 
progress when DMUs exhibiting poorer and better performance are chosen 
as the evaluation context, respectively. This chapter also presents a slack-
based context-dependent DEA approach. In DEA, nonzero input and output 
slacks are very likely to be present, after the radial efficiency score 
improvement. Slack-based context-dependent DEA allows us to fully 
evaluate the inefficiency in a DMU’s performance. 
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Chapter 14 (by Cook and Zhu) presents DEA models to accommodate 
flexible measures. In standard DEA, it is assumed that the input versus 
output status of each of the chosen analysis measures is known. In some 
situations, however, certain measures can play either input or output roles. 
Consider using the number of nurse trainees on staff in a study of hospital 
efficiency. Such a factor clearly constitutes an output measure for a hospital, 
but at the same time is an important component of the hospital’s total staff 
complement, hence is an input. Both an individual DMU model and an 
aggregate model are suggested as methodologies for deriving the most 
appropriate designations for flexible measures. 

 
Chapter 15 (by Lozano and Villa) presents DEA models under situations 

where one or more inputs and/or outputs are integer quantities. Commonly, 
in these situations, the non-integer targets are rounded off. However, 
rounding off may easily lead to an infeasible target (i.e. out of the Production 
Possibility Set) or to a dominated operation point. In this chapter, a general 
framework to handle integer inputs and outputs is presented and a number of 
integer DEA models are reviewed. 

 
Chapter 16 (by Sarkis) looks at some data requirements and 

characteristics that may ease the execution of the DEA models and the 
interpretation of DEA results. 
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Abstract: In data envelopment analysis (DEA), performance evaluation is generally 

assumed to be based upon a set of quantitative data. In many real world 
settings, however, it is essential to take into account the presence of qualitative 
factors when evaluating the performance of decision making units (DMUs). 
Very often rankings are provided from best to worst relative to particular 
attributes. Such rank positions might better be presented in an ordinal, rather 
than numerical sense. The chapter develops a general framework for modeling 
and treating qualitative data in DEA, and provides a unified structure for 
embedding rank order data into the DEA framework. We show that the 
approach developed earlier in Cook et al (1993, 1996) is equivalent to the 
IDEA methodology given in Chapter 3. It is shown that, like IDEA, the 
approach given her for dealing with qualitative data lends itself to treatment by 
conventional DEA methodology. 

. 

Key words: Data envelopment analysis (DEA), efficiency, qualitative, rank order data  

1. INTRODUCTION 

In the data envelopment analysis (DEA) model of Charnes, Cooper and 
Rhodes (1978), each member of a set of n decision making units (DMUs) is 
to be evaluated relative to its peers. This evaluation is generally assumed to 
be based on a set of quantitative output and input factors. In many real world 
settings, however, it is essential to take into account the presence of 



 
qualitative factors when rendering a decision on the performance of a DMU. 
Very often it is the case that for a factor such as management competence, 
one can, at most, provide a ranking of the DMUs from best to worst relative 
to this attribute. The capability of providing a more precise, quantitative 
measure reflecting such a factor is often not feasible. In some situations such 
factors can be legitimately “quantified,” but very often such quantification 
may be superficially forced as a modeling convenience. 

In situations such as that described, the “data” for certain influence 
factors (inputs and outputs) might better be represented as rank positions in 
an ordinal, rather than numerical sense. Refer again to the management 
competence example. In certain circumstances, the information available 
may only permit one to put each DMU into one of L categories or groups 
(e.g. ‘high’, ‘medium’ and ‘low’ competence). In other cases, one may be 
able to provide a complete rank ordering of the DMUs on such a factor. 

Cook, Kress and Seiford (1993), (1996) first presented a modified DEA 
structure, incorporating rank order data. The 1996 article applied this 
structure to the problem of prioritizing a set of research and development 
projects, where there were both inputs and outputs defined on a Likert scale. 
An alternative to the Cook et al approach was provided in Cooper, Park and 
Yu (1999) in the form of the imprecise DEA (IDEA) model. While various 
forms of imprecise data were examined, one major component of that 
research focused on ordinal (rank order) data. See Chapter 3 for a treatment 
of the specifics of IDEA. These two approaches to the treatment of ordinal 
data in DEA are further discussed and compared in Cook and Zhu(2006). 

In the current chapter, we present a unified structure for embedding rank 
order or Likert scale data into the DEA framework. This development is very 
much related to the presentation in Cook and Zhu (2006).To provide a 
practical setting for the methodology to be developed herein, Section 2 
briefly discusses the R&D project selection problem as presented in more 
detail in Cook et al (1996). Section 3 presents a continuous projection 
model, based on the conventional radial model of Charnes et al (1978). In 
Section 4 this approach is compared to the IDEA methodology of Cooper et 
al (1999). We demonstrate that IDEA for Likert Scale data is in fact 
equivalent to the earlier approach of Cook, Kress and Seiford (1996). 
Section 5 develops a discrete projection methodology that guarantees 
projection to points on the Likert Scale. Conclusions and further directions 
are addressed in Section 6. 

14 Chapter 2



 
2. ORDINAL DATA IN R&D PROJECT SELECTION 

Consider the problem of selecting R&D projects in a major public utility 
corporation with a large research and development branch. Research 
activities are housed within several different divisions, for example, thermal, 
nuclear, electrical, and so on. In a budget constrained environment in which 
such an organization finds itself, it becomes necessary to make choices 
among a set of potential research initiatives or projects that are in 
competition for the limited resources. To evaluate the impact of funding (or 
not funding) any given research initiative, two major considerations 
generally must be made. First, the initiative must be viewed in terms of more 
than one factor or criterion. Second, some or all of the criteria that enter the 
evaluation may be qualitative in nature. Even when pure quantitative factors 
are involved, such as long term saving to the organization, it may be difficult 
to obtain even a crude estimate of the value of that factor. The most that one 
can do in many such situations is to classify the project (according to this 
factor) on some scale (high/medium/low or say a 5-point scale). 

Let us assume that for each qualitative criterion each initiative is rated on 
a 5-point scale, where the particular point on the scale is chosen through a 
consensus on the part of executives within the organization. Table 2-1 
presents an illustration of how the data might appear for 10 projects, 3 
qualitative output criteria (benefits), and 3 qualitative input criteria (cost or 
resources). In the actual setting examined, a number of potential benefit and 
cost criteria were considered as discussed in Cook et al (1996). 

We use the convention that for both outputs and inputs, a rating of 1 is 
“best,” and 5 “worst.” For outputs, this means that a DMU ranked at position 
1 generates more output than is true of a DMU in position 2, and so on. For 
inputs, a DMU in position 1 consumes less input than one in position 2. 

Table 2-1. Ratings by criteria 
 Outputs Inputs 
Project No. 1 2 3 4 5 6 
1 2 4 1 5 2 1 
2 1 1 4 3 5 2 
3 1 1 1 1 2 1 
4 3 3 3 4 3 2 
5 4 3 5 5 1 4 
6 2 5 1 1 2 2 
7 1 4 1 5 4 3 
8 1 5 3 3 3 3 
9 5 2 4 4 2 5 
10 5 4 4 5 5 5 
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Regardless of the manner in which such a scale rating is arrived at, the 
existing DEA model is capable only of treating the information as if it has 
cardinal meaning (e.g. something which receives a score of 4 is evaluated as 
being twice as important as something that scores 2). There are a number of 
problems with this approach. First and foremost, the projects’ original data 
in the case of some criteria may take the form of an ordinal ranking of the 
projects. Specifically, the most that can be said about two projects i and j is 
that i is preferred to j. In other cases it may only be possible to classify 
projects as say ‘high’, ‘medium’ or ‘low’ in importance on certain criteria. 
When projects are rated on, say, a 5-point scale, it is generally understood 
that this scale merely provides a relative positioning of the projects. In a 
number of agencies investigated (for example, hydro electric and 
telecommunications companies), 5-point scales are common for evaluating 
alternatives in terms of qualitative data, and are often accompanied by 
interpretations such as 

 
1 = Extremely important 
2 = Very important 
3 = Important 
4 = Low in importance 
5 = Not important, 
 

that are easily understood by management. While it is true that market 
researchers often treat such scales in a numerical (i.e. cardinal) sense, it is 
not practical that in rating a project, the classification ‘extremely important’ 
should be interpreted literally as meaning that this project rates three times 
better than one which is only classified as ‘important.’ The key message here 
is that many, if not all criteria used to evaluate R&D projects are qualitative 
in nature, and should be treated as such. The model presented in the 
following sections extends the DEA idea to an ordinal setting, hence 
accommodating this very practical consideration. 

3. MODELING LIKERT SCALE DATA: 
CONTINUOUS PROJECTION 

The above problem typifies situations in which pure ordinal data or a mix 
of ordinal and numerical data, are involved in the performance measurement 
exercise. To cast this problem in a general format, consider the situation in 
which a set of N decision making units (DMUs), k=1,…N are to be 
evaluated in terms of R1 numerical outputs, R2 ordinal outputs, I1 numerical 
inputs, and I2 ordinal inputs. Let Y1

k  = (y 1
rk ), Y 2

k  = (y 2
rk ) denote the R1-

Chapter 2
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dimensional and R2-dimensional vectors of outputs, respectively. Similarly, 
let X 1

k  = (x 1
ik ) and X 2

k = (x 2
ik ) be the I1 and I2-dimensional vectors of inputs, 

respectively. 
In the situation where all factors are quantitative, the conventional radial 

projection model for measuring the efficiency of a DMU is expressed by the 
ratio of weighted outputs to weighted inputs. Adopting the general variable 
returns to scale (VRS) model of Banker, Charnes and Cooper (1984), the 
efficiency of DMU “0” follows from the solution of the optimization model: 

 
eo = max ( μ o + ∑

∈ 1Rr
μ 1

r  y 1
ro  + ∑

∈ 2Rr
μ 2

r  y 2
ro ) / ( ∑

∈ 1Ii

1
iυ  x 1

io + ∑
∈ 2Ii

υ 2
i x 2

io ) 

s.t.  
( μ o+ ∑

∈ 1Rr
μ 1

r y 1
rk + ∑

∈ 2Rr
μ 2

r y 2
rk )/( ∑

∈ 1Ii
υ 1

i x1
ik + ∑

∈ 2Ii

2
iυ x 2

ik ) < 1, all k (3.1) 

μ 1
r , μ 2

r , 1
iυ , 2

iυ  > ε , all r, i   
 
Problem (3.1) is convertible to the linear programming format: 
 
eo  =  max μ o  + ∑

∈ 1Rr
μ 1

r  y 1
ro  + ∑

∈ 2Rr
μ 2

r  y 2
ro  

s.t. ∑
∈ 1Ii

1
iυ  x1

io  +  ∑
∈ 2Ii

2
iυ  x 2

io  = 1                                            (3.2) 

μ o + ∑
∈ 1Rr

μ 1
r  y 1

rk  + ∑
∈ 2Rr

μ 2
r  y 2

rk  - ∑
∈ 1Ii

1
iυ  x 1

ik  - ∑
∈ 2Ii

2
iυ  x 2

ik  < 0, all k 

μ 1
r , μ 2

r , 1
iυ , 2

iυ  > ε , all r, i, 
 

whose dual is given by 
 

min θ  - ε ∑
∈ 21URRr

s +
r   -  ε ∑

∈ 21UIIi
s −

i  

s.t.      ∑
=

N

k
k

1
λ y 1

rk   -  s +
r  = y 1

ro ,  r ∈  R1 

           ∑
=

N

n
k

1
λ y 2

rk   -  s +
r  = y 2

ro ,  r ∈  R2 

           θ x 1
io -  ∑

=

N

k 1
kλ  x1

ik   -  s −
i  = 0, i ∈  I1             (3.2’) 

           θ x 2
io  - ∑

=

N

k 1
kλ x 2

ik - s −
i  = 0,  i ∈  I2 

                                  ∑
=

N

k 1
kλ  = 1 

           kλ , s +
r , s −

i  > 0, all k, r, i ,θ  unrestricted 

Cook & Zhu, Rank Order Data in DEA 



18
 

To place the problem in a general framework, assume that for each 
ordinal factor (r∈R2, i∈I2), a DMU k can be assigned to one of L rank 
positions, where L < N. As discussed earlier, L=5 is an example of an 
appropriate number of rank positions in many practical situations. We point 
out that in certain application settings, different ordinal factors may have 
different L-values associated with them. For exposition purposes, we assume 
a common L-value throughout. We demonstrate later that this represents no 
loss of generality. 

One can view the allocation of a DMU to a rank position l on an output r, 
for example, as having assigned that DMU an output value or worth y 2

r ( l ). 
The implementation of the DEA model (3.1) (and (3.2)) thus involves 
determining two things: 

 
(1) multiplier values μ 2

r , 2
iυ  for outputs r ∈  R2 and inputs i ∈  I2; 

(2) rank position values y 2
r ( l ), r∈R2,  and x 

2
i ( l ), i ∈I2, all l . 

 
In this section we show that the problem can be reduced to the standard VRS 
model by considering (1) and (2) simultaneously. 

To facilitate development herein, define the L-dimensional unit vectors 
rkγ  = ( rkγ ( l )), and ikδ  = ( ikδ  ( l )) where 

 

rkγ ( l )= 
⎩
⎨
⎧

otherwise,0
routputonposition th inrankediskDMU if1 l

 

ikδ ( l ) =    
⎩
⎨
⎧

otherwise,0
iinputonposition th inrankediskDMUif1 l

 

For example, if a 5-point scale is used, and if DMU #1 is ranked in l  = 
3rd place on ordinal output r=5, then 51γ (3) =1,  51γ ( l ) = 0, for all other rank 
positions l . Thus, y 2

51  is assigned the value y 2
5 (3), the worth to be credited 

to the 3rd rank position on output factor 5. It is noted that y 2
rk  can be 

represented in the form  

y 2
rk  = y 2

r ( l rk ) = ∑
=

L

1l

y 2
r  ( l ) rkγ  ( l ), 

where l rk  is the rank position occupied by DMU k on output r. Hence, 
model (3.2) can be rewritten in the more representative format. 

eo = max μ o + ∑
∈ 1Rr

μ 1
r  y 1

ro  + ∑
∈ 2Rr

∑
=

L

1l

μ 2
r  y 2

r ( l ) roγ ( l ) 

s.t.   ∑
∈ 1Ii

1
iυ  x 1

io  + ∑
∈ 2Ii

∑
=

L

1l

2
iυ  x 2

i ( l ) ioδ  ( l ) = 1            (3.3) 

μ o + ∑
∈ 1

1

Rr
rμ y 1

rk  + ∑ ∑
∈ =2 1

2

Rr

L

r
l

μ y 2
r ( l ) rkγ ( l ) - ∑

∈ 1

1

Ii
iυ x 1

ik - ∑∑
∈ =2 1

2

Ii

L

i
l

υ x 2
i ( l ) ikδ ( l ) 

< 0, all k 
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{Y 2

r = (y 2
r ( l )), X 2

i =  (x 2
i ( l ))} ∈ Ψ  

μ 1
r , 1

iυ  > ε  
 
In (3.3) we use the notation Ψ to denote the set of permissible worth 

vectors. We discuss this set below. 
It must be noted that the same infinitesimal ε  is applied here for the 

various input and output multipliers, which may, in fact, be measured on 
scales that are very different from another. If two inputs are, for example, 
x1

1ki  representing ‘labor hours’, and x 1
2ki  representing ‘available computer 

technology’, the scales would clearly be incompatible. Hence, the likely 
sizes of the corresponding multipliers 1

1iυ , 1
2iυ  may be correspondingly  

different. Thrall (1996) has suggested a mechanism for correcting for such 
scale incompatibility, by applying a penalty vector G to augmentε , thereby 
creating differential lower bounds on the various iυ , rμ . Proper choice of G 
can effectively bring all factors to some form of common scale or unit. For 
simplicity of presentation we will assume the cardinal scales for all r∈R 1 , 
i∈I1 are similar in dimension, and that G is the unit vector. The more general 
case would proceed in an analogous fashion. 
 
Permissible Worth Vectors 

 
The values or worths {y 2

r ( l )}, {x 2
i ( l )}, attached to the ordinal rank 

positions for outputs r and inputs i, respectively, must satisfy the minimal 
requirement that it is more important to be ranked in l th position than in the 
( l +1)st  position on any such ordinal factor. Specifically, y )(2 lr  > y )1(2 +lr  
and x )(2 li < x )1(2 +li . That is, for outputs, one places a higher weight on 
being ranked in l th place than in ( l +1)st  place. For inputs, the opposite is 
true. A set of linear conditions that produce this realization is defined by the 
set Ψ , where 

 
Ψ = {(Y 2

r , X 2
r )| y 2

r ( l ) - y 2
r ( l +1) >ε , l =1, …L-1, y 2

r (L) > ε ,  
x 2

i ( l +1) - x 2
i ( l ) > ε , l =1, …L-1, x 2

i (1) > ε }. 
 
Arguably, ε  could be made dependent upon l  (i.e. replace ε  by lε ). It 

can be shown, however, that all results discussed below would still follow. 
For convenience, we, therefore, assume a common value forε . We now 
demonstrate that the nonlinear problem (3.3) can be written as a linear 
programming problem. 
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Theorem 3.1 
Problem (3.3), in the presence of the permissible worth space Ψ , can be 

expressed as a linear programming problem. 
 
Proof: In (3.3), make the change of variables w 1

lr  = μ 2
r y 2

r ( l ), w 2
li  = 

2
iυ x 2

i ( l ).  
It is noted that in Ψ , the expressions y 2

r ( l ) - y 2
r ( l +1) > ε , y 2

r (L) > ε  
can be replaced by 

μ 2
r y 2

r ( l ) - μ 2
r y 2

r ( l +1) > μ 2
r ε , μ 2

r y 2
r (L) > μ 2

r ε , which becomes 
w 1

lr  - w 1
1+lr  > μ 2

r ε , w 2
rL > μ 2

r ε . 
A similar conversion holds for the x 2

i ( l ). Problem (3.3) now becomes 

eo =  max μ o + ∑
∈ 1Rr

1
rμ y 1

ro  +  ∑
∈ 2Rr

∑
=

L

1l

w 1
lr roγ ( l ) 

s.t. ∑
∈ 1Ii

υ 1
i  x 1

io  + ∑
∈ 2Ii

∑
=

L

1l

w 2
li ioδ ( l ) = 1 

   μ o + ∑
∈ 1Rr

1
rμ  y 1

rk  +  ∑
∈ 2Rr

∑
=

L

1l

w 1
rl rkγ ( l )  

   - ∑
∈ 1Ii

1
iυ x 1

ik  - ∑
∈ 2Ii

∑
=

L

1l

w 2
li ikδ ( l ) < 0, all k                       (3.4) 

w 1
lr - w 1

1+lr  > 2
rμ ε , l =1,…L-1, all r ∈  R2 

w 1
rL  > 2

rμ  ε , all r ∈  R2 
w 2

1+li  - w 2
li  > 2

iυ ε , 1=l , … L-1, all i ∈  I2 

w 2
1i > 2

iυ ε , all i ∈  I2 
1
rμ , 1

iυ  > ε , all r ∈  R1, i ∈  I1 

2
rμ , 

2
iυ  > ε , all r ∈  R2, i ∈  I2 

 
Problem (3.4) is clearly in linear programming problem format. 

QED 
 

We state without proof the following theorem. 
 
Theorem 3.2 
At the optimal solution to (3.4), μ 2

r = 2
iυ = ε  for all r ∈  R2, i ∈  I2. 

 
Problem (3.4) can then be expressed in the form: 

eo = max oμ  + ∑
∈ 1Rr

 1
rμ  y 1

ro  + ∑
∈ 2Rr

∑
=

L

1l

w 1
lr roγ ( l ) 

s.t. ∑
∈ 1Ii

1
iυ x 1

io  + ∑
∈ 2Ii

∑
=

L

1l

w 2
li ioδ ( l ) = 1 
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oμ + ∑
∈ 1Rr

1
rμ  y 1

rk  + ∑
∈ 2Rr

∑
=

L

1l

w 1
lr rkγ ( l ) - ∑

∈ 1Ii

1
iυ x 1

ik  - ∑
∈ 2Ii

∑
=

L

1l

w 2
li ikδ  

( l ) < 0, all k     
- w 1

lr  + w 1
1+lr  < - 2ε ,  l =1,…L-1,  all r∈R2              (3.5) 

- w 1
rL  < - 2ε ,  all r ∈R2 

- w 2
1+li  + w 2

li  < - 2ε , l =1, …, L-1, all i ∈I2 
- w 2

1i  < - 2ε , all i ∈  I2 
1
rμ , 1

iυ  > ε , r ∈R1, i ∈  I1 
 
It can be shown that (3.5) is equivalent to the standard VRS model. First 

we form the dual of (3.5). 

min  θ  - ε ∑
∈ 1Rr

 s +
r    -   ε ∑

∈ 1Ii
s −

i   -   2ε ∑
∈ 2Rr

∑
=

L

1l

1
lrα   -  2ε ∑

∈ 2Ii
∑
=

L

1l

2
liα  

s.t.     ∑
=

N

k 1
kλ  y 1

rk  - s +
r  = y 1

ro , r ∈R1  

θ  x 1
io  - ∑

=

N

k 1
kλ  x 1

ik  - s −
i  = 0, i ∈  I1 

                                                                                         (3.5’) 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

=−+∑

=−+∑

=−∑

−
=

=

=

)()(

)2()2(

)1()1(

11
1

1

1
2

1
1

1

1
1

1

LL rorLrLrk

N

k
k

rorrrk

N

k
k

rorrk

N

k
k

γααγλ

γααγλ

γαγλ

M
r∈R 2  

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

∑ =−+−

=−+−∑−−

=−∑−

=

−
=

=

N

k
iiikkio

iLiLik

N

k
kio

iLik

N

k
kio

LL

LL

1

2
1

2
2

2
1

2

1

2

1

0)1()1(

0)1()1(

0)()(

ααδλθδ

ααδλθδ

αδλθδ

M
i ∈  I2 

∑
=

N

k
k

1
λ = 1 

kλ , s +
r , s −

i , 1
lrα , 2

liα  > 0,θ  unrestricted. 
Here, we use { kλ } as the standard dual variables associated with the N ratio 
constraints, and the variables { 2

liα , 1
lrα } are the dual variables associated 
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with the rank order constraints defined by Ψ . The slack variables s +

r , s −
i  

correspond to the lower bound restrictions on 1
rμ , 1

iυ . 
Now, perform simple row operations on (3.5’) by replacing the l th 

constraint by the sum of the first l  constraints. That is, the second constraint 
(for those r ∈  R2 and i ∈  I2) is replaced by the sum of the first two 
constraints, constraint 3 by the sum of the first three, and so on. Letting 

γ rk  ( l ) = ∑
=

l

n 1
rkγ (n) = rkγ (1) + rkγ (2) +…+ rkγ ( l ),  

and 

δ ik  ( l ) = ∑
=

L

n l
ikδ (n) = ikδ  (L) + ikδ  (L-1) +…+ ikδ  ( l ), 

problem (3.5’) can be rewritten as: 

min θ  -ε  ∑
∈

+

1Rr
rs - ∑

∈ 1Ii
ε s −

i - 2ε ∑ ∑
∈ =2 1

1

Rr

L

l
rlα - 2ε ∑ ∑

∈ =2 1

2

Ii

L

l
ilα  

s.t.    ∑
=

N

k
k

1
λ y 1

rk  - s +
r  = y 1

ro , r ∈  R1 

θ  x 1
io  - ∑

=

N

k
k

1
λ x 1

ik  - s −
i = 0, i∈  I1                             (3.6’) 

∑
=

N

k
k

1
λ γ rk  ( l ) -  1

lrα  = γ ro  ( l ), r ∈  R2, l =1,…,L 

θ  δ io ( l ) - ∑
=

N

k
k

1
λ δ ik ( l ) -  2

ilα  = 0, i ∈  I2, l =1,…L 

∑
=

N

k
k

1
λ = 1 

kλ , s +
r , s −

i , 1
rlα , 2

ilα  > 0, all i, r, l , k, θ  unrestricted in sign 
 
The dual of (3.6’) has the format: 
 

eo = max oμ + ∑
∈ 1

1

Rr
rμ y 1

ro  + ∑ ∑
∈ =2 1Rr

L
w

l

1
lr  γ ro  ( l ) 

s.t.  ∑
∈ 1

1

Ii
iυ x 1

io  + ∑∑
∈ =2 1Ii

L
w

l

2
li  δ io ( l ) = 1           (3.6) 

oμ  + ∑
∈ 1

1

Rr
rμ y rk  + ∑ ∑

∈ =2 1Rr

L

l
w 1

lr γ rk  (l ) - ∑
∈ 1

1

Ii
iυ x 1

ik  - ∑
∈ 2Ii

∑
=

L

1l

w 2
il δ ik ( l ) < 

0, all k 
1
rμ , 1

iυ  > ε , w 1
lr , w 2

li  > 2ε , 
 

which is a form of the VRS model. The slight difference between (3.6) and 
the conventional VRS model of Banker et al. (1984), is the presence of a 
different ε  (i.e., ε 2) relating to the multipliers w 1

lr , w 2
li , than is true for the 

multipliers μ 1
r , 1

iυ . It is observed that in (3.6’) the common L-value can 
easily be replaced by criteria specific values (e.g. Lr for output criterion r). 
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The model structure remains the same, as does that of model (3.6). Of 
course, since the intention is to have an infinitesimal lower bound on 
multipliers (i.e., ε ≈0), one can, from the start, restrict 

 
μ 1

r , 1
iυ  > ε 2 and μ 2

r , 2
iυ  >ε . 

 
This leads to a form of (3.6) where all multipliers have the same 

infinitesimal lower bounds, making (3.6) precisely a VRS model in the spirit 
of Banker et a. (1984). 

 
Criteria Importance 
 
The presence of ordinal data factors results in the need to impute values 

y 2
r ( l ), x 2

i ( l ) to outputs and inputs, respectively, for DMUs that are ranked 
at positions on an L-point Likert or ordinal scale. Specifically, all DMUs 
ranked at that position will be credited with the same “amount” y 2

r ( l ) of 
output r (r ∈  R2) and x 2

i ( l ) of input i (i  ∈  I2). 
A consequence of the change of variables undertaken above, to bring 

about linearization of the otherwise nonlinear terms, e.g., w 1
lr  = μ 2

r y 2
r ( l ), 

is that at the optimum, all μ 2
r = ε 2, 2

iυ = ε 2. Thus, all of the ordinal criteria 
are relegated to the status of being of equal importance. Arguably, in many 
situations, one may wish to view the relative importance of these ordinal 
criteria (as captured by the μ 2

r , 2
iυ ) in the same spirit as we have viewed the 

data values {y 2
rk }. That is, there may be sufficient information to be able to 

rank these criteria. Specifically, suppose that the R2 output criteria can be 
grouped into L1 categories and the I2 input criteria into L2 categories. Now, 
replace the variables μ 2

r  by μ 2(m), and 2
iυ  by υ 2(n), and restrict: 

 
μ 2(m) - μ 2(m+1) >ε , m=1,…L1-1 
μ 2 (L1) >ε  
and 

υ 2(n) - υ 2(n+1) >ε , n=1,…,L2-1 
υ 2 (L2) >ε . 
 
Letting mr denote the rank position occupied by output r ∈  R2, and ni the 

rank position occupied by input i ∈  I2, we perform the change of variables 
 
w 1

lr  = μ 2 (mr) y 2
r ( l ) 

w 2
li  = υ 2 (ni) x 2

i ( l ) 
 

The corresponding version of model (3.4) would see the lower bound 
restrictions μ 2

r , 2
iυ >ε  replaced by the above constraints on μ 2 (m) and υ 2 
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(n). Again, arguing that at the optimum in (3.4), these variables will be 
forced to their lowest levels, the resulting values of the μ 2(m), υ 2(n) will be 

μ 2 (m) = (L1+1 –m)ε , υ 2(n) = (L2+1-n)ε . 
This implies that the lower bound restrictions on w 1

lr , w 2
li  become 

 
w 1

lr  > (L1+1 – mr) ε 2, w 2
li > (L2 + 1-ni) ε 2. 

 
Example 

When model (3.6’) is applied to the data of Table 2-1, the efficiency 
scores obtained are as shown in Table 2-2. 

Table 2-2. Efficiency Scores (Non-ranked Criteria) 
Project 1 2 3 4 5 6 7 8 9 10 
Score 0.76 0.73 1.00 0.67 1.00 0.82 0.67 0.67 0.55 0.37 
 

Here, projects 3 and 5 turn out to be ‘efficient’, while all other projects 
are rated well below 100%. In this particular analysis, ε  was chosen as 0.03. 
In another run (not shown here) where ε  = 0.01 was used, projects 3, 5 and 
6 received ratings of 1.00, while all others obtained somewhat higher scores 
than those shown in Table 2-2. When a very small value of ε (ε =0.001) 
was used, all except one of the projects was rated as efficient. Clearly this 
example demonstrates the same degree of dependence on the choice of ε  as 
is true in the standard DEA model. See Ali and Seiford (1993). 

From the data in Table 2-1 it might appear that only project 3 should be 
efficient since 3 dominates project 5 in all factors except for the second input 
where project 3 rates second while project 5 rates first. As is characteristic of 
the standard ratio DEA model, a single factor can produce such an outcome. 
In the present case this situation occurs because w 2

21  = 0.03 while w 2
22  = 

0.51. Consequently, project 5 is accorded an ‘efficient’ status by permitting 
the gap between w 2

1  and w 2
2  to be (perhaps unfairly) very large. Actually, 

the set of multipliers which render project 5 efficient also constitute an 
optimal solution for project 3. 

If we further constrain the model by implementing criteria importance 
conditions as defined in the previous section, the relative positioning of the 
projects changes as shown in Table 2-3. 

Table 2-3. Efficiency Scores (Ranked Criteria) 
Project 1 2 3 4 5 6 7 8 9 10 
Score 0.71 0.72 1.00 0.60 1.00 0.80 0.62 0.63 0.50 0.35 

 
Hence, criteria importance restrictions can have an impact on the 

efficiency status of the projects. 
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Two interesting phenomena characterize DEA problems containing 
ordinal data. If one examines in detail the outputs from the analysis of the 
example data, two observations can be made. First, it is the case that θ =1 
for each project (whether efficient or inefficient). This means that each 
project is either on the frontier proper or an extension of the frontier. Second, 
if one were to use the CRS rather than VRS model, it would be observed that 
∑ kλ =1 for each project. The implication would seem to be that the two 
models (CRS and VRS) are equivalent in the presence of ordinal data. 
Moreover, since 1θ =  in all cases, these models are as well equivalent to 
the additive model of Charnes et al. (1985). The following two theorems 
prove these results for the general case. 

 
Theorem 3.3 
In problem (3.6’), if 2I  is non empty, 1θ =  at the optimum. 
 
Proof: 

By definition, ( ) ( ).
L

ik ik
n

nδ δ
=

= ∑
l

l  Thus, (1) 1ikδ =  for all k, and for any 

ordinal input i. From the constraint set of (3.6’), if  
1

1
N

k
k

λ
=

=∑ , then since 

1

(1) (1),
N

io k ik
k

θ δ λ δ
=

≥ ∑  and since 
1

(1) 1
N

k ik
k

λ δ
=

=∑  (given that all 

members of  { } 1
(1)

N

ik k
δ

=
 equal 1), it follows that (1) 1.ioθ δ ≥  But since 

(1) 1,ioδ =  then 1,θ ≥  meaning that at the optimum 1.θ =  
QED 

 
This rather unusual property of the DEA model in the presence of ordinal 

data is generally explainable by observing the dual form (3.5). It is noted that 
2ε  plays the role of discriminating between the levels of relative importance 

of consecutive rank positions. If in the extreme case 0ε = , then any one 
rank position becomes as important as any other. This means that regardless 
of the rank position occupied by a DMU “o”, that position can be credited 
with at least as high a weight as those assumed by the peers of that DMU. 
Hence, every DMU will be deemed technically efficient. It is only the 
presence of positive gaps (defined by 2ε ) between rank positions that 
renders a DMU inefficient via the slacks. 
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