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Chapter 1

DATA IRREGULARITIES AND STRUCTURAL
COMPLEXITIES IN DEA

Wade D. Cook' and Joe Zhu?
ISchulich  School of Business, York University, Toronto, Ontario, Canada, M3J IP3,
weook@shulich.yorku.ca

2Department of Management, Worcester Polytechnic Institute, Worcester, MA 01609,
Jjzhu@wpi.edu

Abstract: Over the recent years, we have seen a notable increase in interest in data
envelopment analysis (DEA) techniques and applications. Basic and advanced
DEA models and techniques have been well documented in the DEA
literature. This edited volume addresses how to deal with DEA
implementation difficulties involving data irregularities and DMU structural
complexities. Chapters in this volumes address issues including the treatment
of ordinal data, interval data, negative data and undesirable data, data mining
and dimensionality reduction, network and supply chain structures, modeling
non-discretionary variables and flexible measures, context-dependent
performance, and graphical representation of DEA.

Key words: Data Envelopment Analysis (DEA), Ordinal Data, Interval Data, Data Mining,
Efficiency, Flexible, Supply Chain, Network, Undesirable

1. INTRODUCTION

Data envelopment analysis (DEA) was introduced by Charnes, Cooper
and Rhodes (CCR) in 1978. DEA measures the relative efficiency of peer
decision making units (DMUs) that have multiple inputs and outputs, and
has been applied in a wide range of applications over the past 25 years, in
settings that include hospitals, banks, maintenance crews, etc.; see Cooper,
Seiford and Zhu (2004).
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As DEA attracts ever-growing attention from practitioners, its application
and use become a very important issues. It is, therefore, important to deal
with computation/data issues in DEA. These include, for example, how to
deal with inaccurate data, qualitative data, outliers, undesirable factors, and
many others. It is as well critical, from a managerial perspective, to be able
to visualize DEA results, when the data are more than 3-dimensional.

The current volume presents a collection of articles that address data
issues in the application of DEA, and special problem structures with respect
to the nature of DMUs.

2. DEA MODELS

In this section, we present some basic DEA models that will be used in
later chapters. For a more detailed discussion on these and other DEA
models, the reader is referred to Cooper, Seiford and Zhu (2004), and other
DEA textbooks.

Suppose we have a set of n peer DMUs, { DMU ;: j =1, 2, ..., n}, which

produce multiple outputs y,;, (r =1, 2, ..., s), by utilizing multiple inputs x;;, (i
=1, 2, .., m). When a DMU | is under evaluation by the CCR ratio model,
we have (Charnes, Cooper and Rhodes, 1978)

DY,
r=1

i Vixio

i=1
pWA
=<1, j=12,..n
>,

u,v, 20, Vr,i

max

(1

S.t.

In this model, inputs x; and outputs y,; are observed non-negative data’,
and g, and v, are the unknown weights, or decision variables.

A fully rigorous development would replace u,,v, 20 with

! For the treatment of negative input/output data, please see Chapter 4.
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lLlr , /l’lr Zg>0

where ¢ is a non-Archimedean element smaller than any positive real
number.

Model (1) can be converted into a linear programming problem

maX iﬂrym

r=1

subject to

i,uryrj —ivixy. <0,ally
r=1 i=1

m
z ViXipy = 1
i=1

Mu,v, 20

2)

In this model, the weights are usually referred to as multipliers. Therefore,
model (2) is also called a multiplier DEA model. The dual program to (2)
can be expressed as

0" =miné
subject to

n 3
Z:x..ﬂw <6k, i=12,.,m; ®
=

g J

Zy,j/lj 2y, r=1.2,..,s;
j=1

2,20 j=12,n.

Model (3) is referred to as the envelopment model. To illustrate the
concept of envelopment, we consider a simple numerical example used in
Zhu (2003) as shown in Table 1-1 where we have five DMUs representing
five supply chain operations. Within a week, each DMU generates the same
profit of $2,000 with a different combination of supply chain cost and
response time.
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Table I-1. Supply Chain Operations Within a Week
Inputs Output
DMU Cost ($100) Response time (days) Profit ($1,000)
1 1 5 2
2 2 2 2
3 4 1 2
4 6 1 2
5 4 4 2
Source: Zhu (2003).
—_ 6 7
)
e
£ 54 DMU1
‘g’
o 4 DMU5
£
©
s 3
>
g 21 MU2
»
= 17 DMU DMU4
L

1 2 3 4 5 6 7

Supply chain response time (days)

Figure 1-1. Five Supply Chain Operations

Figure 1-1 presents the five DMUs and the piecewise linear DEA
frontier. DMUs 1, 2, 3, and 4 are on the frontier--or the envelopment frontier.
If we apply model (3) to DMUS, we have,

Min 6

Subject to

1 A+ 24, +44; +6 1, +44; <460
SA+2L 1A+ 14, +445,<40
2+ 20, 1223 120, 205> 2
Ay Az, A3,44, 25> 0

This model has the unique optimal solution of 8" = 0.5, 4, =1, and /1/ =0
(j # 2), indicating that DMUS needs to reduce its cost and response time to
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the amounts used by DMU?2 if it is to be efficient This example indicates that
technical efficiency for DMUS is achieved at DMU?2.

Now, if we apply model (3) to DMU4, we obtain 8" =1, A, =1, and /1
=0 (j # 4), indicating that DMU4 is on the frontier. However, Figure 1- 1
indicates that DMU4 can still reduce its response time by 2 days to achieve
coincidence with DMU3. This input reduction is usually called input slack.

The nonzero slack can be found by using the following model

m S
masti_ + Zs:

i=1 r=1
subject to

le//11+s = *xio i=12,..,m; @)

Zyrj/ij -sT=y. r=12,...s;
=1

A,S 8 >0V j, r

jo i s
where 6" is determined by model (3) and is fixed in model (4).

For DMU4 with 8" = 1, model (4) yields the following model,

Max s, +s, +5,

Subject to

1 A+ 22, +42; +6 1, +4 05+ 5, =660 =6
SAT2LH 1+ 1+ + s, =10 =1
2 ﬂ] + 2/12 +2/13 +2/14 +2/15 - S1+ =2

Aty Ay A3y Asy 8y, 85, 87 >0

The optimal slacks are s;” =2, s,"=s,” =0, with 4, =1 and all other A, =
0.
We now have

Definition 1 (DEA Efficiency): The performance of DMU, is fully (100%)
efficient if and only if both (i) & = 1 and (ii) all slacks s, =s'"= 0.

Definition 2 (Weakly DEA Efficient): The performance of DMU, is
weakly efficient if and only if both (i) & =1 and (ii) ;" # 0 and/or 57" #0
for some 7 and 7 in some alternate optima.
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Model (4) is usually called the second stage calculation of an
envelopment model. In fact, the envelopment model can be written as:

minéd — g(Zsi_ + Zs:)
i=l1 r=l1
subject to

lel/11+s = bk, i=12,..,m; (5)

Zy,j/ij -s' =y, r=12,..,s;
Jj=1

A >0V, r

/,1,

where the s; and s, are slack variables used to convert the inequalities in
(3) to equivalent equations. This is equivalent to solving (5) in two stages by
first minimizing @, then fixing & = 0" as in (4), where the slacks are to be
maximized without altering the previously determined value of 8 = 6”.
Formally, this is equivalent to granting “preemptive priority” to the
determination of &° in (3). In this manner, the fact that the non-
Archimedean element & is defined to be smaller than any positive real
number is accommodated without having to specify the value of ¢ (Cooper,
Seiford and Zhu, 2004).

The above models are called input-oriented DEA models, as possible
input reductions are of interest while the outputs are kept at their current
levels. Similarly, output-oriented models can be developed. These models
focus on possible output increases while the inputs are kept at their current
levels. The interested reader should refer to Cooper, Seiford and Zhu (2004).

The models in Table 1-2 are also known as CRS (constant returns to
scale) models. If the constraint 37}, 4, =1 is adjoined, they are referred to
as variable returns to scale (VRS) models (Banker, Charnes, Cooper, 1984).
This is due to the fact that >, A, = 1 changes the shape of DEA frontier,
and is related to the concept of returns to scale.
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Table 1-2. CCR DEA Model

Input-oriented

Envelopment model

Multiplier model

mind — g(Zsi_ + ZS:)
i=1 r=1
subject to

le//11+s =tx, i=12,.,m;

Zynﬂj -s' =y, r=12,.,s;
=1

maXZZ Szﬂryi‘o

r=l1

subject to

ZWU Zle,, <0
Zvixio =1
i=1

2,20 j=12,..n. HysV; 2€>0
Output-oriented
Envelopment model Multiplier model
max ¢+ S(ZS; +Zs:) ming :Zvl.xm
i=1 =1 i=1
subject to subject to

Zx A +s; =x, i=12,.,m;

i’ io

Zy,jﬂj —s =¢v, r=12,..,s;
=1

ﬁj >0 j=L2,...,n.

Zvl ij Zﬂry;j ZO
r=1

S uy, =1

r=1

M,v,2>0

3. DATA AND STRUCTURE ISSUES

The current volume deals with data irregularities and structural

complexities in applications of DEA.

Chapter 2 (by Cook and Zhu) develops a general framework for
modeling and treating qualitative data in DEA and provides a unified
structure for embedding rank order data into the DEA framework. It is
shown that the existing approaches for dealing with qualitative data are

equivalent.
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Chapter 3 (by Chen and Zhu) discusses how to use the standard DEA
models to deal with imprecise data in DEA (IDEA), concentrating on
interval and ordinal data. There are two approaches in dealing with such
imprecise inputs and outputs. One uses scale transformations and variable
alternations to convert the non-linear IDEA model into a linear program,
while the other identifies a set of exact data from the imprecise inputs and
outputs and then uses the standard linear DEA model. The chapter focuses
on the latter IDEA approach that uses the standard DEA model. It is shown
that different results are obtained depending on whether the imprecise data
are introduced directly into the multiplier or envelopment DEA model; the
presence of imprecise data invalidates the linear duality between the
multiplier and envelopment DEA models. The approaches are illustrated
with both numerical and real world data sets.

Chapter 4 (by Pastor and Ruiz) presents an overview of the different
existing approaches dealing with the treatment of negative data in DEA.
Both the classical approaches and the most recent contributions to this
problem are presented. The focus is mainly on issues such as translation
invariance and units invariance of the variables, classification invariance of
the units, as well as efficiency measurement and target setting.

Chapter 5 (by Ruggiero) discusses existing approaches to measuring
performance when non-discretionary inputs affect the transformation of
discretionary inputs into outputs. The suitability of the approaches depends
on underlying assumptions about the relationship between non-discretionary
inputs and outputs. One model treats non-discretionary inputs like
discretionary inputs but uses a non-radial approach to project inefficient
decision making units (DMUs) to the frontier holding non-discretionary
inputs fixed. Other approaches use multiple stage models with regression to
control for the effect that non-discretionary inputs have on production.

Chapter 6 (by Hua and Bian) discusses the existing methods of treating
undesirable factors in DEA. Under strongly disposable technology and
weakly disposable technology, there are several approaches for treating
undesirable outputs in the DEA literature. One such approach is the
hyperbolic output efficiency measure that increases desirable outputs and
decreases undesirable outputs simultaneously. Based on the classification
invariance property, a linear monotone decreasing transformation is used to
treat the undesirable outputs. A directional distance function is used to
estimate the efficiency scores based on weak disposability of undesirable
outputs. This chapter also presents an extended DEA model in which
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undesirable outputs and non-discretionary inputs are considered
simultaneously.

Chapter 7 (by Piot-Lepetit and Le Moing) highlights the usefulness of the
directional distance function in measuring the impact of the EU Nitrate
directive, which prevents the free disposal of organic manure and nitrogen
surplus. Efficiency indices for the production and environmental
performance of farms at an individual level are proposed, together with an
evaluation of the impact caused by the said EU regulation. This chapter
extends the previous approach to good and bad outputs within the framework
of the directional distance function, by introducing a by-product (organic
manure), which becomes a pollutant once a certain level of disposability is
exceeded.

Chapter 8 (by Adler and Golany) presents the combined use of principal
component analysis (PCA) and DEA with the stated aim of reducing the
curse of dimensionality that occurs in DEA when there is an excessive
number of inputs and outputs in relation to the number of decision-making
units. Various PCA-DEA formulations are developed in the chapter utilizing
the results of principal component analyses to develop objective assurance
region type constraints on the DEA weights. The first set of models applies
PCA to grouped data representing similar themes, such as quality or
environmental measures. The second set of models, if needed, applies PCA
to all inputs and separately to all outputs, thus further strengthening the
discrimination power of DEA. A case study of municipal solid waste
managements in the Oulu district of Finland, which has been frequently
analyzed in the literature, will illustrate the different models and the power
of the PCA-DEA formulation.

Chapter 9 (by Duld) deals with the extension of data envelopment
analysis to the general problem of mining oriented outliers. DEA is firmly
anchored in efficiency and productivity paradigms. This research claims new
application domains for DEA by releasing it from these moorings. The same
reasons why efficient entities are of interest in DEA apply to the geometric
equivalent in general point sets since they are based on the data’s magnitude
limits relative to the other data points. A framework for non-parametric
frontier analysis is derived from a new set of first principles.

Chapter 10 (by Adler, Raveh and Yazhemsky) presents the results of
DEA in a two-dimensional plot. Presenting DEA graphically, due to its
multiple variable nature, has proven difficult and some have argued that this
has left decision-makers at a loss in interpreting the results. Co-Plot, a
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variant of multi-dimensional scaling, locates each decision-making unit in a
two-dimensional space in which the location of each observation is
determined by all variables simultaneously. The graphical display technique
exhibits observations as points and variables (ratios) as arrows, relative to
the same center-of-gravity. Observations are mapped such that similar
decision-making units are closely located on the plot, signifying that they
belong to a group possessing comparable characteristics and behavior.

Chapter 11 (by Cook, Liang, Yang and Zhu) presents several DEA-based
approaches for characterizing and measuring supply chain efficiency. The
models are illustrated in a seller-buyer supply chain context, when the
relationship between the seller and buyer is treated leader-follower and
cooperative, respectively. In the leader-follower structure, the leader is first
evaluated, and then the follower is evaluated using information related to the
leader’s efficiency. In the cooperative structure, the joint efficiency which is
modeled as the average of the seller’s and buyer’s efficiency scores is
maximized, and both supply chain members are evaluated simultaneously.

Chapter 12 (by Fare, Grosskopf and Whittaker) describes network DEA
models, where a network consists of sub-technologies. A DEA model
typically describes a technology to a level of abstraction necessary for the
analyst’s purpose, but leaves out a description of the sub-technologies that
make up the internal functions of the technology. These sub-technologies are
usually treated as a “black box”, i.e., there is no information about what
happens inside them. The specification of the sub-technologies enables the
explicit examination of input allocation and intermediate products that
together form the production process. The combination of sub-technologies
into networks provides a method of analyzing problems that the traditional
DEA models cannot address.

Chapter 13 (Morita and Zhu) presents a context-dependent DEA
methodology, which refers to a DEA approach where a set of DMUs is
evaluated against a particular evaluation context. Each evaluation context
represents an efficient frontier composed of DMUs in a specific performance
level. The context-dependent DEA measures the attractiveness and the
progress when DMUs exhibiting poorer and better performance are chosen
as the evaluation context, respectively. This chapter also presents a slack-
based context-dependent DEA approach. In DEA, nonzero input and output
slacks are very likely to be present, after the radial efficiency score
improvement. Slack-based context-dependent DEA allows us to fully
evaluate the inefficiency in a DMU’s performance.
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Chapter 14 (by Cook and Zhu) presents DEA models to accommodate
flexible measures. In standard DEA, it is assumed that the input versus
output status of each of the chosen analysis measures is known. In some
situations, however, certain measures can play either input or output roles.
Consider using the number of nurse trainees on staff in a study of hospital
efficiency. Such a factor clearly constitutes an output measure for a hospital,
but at the same time is an important component of the hospital’s total staff
complement, hence is an input. Both an individual DMU model and an
aggregate model are suggested as methodologies for deriving the most
appropriate designations for flexible measures.

Chapter 15 (by Lozano and Villa) presents DEA models under situations
where one or more inputs and/or outputs are integer quantities. Commonly,
in these situations, the non-integer targets are rounded off. However,
rounding off may easily lead to an infeasible target (i.e. out of the Production
Possibility Set) or to a dominated operation point. In this chapter, a general
framework to handle integer inputs and outputs is presented and a number of
integer DEA models are reviewed.

Chapter 16 (by Sarkis) looks at some data requirements and
characteristics that may ease the execution of the DEA models and the
interpretation of DEA results.
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Chapter 2
RANK ORDER DATA IN DEA

Wade D. Cook' and Joe Zhu?
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weook@shulich.yorku.ca

ZDepartment of Management, Worcester Polytechnic Institute, Worcester, MA 01609,
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Abstract: In data envelopment analysis (DEA), performance evaluation is generally
assumed to be based upon a set of quantitative data. In many real world
settings, however, it is essential to take into account the presence of qualitative
factors when evaluating the performance of decision making units (DMUs).
Very often rankings are provided from best to worst relative to particular
attributes. Such rank positions might better be presented in an ordinal, rather
than numerical sense. The chapter develops a general framework for modeling
and treating qualitative data in DEA, and provides a unified structure for
embedding rank order data into the DEA framework. We show that the
approach developed earlier in Cook et al (1993, 1996) is equivalent to the
IDEA methodology given in Chapter 3. It is shown that, like IDEA, the
approach given her for dealing with qualitative data lends itself to treatment by
conventional DEA methodology.

Key words: Data envelopment analysis (DEA), efficiency, qualitative, rank order data

1. INTRODUCTION

In the data envelopment analysis (DEA) model of Charnes, Cooper and
Rhodes (1978), each member of a set of n decision making units (DMUS) is
to be evaluated relative to its peers. This evaluation is generally assumed to
be based on a set of quantitative output and input factors. In many real world
settings, however, it is essential to take into account the presence of
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qualitative factors when rendering a decision on the performance of a DMU.
Very often it is the case that for a factor such as management competence,
one can, at most, provide a ranking of the DMUs from best to worst relative
to this attribute. The capability of providing a more precise, quantitative
measure reflecting such a factor is often not feasible. In some situations such
factors can be legitimately “quantified,” but very often such quantification
may be superficially forced as a modeling convenience.

In situations such as that described, the “data” for certain influence
factors (inputs and outputs) might better be represented as rank positions in
an ordinal, rather than numerical sense. Refer again to the management
competence example. In certain circumstances, the information available
may only permit one to put each DMU into one of L categories or groups
(e.g. ‘high’, ‘medium’ and ‘low’ competence). In other cases, one may be
able to provide a complete rank ordering of the DMUs on such a factor.

Cook, Kress and Seiford (1993), (1996) first presented a modified DEA
structure, incorporating rank order data. The 1996 article applied this
structure to the problem of prioritizing a set of research and development
projects, where there were both inputs and outputs defined on a Likert scale.
An alternative to the Cook et al approach was provided in Cooper, Park and
Yu (1999) in the form of the imprecise DEA (IDEA) model. While various
forms of imprecise data were examined, one major component of that
research focused on ordinal (rank order) data. See Chapter 3 for a treatment
of the specifics of IDEA. These two approaches to the treatment of ordinal
data in DEA are further discussed and compared in Cook and Zhu(2006).

In the current chapter, we present a unified structure for embedding rank
order or Likert scale data into the DEA framework. This development is very
much related to the presentation in Cook and Zhu (2006).To provide a
practical setting for the methodology to be developed herein, Section 2
briefly discusses the R&D project selection problem as presented in more
detail in Cook et al (1996). Section 3 presents a continuous projection
model, based on the conventional radial model of Charnes et al (1978). In
Section 4 this approach is compared to the IDEA methodology of Cooper et
al (1999). We demonstrate that IDEA for Likert Scale data is in fact
equivalent to the earlier approach of Cook, Kress and Seiford (1996).
Section 5 develops a discrete projection methodology that guarantees
projection to points on the Likert Scale. Conclusions and further directions
are addressed in Section 6.
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2. ORDINAL DATA IN R&D PROJECT SELECTION

Consider the problem of selecting R&D projects in a major public utility
corporation with a large research and development branch. Research
activities are housed within several different divisions, for example, thermal,
nuclear, electrical, and so on. In a budget constrained environment in which
such an organization finds itself, it becomes necessary to make choices
among a set of potential research initiatives or projects that are in
competition for the limited resources. To evaluate the impact of funding (or
not funding) any given research initiative, two major considerations
generally must be made. First, the initiative must be viewed in terms of more
than one factor or criterion. Second, some or all of the criteria that enter the
evaluation may be qualitative in nature. Even when pure quantitative factors
are involved, such as long term saving to the organization, it may be difficult
to obtain even a crude estimate of the value of that factor. The most that one
can do in many such situations is to classify the project (according to this
factor) on some scale (high/medium/low or say a 5-point scale).

Let us assume that for each qualitative criterion each initiative is rated on
a 5-point scale, where the particular point on the scale is chosen through a
consensus on the part of executives within the organization. Table 2-1
presents an illustration of how the data might appear for 10 projects, 3
qualitative output criteria (benefits), and 3 qualitative input criteria (cost or
resources). In the actual setting examined, a number of potential benefit and
cost criteria were considered as discussed in Cook et al (1996).

We use the convention that for both outputs and inputs, a rating of 1 is
“best,” and 5 “worst.” For outputs, this means that a DMU ranked at position
1 generates more output than is true of a DMU in position 2, and so on. For
inputs, a DMU in position 1 consumes /ess input than one in position 2.

Table 2-1. Ratings by criteria

Outputs
Project No. 1

—
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Regardless of the manner in which such a scale rating is arrived at, the
existing DEA model is capable only of treating the information as if it has
cardinal meaning (e.g. something which receives a score of 4 is evaluated as
being twice as important as something that scores 2). There are a number of
problems with this approach. First and foremost, the projects’ original data
in the case of some criteria may take the form of an ordinal ranking of the
projects. Specifically, the most that can be said about two projects i and j is
that i is preferred to j. In other cases it may only be possible to classify
projects as say ‘high’, ‘medium’ or ‘low’ in importance on certain criteria.
When projects are rated on, say, a 5-point scale, it is generally understood
that this scale merely provides a relative positioning of the projects. In a
number of agencies investigated (for example, hydro -electric and
telecommunications companies), 5-point scales are common for evaluating
alternatives in terms of qualitative data, and are often accompanied by
interpretations such as

1 = Extremely important
2 = Very important

3 = Important

4 = Low in importance

5 = Not important,

that are easily understood by management. While it is true that market
researchers often treat such scales in a numerical (i.e. cardinal) sense, it is
not practical that in rating a project, the classification ‘extremely important’
should be interpreted literally as meaning that this project rates three times
better than one which is only classified as ‘important.” The key message here
is that many, if not all criteria used to evaluate R&D projects are qualitative
in nature, and should be treated as such. The model presented in the
following sections extends the DEA idea to an ordinal setting, hence
accommodating this very practical consideration.

3. MODELING LIKERT SCALE DATA:
CONTINUOUS PROJECTION

The above problem typifies situations in which pure ordinal data or a mix
of ordinal and numerical data, are involved in the performance measurement
exercise. To cast this problem in a general format, consider the situation in
which a set of N decision making units (DMUs), k=1,...N are to be
evaluated in terms of R; numerical outputs, R, ordinal outputs, I; numerical
inputs, and I, ordinal inputs. Let Y, = (y,), Y =(y fk) denote the R;-
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dimensional and R,-dimensional vectors of outputs, respectively. Similarly,
let X, =(x!)and X?=(x2) be the I, and I,-dimensional vectors of inputs,
respectively.

In the situation where all factors are quantitative, the conventional radial
projection model for measuring the efficiency of a DMU is expressed by the
ratio of weighted outputs to weighted inputs. Adopting the general variable
returns to scale (VRS) model of Banker, Charnes and Cooper (1984), the
efficiency of DMU “0” follows from the solution of the optimization model:

eo=max (Uo+ X 4ty + X plyl)/(X o xL+Y vix)

reRy reR, iel) iel,
S.t.
(Bt T p,y, v T iy oGt Y olxg) < Lallk ()

pl,ow?, o0l > g allri
Problem (3.1) is convertible to the linear programming format:

=max uot X u,y,+ X uy,

reR| reR;
1
st. Y v x,t X v x,=1 (3.2)
iel) iely
+ 1 1 + 2 2 1 1 2 2~ 0 Nk
Ho 2 MY 2 /uryrk'z v, Xik_z b X =Y,a
reRy reRy iel) iely

1 2 1 2 :
Moy Mo, 00 > ¢&,allr, i,

whose dual is given by

mn6-& Y si-¢& Y s;

reRUR, iel\UI,

N/I 1 1
st. 24V, -S, =Y, TI€E€R
k=1

N
2 + _ 2
Z/7”kyrk =S, T Y re R,

n=1

0x -3 A x, -s =0iel (3.2))

2 - .
Axy-s;, =0,iel,

1

M=

2
axio -

=~
L

N
> A =1
k=1

Arsi,s; >0,allk, 1, 1,60 unrestricted

ro
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To place the problem in a general framework, assume that for each
ordinal factor (reR,, i€l,), a DMU k can be assigned to one of L rank
positions, where L < N. As discussed earlier, L=5 is an example of an
appropriate number of rank positions in many practical situations. We point
out that in certain application settings, different ordinal factors may have
different L-values associated with them. For exposition purposes, we assume
a common L-value throughout. We demonstrate later that this represents no
loss of generality.

One can view the allocation of a DMU to a rank position £ on an output r,
for example, as having assigned that DMU an output value or worth yf (0).
The implementation of the DEA model (3.1) (and (3.2)) thus involves
determining two things:

(1) multiplier values u f, l),.2 for outputs r € R, and inputs i € Ip;
(2) rank position values yf (£),reR,, and x 12 (£),ie€lall £.

In this section we show that the problem can be reduced to the standard VRS
model by considering (1) and (2) simultaneously.

To facilitate development herein, define the L-dimensional unit vectors
Vi = (74 (£)), and &, = (5 (L)) where

1 if DMUkisrankedin 7 th position on output r

}/rk (ﬁ ): .
0, otherwise

5 ()= 1 if DMUkisranked in / th position on input i
" 0, otherwise

For example, if a 5-point scale is used, and if DMU #1 is ranked in ¢ =
3" place on ordinal output r=5, then y.,(3) =1, ., () =0, for all other rank
positions /. Thus, yZ, is assigned the value y?(3), the worth to be credited
to the 3" rank position on output factor 5. It is noted that y> can be
represented in the form

2 2 _ L 2
Yu =Y, (L )= 21 y, (0) y, (£),

where ¢ , is the rank position occupied by DMU k on output r. Hence,
model (3.2) can be rewritten in the more representative format.
L
€=max f,+ Y ,Uiyler 2 ey )y, ()
reR| reRy (=1
L
st. Y o x,+ Y Y olxi(L)S, (H=1 (3.3)

i
iel) iel 15

11 L 2. 2 11 L 2 2
Mot DYy T2 lﬂ,y,(f) V(L) - v, x,- XXu x; (L) 6, (L)

reR reR, (= iel} iely (=]

<0,allk
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Y= (L), X!= x; (L)} eV

1 1
pi v >e

In (3.3) we use the notation ¥ to denote the set of permissible worth
vectors. We discuss this set below.

It must be noted that the same infinitesimal & is applied here for the
various input and output multipliers, which may, in fact, be measured on
scales that are very different from another. If two inputs are, for example,
x}lk representing ‘labor hours’, and x!,, representing ‘available computer
technology’, the scales would clearly be incompatible. Hence, the likely
sizes of the corresponding multipliers v, v, may be correspondingly
different. Thrall (1996) has suggested a mechanism for correcting for such
scale incompatibility, by applying a penalty vector G to augment & , thereby
creating differential lower bounds on the variousv,, u, . Proper choice of G
can effectively bring all factors to some form of common scale or unit. For
simplicity of presentation we will assume the cardinal scales for all reR |,
i€l are similar in dimension, and that G is the unit vector. The more general
case would proceed in an analogous fashion.

Permissible Worth Vectors

The values or worths {yf (0)}, {xl.2 (£)}, attached to the ordinal rank
positions for outputs r and inputs i, respectively, must satisfy the minimal
requirement that it is more important to be ranked in ¢ ™ position than in the
(£+1)" position on any such ordinal factor. Specifically, y2(£) >y> (¢ +1)
and x; (/)< x(¢+1). That is, for outputs, one places a higher weight on
being ranked in ¢ ™ place than in (£ +1)" place. For inputs, the opposite is
true. A set of linear conditions that produce this realization is defined by the
set ¥, where

Y= (Y2, XDy () - yi(L+]) 2e, (=1, ..L-1, yI(L) > &,
X2+ -x2(L)y>¢g, (=1, . L-1,x;(1)> €}.

Arguably, & could be made dependent upon / (i.e. replace & by¢g,). It
can be shown, however, that all results discussed below would still follow.
For convenience, we, therefore, assume a common value forg. We now
demonstrate that the nonlinear problem (3.3) can be written as a linear
programming problem.
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Theorem 3.1
Problem (3.3), in the presence of the permissible worth space ¥, can be
expressed as a linear programming problem.

Proof: In (3.3), make the change of variables w!, = u’y:(/), w. =
vl x; ().

It is noted that in V', the expressions y> (/) -y ({+1)> &,y (L) > &
can be replaced by

wiyi(0)y - ply:(L+1)y> ule, uly?(L)> u’ &, which becomes

wl, o -w!

rl ri+1

> HLEWLZUTE.
A similar conversion holds for the x> (/). Problem (3.3) now becomes

L
G=max Uot Y wy, + X > wi,y.(l)

reR1 reR2 (=1
1l L 2 _
st. Y v, x, T X X w,0,(l)=1
iell iel2 (=1
11 L
Mot 2 M, ¥, t Z:, Wy 7 (£)

reRl reR2 1

Sy o'xl - Y 3 w2s, (£)<0,allk (3.4)

iell iel2 (=1

o>l e, 0=1,..L-1,allr € R,

1
Wrﬂ - W rl+1

wi, >’ g,allre R,

2

Wi

-w. >vle, l=1,.. L-laliel,
w; >0l g,allie ],
', v >¢galreR,iel

lur271)i228,3.11r€ Rz,iE I,

Problem (3.4) is clearly in linear programming problem format.
QED

We state without proof the following theorem.

Theorem 3.2
At the optimal solution to (3.4), u 2= v’ = ¢ forallr € Ry, i € L.

Problem (3.4) can then be expressed in the form:

L
=max g, + Y gy, + Y Y w,y,(0)

reR; reR2 =1

st. Y ox, + 3% i w. o, (L)=1

iell iel2 /=1
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L L
lLlo+ Z /url y]rk + Z Z erfj/rk(f)_ Z Uilel'/\' - Z Z Wi2/5ik

reRl reR2 (=1 iell iel2 /=1
(£)<0,allk
W, tw, <- ¢, £=1,.. L1, allreR, (3.5)

-wl, <-¢&°, allr eR,

-wo ., tw, <-¢g L, 0=1,..,L1,aliel,

-wi <-éghaliel,

U, v >¢e,reR,iel

It can be shown that (3.5) is equivalent to the standard VRS model. First
we form the dual of (3.5).

: + - 2 L 1 2 L 2
mné-gY s, - €Xs, - &Y X a, - Y

reRl iell reR2 /=1 iel2 (=1

N
1 + 1
st. Y A, y,-s, =y,,r R
k=1

1 N 1 - _ :
Ox,-Y A4, x,-s, =0iel
(3.5)
N
kzzlﬁk 7rk(1) - a:l = }/m (1)

ﬂ’k 7;‘k (2) + a:l - a:Z = 7/1/0 (2)

M=

p reR,

1

=

111{ 7rk (L) + aI!L*] - alrL = 7/ro (L)

=~
{1

S (L) -S4 8, (L)—a’ =0
k=1

N
51'0 (L—l)@— kZ::l/?'k 5ik (L_l) + aiZL - aiZL—l =0 ie L

5, O-%A 5 ()+a)-a’=0
k=1

io

> A=1

N
k=1

A,st,s,, a,, a; >0,0 unrestricted.

Here, we use { 4, } as the standard dual variables associated with the N ratio
constraints, and the variables {a., !, } are the dual variables associated
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with the rank order constraints defined by W . The slack variables s, s;
correspond to the lower bound restrictions on !, v, .

Now, perform simple row operations on (3.5°) by replacing the/™
constraint by the sum of the first / constraints. That is, the second constraint
(for those r € R, and i € I,) is replaced by the sum of the first two
constraints, constraint 3 by the sum of the first three, and so on. Letting

— /

- (=X Va@=y, (D)+ y,(2)+. ..+ 7/rk(€)’

n=l1

1

and

— L

o, (L)= ; 0, (m)= 05, (L)+ 6, (L-1)+...+ 5, (L),
problem (3.5”) can be rewritten as:

. - 2 L 1 2 L 2
min @ - Ys - s, -& YYXa,-& Yra,

reR1 iell reR21=1 iel2 =1

s.t. é/‘tkylrk -si =y, ,re R,

0 x! - gzkx}k sT=0,ie ] (3.6")
kNg]ﬂk 7 (0)-a =7 (£hreR, (=1,..L

05 (0)- éik S (0)- al=0,iel, (=1,..L

N
A =1
k=1

Asstysy, ay, ap >0,alli,r, £,k, @ unrestricted in sign

oo

The dual of (3.6”) has the format:

L— ., —
€ =max f,+ ZR‘,I,U,IY}.O + 2 ZWIVV 7 o ()

reR2 (=1

st. Yo'xl 4 ¥Sw2 5 (£)=1 (3.6)
iell iel20=1

L — — L — —
B b Syt X Xw Ly ()= Zoixy - X % wid (D)=
reR1 reR2 =1 iell iel, (=1
0, all k

1 1 |
/Llr’ Ui 28’ Wr/’ w

2
'(283

2
which is a form of the VRS model. The slight difference between (3.6) and
the conventional VRS model of Banker et al. (1984), is the presence of a
different £ (i.e., £°) relating to the multipliers w',, w , than is true for the
multipliers 2 |, v} . It is observed that in (3.6’) the common L-value can
easily be replaced by criteria specific values (e.g. L, for output criterion r).
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The model structure remains the same, as does that of model (3.6). Of
course, since the intention is to have an infinitesimal lower bound on
multipliers (i.e., & =0), one can, from the start, restrict

1 2

1 2 2
., >&"and p;, v

i

>&.

This leads to a form of (3.6) where all multipliers have the same
infinitesimal lower bounds, making (3.6) precisely a VRS model in the spirit
of Banker et a. (1984).

Criteria Importance

The presence of ordinal data factors results in the need to impute values
y2(£), x}(£) to outputs and inputs, respectively, for DMUs that are ranked
at positions on an L-point Likert or ordinal scale. Specifically, all DMUs
ranked at that position will be credited with the same “amount” y’ (/) of
outputr (r € Ry)and x’ (£ ) of inputi (i € I,).

A consequence of the change of variables undertaken above, to bring
about linearization of the otherwise nonlinear terms, e.g., w., = x>y ((),
is that at the optimum, all z >= &% v’= &°. Thus, all of the ordinal criteria
are relegated to the status of being of equal importance. Arguably, in many
situations, one may wish to view the relative importance of these ordinal
criteria (as captured by the 2 >, v’) in the same spirit as we have viewed the
data values {y’ }. That is, there may be sufficient information to be able to
rank these criteria. Specifically, suppose that the R, output criteria can be
grouped into L, categories and the I, input criteria into L, categories. Now,
replace the variables > by 4 *(m), and v’ by v *(n), and restrict:

wi(m) - p*(m+l)>g, m=1,...L;-1
ur(L)>e

and

v’m)- v’(n+l)>g,n=1,...,L,-1
v’(Ly)>¢.

Letting m, denote the rank position occupied by output r € R,, and n; the
rank position occupied by inputi € I, we perform the change of variables

wl = ulm)yl(l)
w, =0 (M) x;(0)

The corresponding version of model (3.4) would see the lower bound
restrictions iz >, v} >¢ replaced by the above constraints on x> (m) and v °

ro
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(n). Again, arguing that at the optimum in (3.4), these variables will be
forced to their lowest levels, the resulting values of the z*(m), v *(n) will be
u?(m)=(Li+1-m)e, vin)=(L+tl-n)¢.
This implies that the lower bound restrictions on w!,, w’ become

w!, > (Li+1 —m,) gz,wf(z(Ler 1-n) €2

Example
When model (3.6°) is applied to the data of Table 2-1, the efficiency
scores obtained are as shown in Table 2-2.

Table 2-2. Efficiency Scores (Non-ranked Criteria)

Project | 1 2 3 4 5 6 7 8 9 10

Score 0.76 0.73 1.00 | 0.67 1.00 | 0.82 ] 0.67 | 0.67 0.55 0.37

Here, projects 3 and 5 turn out to be ‘efficient’, while all other projects
are rated well below 100%. In this particular analysis, & was chosen as 0.03.
In another run (not shown here) where & = 0.01 was used, projects 3, 5 and
6 received ratings of 1.00, while all others obtained somewhat higher scores
than those shown in Table 2-2. When a very small value of & (&=0.001)
was used, all except one of the projects was rated as efficient. Clearly this
example demonstrates the same degree of dependence on the choice of ¢ as
is true in the standard DEA model. See Ali and Seiford (1993).

From the data in Table 2-1 it might appear that only project 3 should be
efficient since 3 dominates project 5 in all factors except for the second input
where project 3 rates second while project 5 rates first. As is characteristic of
the standard ratio DEA model, a single factor can produce such an outcome.
In the present case this situation occurs because w; = 0.03 while W§2 =
0.51. Consequently, project 5 is accorded an ‘efficient’ status by permitting
the gap between W12 and wz to be (perhaps unfairly) very large. Actually,
the set of multipliers which render project 5 efficient also constitute an
optimal solution for project 3.

If we further constrain the model by implementing criteria importance
conditions as defined in the previous section, the relative positioning of the
projects changes as shown in Table 2-3.

Table 2-3. Efficiency Scores (Ranked Criteria)

Project | 1 2 3 4 5 6 7 8 9 10

Score 0.71 0.72 1.00 | 0.60 1.00 1 0.80 | 062 |063 |0.50 | 0.35

Hence, criteria importance restrictions can have an impact on the
efficiency status of the projects.
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Two interesting phenomena characterize DEA problems containing
ordinal data. If one examines in detail the outputs from the analysis of the
example data, two observations can be made. First, it is the case that 8 =1
for each project (whether efficient or inefficient). This means that each
project is either on the frontier proper or an extension of the frontier. Second,
if one were to use the CRS rather than VRS model, it would be observed that
z/lk =1 for each project. The implication would seem to be that the two
models (CRS and VRS) are equivalent in the presence of ordinal data.
Moreover, since & =1 in all cases, these models are as well equivalent to
the additive model of Charnes et al. (1985). The following two theorems
prove these results for the general case.

Theorem 3.3
In problem (3.6°), if I, is non empty, & =1 at the optimum.

Proof:
[e— L [e—
By definition, 0, (£)= Zé‘ik (n). Thus, 0, (1)=1 for all k, and for any

n=/

N
ordinal input i. From the constraint set of (3.6), if Z/Ik =1, then since
k=1

0o, (1) = 2/1/(5;1( (1), and since z/lké}k (1)=1 (given that all
k=1

k=1
members of {é_'lk (l)}j{v=1 equal 1), it follows that 6’5—‘[0 (I)>1. But since

é_‘w (I)=1, then #>1, meaning that at the optimum € =1.
QED

This rather unusual property of the DEA model in the presence of ordinal
data is generally explainable by observing the dual form (3.5). It is noted that
& plays the role of discriminating between the levels of relative importance
of consecutive rank positions. If in the extreme case £=0, then any one
rank position becomes as important as any other. This means that regardless
of the rank position occupied by a DMU “0”, that position can be credited
with at least as high a weight as those assumed by the peers of that DMU.
Hence, every DMU will be deemed technically efficient. It is only the
presence of positive gaps (defined bye&’) between rank positions that
renders a DMU inefficient via the slacks.



