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Introduction to Environment-Friendly 
Bioprocesses by Microalgae and Cyanobacteria 1 
Alfredo de Jesús Martínez-Roldán 

Abstract 

Microalgae include diverse organisms with different cel-
lular structures (prokaryotic and eukaryotic), the capabil-
ity to grow in diverse ecosystems (sea, rivers, lakes, 
lagoons, soil, etc.), and the possibility of performing auto-
trophic, mixotrophic, and heterotrophic metabolism. This 
diversity is the reason for their ability to produce and 
accumulate different compounds, many of which have 
the potential to be used in industrial processes. These 
compounds include lipids, proteins, amino acids, 
carotenoids, biofuels, adsorbents (carbons), polyunsatu-
rated fatty acids, and animal feeds. In addition, processes 
based on microalgae can capture carbon dioxide (CO2), 
eliminate pollutants (such as nitrogen, phosphorous, and 
heavy metals), or even utilize biomass as feed for live-
stock. Nevertheless, the growth conditions, induction pro-
cess, and extraction and purification strategies are specific 
to every strain. This book aims to include recent 
developments in environment-friendly processes derived 
from microalgae and cyanobacteria. 

Keywords 

Microalgae · Cyanobacteria · High-value bioproducts · 
Biotechnology 

1.1 Introduction 

Microalgae are photosynthetic microorganisms with many 
metabolic pathways very similar to superior plants; neverthe-
less, they have several advantages compared with terrestrial 
plants, such as the possibility to be cultivated and reaching 

massive cultures in photobioreactors and the fact that the 
development of fruits, seeds, or a specific tissue is not neces-
sary, as in the case of vegetable crops, to obtain a high-value 
product (Barsanti and Gualtieri 2014). Historically, 
microalgae have been used in experimental studies to eluci-
date metabolic pathways, specifically for the description of 
oxygenic photosynthesis. The experiments performed to 
describe the route of carbon fixation in oxygenic photosyn-
thesis, commonly known as the Calvin–Benson–Bassham 
cycle, were developed using Chlorella cultures exposed to 
light for small periods and subsequently inactivated by 
dropping in hot methanol. This experiment allowed us to 
determine all the molecules produced in the Calvin–Benson 
cycle and describe all the chemical reactions involved (Biel 
and Fomina 2015). 
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Since then, microalgae and cyanobacteria have been pro-
posed to develop diverse bioprocesses with two main 
objectives: eliminating different pollutants from liquid and 
gaseous effluents and producing high-value products by tak-
ing advantage of specific metabolic pathways (Borowitzka 
2013). Recently, genetic modifications of microalgae and 
cyanobacteria were carried out to either increase the amount 
of a specific metabolite or improve the performance of the 
culture under special operational conditions (Barati et al. 
2021; Beacham et al. 2017). 

Around the 1950s, the majority of the research related to 
microalgae and cyanobacteria focused on their role in the 
facultative lagoon and the tertiary treatment of wastewaters, 
as symbiosis was observed between aerobic bacteria and 
photosynthetic microorganisms and an increase in the effi-
ciency of organic matter removal was observed in the pres-
ence of microalgae (Oswald et al. 1957; Oswald and Golueke 
1960; Oswald and Gotaas 1957). 

Later, the development of technological devices for 
microalgal culture started; their containers were called 
photobioreactors and today their variety is huge (Martínez-
Roldán and Cañizares-Villanueva 2015). Some 
photobioreactors include configurations, such as fermenters,

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43969-8_1&domain=pdf
mailto:adjmartinezro@conacyt.mx
https://doi.org/10.1007/978-3-031-43969-8_1#DOI


tubular horizontal and/or vertical airlift mixing, columns, flat 
panels, and thin layers, all of which satisfy specific culturing 
requirements of the microorganisms, such as mixing, shear 
stress, and light supply. In all configurations, the main objec-
tive is to maximize biomass production, biomass productiv-
ity, or even the production of a specific metabolite or a high-
value product (Acién et al. 2017; Chini Zittelli et al. 2013; 
Torzillo and Chini Zittelli 2015). Recently, microalgal bio-
technology has focused on environmental applications or the 
production of high-value bioproducts, but always from a 
sustainability perspective. 
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Some environmental applications take advantage of the 
diverse qualities of microalgal cultures, e.g., their capability 
to fix carbon dioxide (CO2), which is useful for the develop-
ing processes to capture CO2 or to reduce the CO2 concentra-
tion in fuel gases from diverse industrial processes. However, 
there are no technological developments at the commercial 
scale, because there are numerous obstacles related to the 
engendering of the process (Solovchenko and Khozin-
Goldberg 2013; Wang et al. 2008; Zhou et al. 2017). Another 
characteristic used for environmental applications of 
microalgae is the fast consumption of nutrients from its 
culture media (nitrogen and phosphorus), which has been 
fully studied, allowing us to describe the role of microalgae 
and cyanobacteria in the stabilization of lagoons or even the 
use of microalgal cultures for the tertiary treatment of domes-
tic wastewater. The inclusion of microalgae and 
cyanobacteria in wastewater treatment permits the elimina-
tion of nitrogen and phosphorus, which cannot be eliminated 
by aerobic and anaerobic processes for organic matter elimi-
nation (Martínez-Roldán and Ibarra-Berumen 2019; Olguin 
2003). 

With regard to the use of microalgae and cyanobacteria in 
wastewater treatment, the proposal is to eliminate specific 
contaminants from water, some of which are heavy metals 
and semimetals. Microalgal biomass has a huge potential for 
the removal of ions because it is possible to use both live and 
dead biomass as adsorbents. The use and process of 
microalgal biomass as ion adsorbents is very efficient, and 
recovery of the removed ions is quite simple (Cañizares-
Villanueva 2000; Perales-Vela et al. 2006). Owing to their 
capability to remove pollutants from the culture medium, the 
microalgae are proposed to eliminate specific pollutants 
recently detected in urban wastewaters and denominated as 
emerging contaminants; the major problem with this type of 
compound is its wide variety because the sources are very 
diverse (Peña-Guzmán et al. 2019). 

Some emerging pollutants have actually reached high 
concentrations and are further increasing, causing concern 
to the scientific community. Therefore, many studies have 
focused on the development of processes to eliminate them. 

The emerging contaminants include colorants, drugs, 
hormones, healthcare products, cosmetics, and antibiotics. 
Microalgae have proven to eliminate the contaminants by 
the process of adsorption/absorption or even biotransforma-
tion; however, in this case, it is possible to obtain subproducts 
with higher toxicity than the original ones (Geissen et al. 
2015; Jain et al. 2022; Keen et al. 2014; Peña-Guzmán 
et al. 2019). Therefore, regardless of the potential of 
microalgae and cyanobacteria to eliminate these 
contaminants, there are no commercial-scale treatment pro-
cesses, and there is an unknown economic cost and real 
efficiency. 

The potential environmental application of microalgae is 
not only the elimination of pollutants from liquid and gaseous 
effluents. Since the biomass is a source of a large number of 
different molecules, several of them have high market value 
(Borowitzka 2013). Some of these bioproducts include 
pigments, antioxidants, fatty acids, oils, polyunsaturated 
fatty acids, and the lipid fraction of the biomass, which can 
be converted into liquid fuels, such as biodiesel or jet fuel 
(Cañizares-Villanueva et al. 2022). 

The high-value bioproducts are very diverse, but some of 
them have higher potential for pigment production because 
there are strains with the capability to produce high amounts 
of different carotenoids or xanthophylls, such as beta-
carotene, astaxanthin, lutein, violaxanthin, and 
antheraxanthin, as well as many other molecules with similar 
chemical properties. In addition, it is possible to obtain 
molecules with antioxidant properties, such as polyphenols, 
tocopherols, and ascorbic acid (Safafar et al. 2015). The lipid 
fraction of the biomass can be used to obtain a specific fatty 
acid (oleic, linoleic, arachidonic, etc.), or subjected to a 
chemical process to obtain a specific type of fuel, such as 
biodiesel or jet fuel (Rodolfi et al. 2009). Nevertheless, the 
number of processes at the production scale is small, and 
economic feasibility has not been proven. 

There are many possible applications of microalgae and 
cyanobacteria, but it is necessary to develop processes from 
the perspective of sustainability. This has led to an increase in 
the proposal of processes based on the use of wastewater as a 
nutrient source and the complete exploitation of the biomass 
in the biorefinery concept (because of its similarity with oil 
refinery). The biorefinery processes propose to reduce the 
effect of the processes on the environment and reduce the 
generation of residues and reach a positive life-cycle 
assessment. 

This book analyzes many examples of biotechnological 
applications of microalgae and cyanobacteria cultures, some 
of them with experimental data, and other chapters that 
include reviews with a general overview of innovative and 
promising applications.
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Abstract 

Climate change is a global problem caused by the rise of 
carbon dioxide (CO2) concentration in the atmosphere. To 
limit global warming to less than 2 °C, large-scale deploy-
ment of technologies to remove CO2 from the air will be 
needed. As highly efficient, photosynthetic, single-cell 
factories, microalgae and cyanobacteria can play a critical 
role among carbon-negative technologies. Bio-capture of 
CO2 using photosynthetic microbes is a viable method for 
recycling CO2 into biomass, which can subsequently be 
utilized to produce bioenergy, fertilizers, biomaterials, and 
other high-value products. This chapter provides an over-
view of the different strategies for utilizing microalgae and 
cyanobacteria for CO2 capture directly from the atmo-
sphere or stationary point sources with minimal environ-
mental impacts. Challenges, research needs, and 
opportunities for the integration of CO2 bio-capture within 
a biorefinery perspective are discussed. 

Keywords 

Carbon capture · Microalgae · Cyanobacteria · Photosyn-
thesis · Bioconversion · Biorefinery · Climate change 

2.1 Introduction 

Due to the role of carbon dioxide (CO2) in driving global 
climate change, there is an increasing global pressure to limit 
CO2 emissions, particularly at large-emission source points. 
In 2015, with the signing of the Paris Agreement, nations 
committed to reduce global emissions annually by 3% to 
avoid a global climate catastrophe. However, this has not 
been achieved and the path that is being followed, which 

includes mainly treatment of point sources, such as flue gas, 
is not enough to meet the target of limiting global average 
temperature below a 2 °C increase. Thus, there is a rising 
urgency for innovative methods to mitigate new emissions 
and to remove the CO2 already in the atmosphere. 
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Photosynthetic microbes, including microalgae, 
cyanobacteria, and diatoms have a great potential for mitigating 
and abating CO2 emissions, while producing valuable products 
(Moreira and Pires 2016; Vale et al.  2020) and fostering a more 
sustainable bio-economy. If part of the CO2 captured in the 
biomass is used to make products with relatively long life (i.e., 
years), or if they are permanently stored, then the cultivation of 
microalgae and cyanobacteria can become a key carbon-
negative technology to address the climate change crisis. 

Biological carbon capture is an effective and simple 
approach with potentially much lower energy needs com-
pared to physical and chemical carbon capture methods. For 
instance, the standard technology for carbon capture in post-
combustion processes is amine scrubbing, using primary or 
secondary amines. This technology is the basis of several 
megaton-scale carbon-capture projects (Feron et al. 2020). 
The regeneration of the amine, however, is very energy-
intensive, introducing a significant energy penalty and reduc-
ing the overall mitigation potential of this method (Alesi and 
Kitchin 2012; Stern et al. 2013). 

Photosynthesis is nature’s carbon capture solution. Photo-
synthetic organisms utilize the energy from light to drive the 
reaction of CO2 and water and form biomolecules. In this 
way, carbon is removed from the atmosphere and stored in 
biomass. Gross primary production (GPP) refers to the 
amount of CO2 removed from the atmosphere by photosyn-
thesis. This is known to be one of the main fluxes controlling 
the carbon balance in the atmosphere and has a significant 
potential to offset anthropogenic carbon emissions (Beer 
et al. 2010). Terrestrial GPP is estimated at about 120 Pg of 
carbon per year (Beer et al. 2010), while marine phytoplank-
ton are estimated to account for an additional 50 Pg of carbon 
per year (Yang et al. 2020). Global anthropogenic energy-
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related CO2 emissions in 2020 were estimated at 8.6 Pg of 
Carbon (IEA 2021), or roughly 5% of the carbon naturally 
fixed by photosynthesis. Thus, it is conceivable that techno-
logical solutions based on photosynthesis will be able to 
offset anthropogenic carbon emissions. 
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Microalgae and cyanobacteria are rapidly growing 
microorganisms able to fix CO2 with efficiency 10 to 
50 times higher than that of terrestrial plants (Cheah et al. 
2015; Raheem et al. 2018; Zhang and Liu 2021); they have 
high areal productivity, and high lipid and/or carbohydrate 
content. They are able to grow in nonarable land, with mini-
mal nutrient inputs, and in wastewater, saline, brines, or halo-
alkaline waters (Moreira and Pires 2016). Thanks to their 
high areal productivity and ability to grow in hostile 
environments, photosynthetic microbes are more suitable 
for biological carbon capture technologies than terrestrial 
plants. The use of dedicated crops for industrial purposes 
has previously resulting in the diversion of arable lands 
away from traditional food crops, creating unintended 
impacts on food cost and supply, resulting in the well-
known food versus fuel dilemma (Darnoko and Cheryan 
2000; Issariyakul and Dalai 2012). This dilemma is avoided 
when using photosynthetic microbes. 

In addition to their role of fixing CO2 emissions, 
microalgae and cyanobacteria can be used to remove nitrogen 
and phosphorous from agricultural and industrial effluents, 
reducing eutrophication of receiving water bodies (Fal et al. 
2021; Guo et al. 2018; W. Zhang et al. 2020). The microbial 
biomass produced can be used for several applications 
including the production of biofuels, bioplastics, food 
supplements, animal feed, cosmetic additives, pharmaceuti-
cal products, and building materials (Venkata Mohan et al. 
2016; Singh and Dhar 2019; Daneshvar et al. 2022). Thus, 
biological carbon capture with microalgae and cyanobacteria 
offers a wide range of opportunities for building sustainable 
integrated processes to support a bioresource-based circular 
economy (Venkata Mohan et al. 2016; Hemalatha et al. 2019; 
Vale et al. 2020). 

This chapter presents an overview of the factors affecting 
the performance of carbon capture using photosynthetic 
microorganisms and the different strategies for utilizing 
microalgae and cyanobacteria for CO2 capture directly from 
the atmosphere or stationary point sources with minimal 
environmental impacts. The challenges, research needs, and 
opportunities for the integration of CO2 bio-capture from a 
biorefinery perspective are discussed. 

2.2 Photosynthesis: Natural Carbon Capture 

Photosynthesis is a natural way of capturing CO2 and is the 
process responsible for transforming Earth’s atmosphere 
from CO2-rich, more than 2 billion years ago when CO2 

atmospheric concentration was about 10 to 200 times the 
present level, to a relatively CO2-depleted one (Kaufman 
and Xiao 2003). Photosynthesis is carried out in two phases, 
see Fig. 2.1. In the first phase, light-dependent reactions 
capture light energy and convert it into chemical energy 
that is ultimately stored within nicotinamide adenine dinucle-
otide phosphate (NADPH) and adenosine triphosphate 
(ATP). The light reactions occur in the photosynthetic 
unit (PSU), a light-harvesting complex and reaction center 
located within the thylakoid membrane. The NADPH 
and ATP energetic molecules are then consumed in the 
second phase, where light-independent reactions are used 
to convert CO2 into sugars (Barsanti and Gualtieri 
2005; Jensen et al. 2017; Sánchez-Baracaldo and Cardona 
2020). 

Fig. 2.1 Light-dependent and light-independent stage during photo-
synthesis (Adapted from Cheah et al. 2015) 

2NADPþ 2H2Oþ 2ADPþ 2Pi⟶2NADPH2 þ 2ATP 
þ O2 Light- dependent reaction 

CO2 þ 4Hþ þ 4e-⟶CH2Oþ H2O Light
- independent reaction 

Although photosynthesis originated in an environment 
with much higher CO2 concentrations, microalgae and 
cyanobacteria cells have developed biological adaptations 
to survive under low CO2 concentrations. The carbon 
concentrating mechanism (CCM) allows to increase the con-
centration of CO2 within the cells relative to the normal CO2 

concentration in the air (300–400 ppm). The CCM improves 
photosynthetic efficiency by increasing the available CO2 for 
ribulose bisphosphate carboxylase-oxygenase (RuBisCO). 
RuBisCO is an important enzyme that converts CO2 into 
organic carbon (Gruber and Feiz 2018). Another important 
enzyme in the CCM is carbonic anhydrase (CA), which 
catalyzes the reversible conversion of CO2 into HCO3

-

(DiMario et al. 2018).
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Several different CCMs have been identified in 
microalgae and cyanobacteria. In cyanobacteria, there are 
two types of carboxysomes (α-type and β-type), which are 
specialized compartments for the accumulation of HCO3

-. 
The accumulated HCO3

- is then converted into CO2 by the 
action of carboxysomal CA (Moroney and Ynalvez 2007). In 
the case of microalgae, Chlamydomonas reinhardtii has been 
studied as the model organism to understand the action of the 
CCM. In this microalga, the CCM can be divided into two 
phases. In the first phase, inorganic carbon is gathered from 
the environment in the form of CO2 and HCO3

- by trans-
porter proteins. In the second phase, as the concentration of 
HCO3

- increases in the chloroplast, HCO3
- is converted into 

CO2 by the action of CA (Wang et al. 2015). 
Although microalgae and cyanobacteria have in general 

faster growth rate and higher light conversion efficiency than 
plants, the efficiency of large cultivation is hindered by the 
low CO2 gas–liquid mass transfer rate and reduced light 
penetration and shading. In a fast-growing culture, the CO2 

transfer rate between the gas phase (i.e., air above culture or 
bubbles sparged) and the liquid medium phase media is too 
low to compensate for the CO2 uptake by the cells (Zuccaro 
et al. 2020), resulting in carbon limitation and slower 
photosynthetic rate. 

Light limitation also affects photosynthetic efficiency neg-
atively (Brennan and Owende 2010). Although theoretical 
photosynthetic efficiency ranges between 8% and 12%, prac-
tical photosynthesis efficiency is rarely above 1.5–2%. This 
efficiency loss is primarily caused by light scattering and 
nonproductive absorption, which causes light to be exponen-
tially attenuated as it travels along the optical path (Nwoba 
et al. 2019). During photosynthesis, the PSU can be in either 
a resting or nonactivated state or an activated state. A resting 
PSU is activated by the absorption of a photon. The absorp-
tion of excess photons converts functional PSUs into non-
functional PSUs, resulting in photoinhibition (Camacho-
Rubio et al. 2003). In a culture, the cells closer to the light 
source are more prone to experience photoinhibition as they 
are exposed to a higher light intensity, while the cells further 
down the optical path may not receive enough light. Thus, 
overall photosynthetic efficiency is affected by both light 
attenuation and scattering and photoinhibition. 

Fig. 2.2 CO2 bio-capture from 
different sources and utilization in 
biomass 

Direct CO2 

bio-captureAtmosphere 

Stationary 
point sources 

Separation 
of flue gases 

CO2 capture 
Microalgae 

and 
cyanobacteria 

biomass 
cultivation 

2.3 CO2 Bio-capture from Different Sources 

Microalgae and cyanobacteria can capture CO2 from station-
ary point emission sources, such as power plants or other 
carbon-intensive industrial processes, or directly from the 
atmosphere. The CO2 concentration in the atmosphere is 
0.03–0.06% (v/v), while for stationary point sources the 
CO2 concentration can vary between 6 and 15% (v/v) 
(Rahaman et al. 2011). The cost and energy needed for 
capturing CO2 is inversely proportional to concentration, 
the lower the concentration of CO2 in a given source, the 
more expensive the capture process. Thus, capture from 
large-point sources is one of the best and more efficient 
options to abate CO2 emissions, as the effluent streams 
from combustion and industrial processes have higher CO2 

concentrations. 
Figure 2.2 shows how different CO2 sources can be 

integrated with microalgae and cyanobacteria biomass culti-
vation for CO2 bio-capture. The following sections present an 
overview of technologies for CO2 bio-capture and a discus-
sion of the efficiency of these bio-capture methods. 

2.3.1 Bio-capture of CO2 from Stationary Point 
Sources 

Flue or stack gases released by various stationary point 
sources, such as industrial complexes and power plants, 
have relatively high CO2 concentrations ranging from 6 to 
15% (v/v) (Thomas et al. 2016). These flue gases can be used 
to boost the productivity of microalgal and cyanobacteria 
cultures. The high concentration of CO2 in the flue gas allows 
for a faster mass transfer rate, higher photosynthetic effi-
ciency, and support a higher final cell density in the cultures. 

Because of the low CO2 solubility, the flue gas needs to be 
injected or bubbled directly into the cultivation medium, 
adding to electricity demands. The energy spent in bubbling 
and mixing the CO2 in the media represents up to 27% of the 
overall production cost; at the same time, typically between 
55 and 90% of the CO2 injected in the culture is lost to the 
atmosphere (Markou et al. 2014; Caia et al. 2018). Conse-
quently, significant research efforts have been dedicated to



CO2 source Microorganism (v/v) Culture conditions Reference 

improving CO2 diffusion rates (see Sect. 2.5) and increasing 
CO2 utilization efficiency. 
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Microalgae and cyanobacteria strains with high CO2 

uptake rate and high biomass productivity are desirable to 
ensure an efficiency CO2 capture process. Sepulveda et al. 
(2019) assessed the ability of 11 different microalgae and 
cyanobacteria strains to capture CO2 and produce high bio-
mass productivity. They reported that Scenedesmus 
almeriensis and Neochloris oleoabundans were the most 
productive strains when used in CO2 capture processes com-
pared to the cyanobacteria strains. Park et al. (2021) 
investigated CO2 fixation at a CO2 concentration ranging 
from 5 to 40% from biogas in five pure microalgal cultures 
and a mixed microalgal culture, including Chlorella sp., 
Anabaena variabilis, Chlamydomonas iyengarii, Chlorella 
vulgaris, and Chlorella sorokiniana. The highest CO2 fixa-
tion rate was reported for Chlorella sp. at 1.785 g L-1 d-1 at a 
CO2 concentration of 15%. Additional studies on CO2 cap-
ture and uptake by microalgae and cyanobacteria are 
summarized in Table 2.1. 

Table 2.1 Application of microalgae in CO2 capture from the atmosphere and CO2 reach sources 

CO2% 
CO2 

fixation rate 
(g L-1 d-1 ) 

Atmospheric 
CO2 

Chlorella vulgaris and 
Pseudokirchneriella 
subcapitata 

Air 0.305 OECD medium, T = 22 °C, different dark/light cycles at 
126 μmol photons m-2 s-1 

Pires et al. 
(2014) 

Dunaliella tertiolecta 0.04 0.07 Artificial sea water, T = 26 °C, continuous illumination at 
350 μmol photons m-2 s-1 

Hulatt and 
Thomas 
(2011) 

C. vulgaris 0.09 3.45 Artificial sea water, T = 25 °C, continuous illumination at 
~50 μmol photons m-2 s-1 

Fan et al. 
(2008) 

Anabaena sp. 0.03 1.45 Allen and Arnon medium, T = 23 °C, light/dark cycles 
with 900 μmol photons m-2 s-1 

Ramkrishnan 
et al. (2014) 

Enriched 
CO2 supply 

Spirulina sp. DUT001 2 1.0 Zarrouk medium, T = 25 °C, photoperiod = 12:12, 
188.7 μmol photons m-2 s–1 

Zhu et al. 
(2020) 

Chlorella vulgaris 15 1.0 BBM medium, T = 28 °C, membrane PBR, 
photoperiod = 12:12, 120 μmol photons m-2 s-1 

Senatore et al. 
(2021) 

Chlorella vulgaris, 
Synechocystis salina, 
Microcystis aeruginosa, 

5 0.101 OECD test medium, T = 24 °C, continuous illumination 
at 120 μmol photons m-2 s-1 

Gonçalves 
et al. (2014) 

Scenedesmus obliquus 12 22.8 Soil extract medium, T = 26 °C, outdoor airlift PBR, 
220–240 μmol photons m-2 s-1 

Li et al. 
(2011) 

Chlorella vulgaris 5–25 0.27–0.47 ESP-31 medium, T = 28 °C, continuous illumination at 
50 μmol photons m-2 s-1 

Chou et al. 
(2019) 

Microalgae consortia 5.5 0.09–0.12 BBM medium, T = 30 °C, photoperiod = 12:12 at 
1650.3 μmol photon m-2 s-1 

Aslam et al. 
(2018) 

Scenedesmus almeriensis, 
Neochloris oleoabundans 

Flue 
gas 

2.8–2.64 Natural water from the river Seine and the artificial Seine 
river water, T = 25 °C, continuous illumination at 
390 μmol photons m-2 s-1 

Sepulveda 
et al. (2019) 

Spirulina sp. 2 0.81 Modified Zarrouk medium, T = 20 °C, pH 9, continuous 
illumination at 188.7 μmol photons m-2 s-1 

Zhu et al. 
(2020) 

Chlorella sp 15 1.785 BG-11 medium, pH 8.2–8.7, T = 25 °C, 
photoperiod = 12:12 at 171.91 μmol photon m-2 s-1 

Park et al. 
(2021) 

Although the high CO2 level in flue gas is beneficial for 
microalgae and cyanobacteria growth, these gases usually 
contain substances that can be inhibitory (Lam et al. 2012; 
Vale et al. 2020). In particular, unfiltered flue gas from coal 
combustion can have high concentration of SOx and NOx, 
microparticles, and heavy metals, such as mercury, which can 
present a challenge to biomass growth (Napan et al. 2015; 
Thomas et al. 2016). As the concentration of SOx and NOx 

increases, the acidity of the culture medium increases and this 
lowers the pH (Vale et al. 2020). Low pH values may inhibit 
microalgal growth or even result in cell death. Duarte et al. 
(2016) evaluated the tolerance of microalgae and 
cyanobacteria to the presence of NOx and SOx and found 
that strains were able to tolerate those gases at concentration 
of up to 400 ppm. Aslam et al. (2017) demonstrated the 
adaptation of mixed microalgal communities to growth in 
unfiltered flue gas from coal combustion. This microalgal 
community was dominated by Desmodesmus spp., which 
was the most resilient species. Radmann et al. (2011) 
evaluated the NOx and SOx tolerance of C. vulgaris,



Scenedesmus obliquus, and Synechococcus nidulans by 
using a simulated gas from coal combustion, containing 
12% (v/v) CO2, 100 ppm NOx, and 60 ppm SOx. They 
reported that the growth of C. vulgaris and S. obliquus was 
not inhibited, but this was not the case for S. nidulans. 
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In short, stationary point sources are excellent for supply-
ing the required CO2 concentration for carbon capture and 
biomass production in microalgae and cyanobacteria. How-
ever, direct use of flue gas is not, in general, possible without 
any separation or treatment. Identifying robust microalgae 
and cyanobacteria strains capable of high CO2 bio-capture 
and adapted to the high concentration of other gases present 
in flue gas should be further explored to maximize the CO2 

bio-capture potential of microalgae and cyanobacteria cul-
ture. Furthermore, despite the large energy requirements for 
supplying CO2 to the cultivation medium, a significant 
amount of the CO2 provided is released into the atmosphere, 
decreasing net capture, and incurring inefficient energy use. 
Thus, additional research efforts must be directed at improv-
ing CO2 diffusion rates and integrating different CO2 capture 
techniques with microalgae and cyanobacteria cultures. 

2.3.2 Biological Direct Air Capture 
with Microalgae and Cyanobacteria 

Although capture from concentrated large-point sources of 
CO2 is the most desirable and efficient option, about half of 
CO2 emissions are from diffuse sources (Moreira and Pires 
2016). Moreover, the CO2 already accumulated in the atmo-
sphere will continue to negatively contribute to climate 
change (Keith 2009). Thus, capture of atmospheric CO2 

using negative emissions technologies is needed to address 
emissions from diffuse sources and to restore the carbon 
balance in the atmosphere. Direct air capture (DAC) refers 
to technologies that directly remove CO2 from the atmo-
sphere. These technologies also offer the advantage of 
deployment in any location, independent of a specific source 
and without added costs for CO2 transportation. 

In the case of microalgal and cyanobacterial cultures, to 
capture 1 million ton of CO2 per year, between 70 and 86 km

2 

of the culture is needed, assuming an average productivity of 
20 g m-2 day-1 of dry weight biomass and considering that 
about 1.6 to 2 grams of CO2 are captured for every gram of 
biomass (Sayre 2010). Given the large land requirements for 
cultivation, it is more likely to find suitable land for deploy-
ment of large-scale cultures far away from industrial areas or 
population centers, where land may be scarce or expensive. 

The low concentration of CO2 in the atmosphere, how-
ever, is a major drawback as it limits CO2 solubility and mass 
transfer rate into the cultivation media (Kumar et al. 2010). 
Carbon utilization has been shown to be more efficient when 
the supply rate of CO2 matches closely with the demand of 

the growing biomass (Sobczuk et al. 2000; Vale et al. 2020). 
For DAC, active bubbling is not desirable as it requires a high 
energy input and will increase water evaporation. For a cost 
and energy-effective carbon capture process, the CO2 supply 
to the cultivation needs to be improved by passive means. 

To compensate for the low solubility of CO2 in natural 
waters, several microalgae and cyanobacteria strains rely on 
the CCM to increase the intracellular concentration of bicar-
bonate ions and use CA to convert the HCO3

- back to CO2 to 
be used in photosynthesis. The ability of some microalgae 
and cyanobacteria to utilize HCO3

- have prompted several 
researchers to explore the use of alkaline culture conditions to 
enhance CO2 mass transfer rate and total inorganic carbon 
concentration in the culture media (Chi et al. 2013; Canon-
Rubio et al. 2016). Alkalinity is defined as the sum of the 
concentration of hydroxyl ions, bicarbonate ions, and 
carbonates ions, times the corresponding ion charge. As 
alkalinity increases, so does the concentration of dissolved 
inorganic carbon. High alkalinity also improves CO2 mass 
transfer rate from the gas phase to the cultivation medium, as 
there is an increased driving force (Vadlamani et al. 2019). In 
addition, it provides a higher buffering capacity enabling the 
uncoupling of CO2 absorption from biomass growth (Chi 
et al. 2013; Santos et al. 2013), as illustrated in Fig. 2.3. 

Because alkalinity can inhibit cell growth, it is necessary 
to operate at relatively low alkalinity or use alkali-tolerant or 
alkaliphilic microalgae or cyanobacteria strains. Extreme 
alkaline conditions together with alkaliphilic microalgae 
and cyanobacteria have been suggested for large-scale culti-
vation (Piiparinen et al. 2018; Song et al. 2019; Zhu et al. 
2020). In soda lakes, at pH > 10, high concentrations of 
bicarbonate are present supporting a high growth rate of 
CO2 fixation by photosynthetic microbes, while the con-
sumed CO2 is spontaneously replenished by passive diffu-
sion from the air above the lakes (Sharp et al. 2017). 

Vadlamani et al. (2017) demonstrated high biomass pro-
ductivity by cultivating C. sorokiniana (>16 g m-2�d-1 ) in a  
4.2 m2 raceway pond using an alkaline cultivation medium 
and atmospheric CO2 alone. In another study, Zhu et al. 
(2020) used extreme alkaline conditions with pH ranging 
between 10.0 and 12.5 for DAC using Spirulina 
sp. DUT001. Effective CO2 bio-capture was reported with 
maximum biomass productivity about 1.00 g L-1 d-1 and 
carbon-capture rate of 0.81 g L-1 d-1 . 

2.4 Integrated Biorefinery 
for a Carbon-Neutral Circular 
Bioeconomy 

To foster the development of an integrated, sustainable, and 
robust biological CO2 capture process, circular economy 
principles must be applied to ensure the efficient processing



and conversion of the generated biomass, while designing out 
or minimizing waste, maximizing the reutilization of 
resources, and regenerating natural systems. The microalgal 
or cyanobacterial biomass produced from the CO2 capture 
process consists of several biochemical compounds, includ-
ing lipids, proteins, polysaccharides, and pigments. These 
compounds can be extracted and converted into biobased 
products which, in turn, displace alternative products 
obtained from non-sustainable sources or that have a high 
carbon footprint (Daneshvar et al. 2022). 
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Fig. 2.3 Mechanism of the 
bicarbonate pool’s role in the 
efficient capture of CO2 from the 
air and rapid carbon supply for 
photosynthesis (Adapted from 
Zhu et al. 2020) 

An integrated biorefinery can be conceived where 
bio-capture of CO2 occurs simultaneously with the produc-
tion of valuable products, thus converting waste CO2 

emissions into carbon-neutral products. As microalgae or 
cyanobacteria require several nutrients for growth, the 
biorefinery concept starts with cultivation using a nutrient-
rich waste stream, such as wastewater, as the primary source 
of nitrogen, phosphorus, sulfur, and trace metals; thus, 
allowing the recycling and reclamation of these materials 
and reducing nutrient supply costs (Razzak et al. 2013; 
Whitton et al. 2015; Yen et al. 2015; Singh et al. 2016). 

Conventional downstream processing involves harvesting 
and separating biomass from the cultivation media, followed 
by biomass pretreatment by homogenization, beading, and 
chemical hydrolysis to extract products of interest, and finish 
with the upgrading to the final products (Khoo et al. 2020). 
This traditional downstream processing approach is wasteful 
and expensive. Thus, in the biorefinery approach, the goal is 
to utilize the biomass to generate multiple products within a 
single process. 

The approach in microalgal biorefineries is the cascade 
system (Francavilla et al. 2015; Hemalatha et al. 2019), 

which allows for different biomass fractions to be extracted 
either simultaneously or separately by different methods 
(Monlau et al. 2021). Selecting the most suitable downstream 
processing strategy depends on the nature of the bioproducts, 
the required energy, and technology availability (Bastiaens 
et al. 2017). The use of mild separation technologies, which 
require low pressure, less energy, and less chemicals, is 
preferred for downstream to increase energy efficiency and 
avoid damaging the most sensitive products, which are 
often the most valuable. Figure 2.4 presents a possible path-
way to produce multiple products from microalgal and 
cyanobacterial biomass. 

Carbajal Tejada et al. (2020) studied five different 
biorefinery scenarios using Scenedesmus dimorphus biomass 
as feedstock to produce biodiesel, dihydroxyacetone, 
fishmeal, glycerol, and vegetable oil. Their results showed 
that integrated reactive distillation with the biological oxida-
tion of glycerol to produce dihydroxyacetone was the most 
efficient biorefinery scenario. In another study, Moncada 
et al. (2014) simulated two different integrated biorefineries 
using Chlorella sp. grown with a CO2-rich stream and sugar 
cane to determine the most promising scenario. The use of 
Chlorella sp. biomass to produce biodiesel, glycerol, ethanol, 
sugar, and electricity was found more environmentally and 
economically viable option than just using sugarcane alone. 

Microalgal and cyanobacterial biomass is mainly com-
posed of lipids (7–60%), proteins (6–71%), and 
carbohydrates (5–60%), depending upon the species and 
culture conditions (García-Garibay et al. 2003; Chen et al. 
2013; Aziz et al. 2020). These macromolecules can be 
converted into several different products. The most effective 
use of the produced biomass will be the one that displaces



unsustainable feedstock or existing products with a high 
carbon footprint. In the following subsections, we discuss 
some of the products that can be more directly targeted as 
they either have a high carbon footprint or are high value, and 
therefore can help to improve the economics of the 
bio-capture process. 
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Fig. 2.4 Application of different downstream processing methods for integrated biorefinery (Adapted from Chew et al. 2017) 

2.4.1 Biofuels 

The high lipid content (15–60%) in many microalgae makes 
them very attractive for biodiesel production (Converti et al. 
2009; Yeh and Chang 2011; Moazami et al. 2012; Polat and 
Alt{nbaş 2020). Lipid content can be further increased by 
manipulating several cultivation parameters (Huang and Su 
2014); Polat and Alt{nbaş 2020). Although biodiesel produc-
tion from microalgae is quite advantageous, it has not yet 
been commercially deployed due to the high energy-intensive 
downstream processing methods. 

The carbohydrates in microalgal and cyanobacterial bio-
mass are a suitable feedstock for hydrogen, bioethanol, and 
biogas production by fermentative pathways (Ho et al. 2013; 
Lakatos et al. 2019; Nagappan et al. 2019). Microalgal and 
cyanobacterial biomasses do not contain rigid cell wall 
components such as lignin, which makes them easier to 
process. Biodiesel production can be integrated with fermen-
tation and anaerobic digestion to simultaneously produce a 
variety of energy products (Harun et al. 2011; González-
González et al. 2018). After extraction of lipids for biodiesel 

production, the rest of the biomass, including carbohydrates, 
can be used as a feedstock for hydrothermal liquefaction, 
fermentation, or anaerobic digestion to produce biodiesel, 
bioethanol and/or biogas respectively. A recent 
technoeconomic analysis has shown that when microalgal 
biofuel production was integrated with other processes to 
obtain multiple valuable products (polyhydroxy butyrate 
and astaxanthin), the biofuel price was reduced to a competi-
tive value of $0.54/L (Rafa et al. 2021). 

2.4.2 Bioactive Compounds 

The main bioactive compounds produced by microalgae 
include polyunsaturated fatty acids (PUFAs), carotenoids, 
chlorophylls, phycobiliproteins, polysaccharides, and 
proteins. 

Several microalgae produce PUFAs with known bioactive 
properties, such as eicosapentaenoic acid (EPA, C20:5 ω-3), 
docosahexaenoic acid (DHA, C22:6 ω-3), arachidonic acid 
(ARA, 20:6 ω-6), and γ-linolenic acid (GLA, 18:3 ω-6) 
(López et al. 2019). Many of these fatty acids have been 
studied for their anti-inflammatory activity and have been 
shown to prevent many diseases such as asthma, diabetes, 
and cardiovascular diseases (Cheng et al. 2018; Hess et al. 
2018). 

Some microalgal polysaccharides are considered biologi-
cally active molecules with promising applications in food, 
cosmetic additives, and pharmaceutical products (De Jesus



Raposo et al. 2013; Barkia et al. 2019; Gouda et al. 2022). 
Sulfated polysaccharides are prominent for having antioxi-
dant, anti-inflammatory, antitumoral, antiviral, antibacterial, 
and immunomodulatory activities (De Jesus Raposo et al. 
2013). Among these, sulfated polysaccharides extracted 
from Porphyridium sp. and Nannochloropsis oculata have 
been shown to have antiviral, antitumoral, and 
immunostimulatory properties in pharmaceutical and thera-
peutic applications (Custódio et al. 2015; Casas-Arrojo et al. 
2021). Apart from these benefits, polysaccharides obtained 
from microalgae are used as stabilizers, thickening agents, 
emulsifiers, and lubricants in foods, cosmetics, and textiles 
(Costa et al. 2021). Because some of these polysaccharides 
are released into the growth media during cultivation, their 
recovery and purification is much simpler than in the case of 
intracellular compounds. 
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Microalgae and cyanobacteria also produce essential 
amino acids, peptides, and proteins (Amorim et al. 2020). 
These valuable compounds have found multiple applications 
in the pharmaceutical, cosmetic, and food industries (Costa 
et al. 2021). Spirulina platensis and C. vulgaris are known for 
their high protein contents of 46–71% (Lupatini et al. 2017; 
Tokuşoglu and Ünal 2003). They have been used as food and 
feed supplements for decades, as they contain several essen-
tial amino acids, such as threonine, methionine, isoleucine, 
valine, leucine, lysine, and histidine (Wang et al. 2021). 
Montalvo et al. (2019) reported antioxidant, chelating, anti-
microbial, anti-inflammatory, and anti-collagenase activity of 
three biopeptide fractions from Arthrospira maxima OF15 
for potential applications in the pharmaceutical, cosmetic, 
and food industries. 

Although all these metabolites have various applications, 
there are several limitations to be addressed. The main prob-
lem is the high cost of cultivation and extraction. Applying 
the biorefinery concept to obtain more than one product is 
essential to reach a cost-effective production system 
(Balasubramaniam et al. 2021). 

2.4.3 Pigments 

The three main pigment classes obtained from microalgal and 
cyanobacterial biomass include chlorophylls, carotenoids, 
and phycobilins (Koyande et al. 2019). These pigments are 
mainly utilized as food and feed supplements, food coloring, 
and as pharmaceutical and cosmetic additives because of 
their high antioxidant action (Begum et al. 2016; Morocho-
Jácome et al. 2020). β-carotene produced by microalgae can 
be used as a food colorant, food and feed additive, or as 
precursor for vitamin A, and antioxidants (Wolf et al. 
2021). Lutein and zeaxanthin are other carotenoids that are 
produced by microalgae and cyanobacteria and have been 
used as food additives due to their antioxidant activities 

(Granado-Lorencio et al. 2009). Phycocyanin is a blue-
colored pigment-protein complex that is extracted from 
cyanobacteria species such as Arthrospira platensis (Zeng 
et al. 2012). It has antioxidant, anticancer, and anti-
inflammatory properties and helps to improve immune func-
tion and inhibit cancer cell growth (Zeng et al. 2012). It has 
been used as a food ingredient and as an additional supple-
ment to fight or prevent cancer. Furthermore, due to its 
naturally blue color, it has been used as a colorant for the 
textile and food industries to replace synthetic colorants 
(Rahman et al. 2017). 

Pigments are one the most valuable products that can be 
obtained from microalgae. Although market size and product 
price are higher than other products, pigment extraction 
methods are expensive and involve the use of toxic materials. 
Economic feasibility and sustainability need to be improved 
by, e.g., investigating more environmentally friendly and 
non-toxic extraction methods (Rajesh et al. 2020). 

2.4.4 Plastics 

The global demand for plastics has increased exponentially 
since large-scale production of plastics started in the 1950s 
(Geyer et al. 2017). The carbon footprint of plastic produc-
tion was estimated at 1.7 Gigaton (Gt) CO2 equivalent in 
2015 (Cabernard et al. 2021), representing 4.5% of global 
greenhouse gas (GHG) emissions. Because many plastics 
have long life spans, with some taking tens to hundreds of 
years to decompose, replacing fossil fuel–derived plastics 
with microalgal plastics is a feasible strategy for long-term 
carbon sequestration. 

Some microalgae and cyanobacteria species produce 
metabolites that can be used directly for the fabrication of 
bioplastics, such as polyhydroxyalkanoates (PHAs) (Balaji 
et al. 2013), while other plastics can be obtained by chemical 
routes using the lipid, protein, and carbohydrate fraction of 
the microalgal and cyanobacterial biomass. Plastics obtained 
from microalgae and cyanobacteria can be designed to have 
properties comparable to those of fossil fuel–derived plastics 
(Rahman and Miller 2017). 

Polyhydroxybutyrate (PHB), a type of PHA, is frequently 
found in cyanobacteria as an energy and carbon storage 
compound. Several cyanobacteria, such as Synechocystis, 
Synochoccocus, Nostoc, and Spirulina, are known PHB 
producers (Yashavanth et al. 2021), while Synechocystis 
PCC6803 has been used as a model organism to study the 
production of PHB (Singh et al. 2019; Koch et al. 2020). 
PHB is a biodegradable alternative to thermoplastics, such as 
polyethylene and polypropylene, and it is being commer-
cially produced for applications in disposable food ware 
(McAdam et al. 2020). Recent studies have focused on the 
use of genetic engineering to increase PHB yield and



integrate cultivation system with wastewater to reduce culti-
vation cost (Larkum et al. 2012; Katayama et al. 2018; López 
Rocha et al. 2020; Chong et al. 2021). 
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The triglycerides accumulated by many microalgae can be 
used as feedstock for the synthesis of different polyols, by 
chemically attaching hydroxyl groups to the unsaturated 
bonds in the fatty acid chains. These polyols can be converted 
into polyurethanes for a variety of applications by means of 
epoxidation and ring-opening by methanol, ethylene glycol, 
or lactic acid; hydroformylation; or urethane reaction with 
isocyanates (Hai et al. 2020; Peyrton et al. 2020). Another 
attractive material that can be derived from microalgae is 
acrylonitrile, which is a monomer widely used in the produc-
tion of a variety of plastics, rubbers, resins, acrylic fibers, and 
polyacrylonitrile (PAN) carbon fibers (Karp et al. 2017). 
Glycerol obtained from the transesterification of algal oils 
can be converted into acrylonitrile by direct ammoxidation in 
the gas phase (Guerrero-Pérez and Bañares 2008). 

2.4.5 Oleochemicals 

Although the lipids in microalgae are thought of mainly as 
precursors for biofuel production, they can also be used as 
feedstock to produce many oleochemicals. Oleochemicals 
are products derived from triglycerides, including fatty 
acids, fatty alcohols, methyl esters, and glycerin with a 
wide range of applications, from food and cosmetic additives 
to drilling fluids and lubricants. Most oleochemicals are 
derived from palm, soya, canola, coconut, and palm kernel 
oils (Parsons et al. 2020). The sustainability of the 
oleochemical industry, especially palm oil, has been the 
source of growing public concern due to its many negative 
environmental impacts (Rival and Levang 2014). Although 
biobased, the oleochemical industry has an elevated carbon 
footprint and its expansion through land-use conversion has 
resulted in permanent damage to the biodiversity of sensitive 
ecosystems along with the release of massive amounts of 
GHG (Parsons et al. 2020). Palm-driven land-use change in 
Southeast Asia emits nearly 0.5 Gt of CO2 equivalent each 
year, roughly 1.4% of global net GHG emissions, and is 
responsible for extensive ecosystem degradation. The use of 
algal-derived lipids to produce oleochemicals will allow 
phasing out unsustainable feedstock. 

2.5 Challenges and Recent Progress 

The main challenge for scaling up CO2 bio-capture using 
microalgal and cyanobacterial cultures is the low CO2 diffu-
sion rates from the gas phase into the liquid culture medium, 
which translates into reduced CO2 capture efficiency (Lam 
et al. 2012; Yen et al. 2015). To enhance the CO2 absorption 

and mass transfer some approaches have been suggested, 
such as improving the existing photobioreactors (PBR), 
designing new PBR systems, and evaluating the influence 
of several parameters (temperature, pH, mixing, culture type, 
culture density, and CO2 concentration) in the CO2 diffusion 
(Morales et al. 2018). 

2.5.1 PBR Design 

Microalgal and cyanobacteria cultivation can be done in open 
ponds or closed PBRs. Open ponds are low in capital and 
operating costs, which is beneficial for scaling up the produc-
tion; however, biomass productivity is lower than in closed 
systems due to high CO2 losses, evaporation, uncontrolled 
climate conditions, and contamination risk (Acién et al. 
2017). On the other hand, closed systems provide a better-
controlled environment and prevent CO2 and evaporation 
losses, allowing to reach higher biomass productivity 
(Acién et al. 2017). The existing PBRs designs for CO2 

bio-capture and biomass cultivation are vertical column 
reactors (bubble columns or airlift), tubular reactors, flat-
plate reactors, and stirrer tank reactors. 

A key limiting factor in CO2 bio-capture is the low photo-
synthetic conversion efficiency. Although PBRs are designed 
to provide a better light path than what is achieved in open 
ponds, light conversion efficiency is much lower than what 
can be theoretically achieved. Implementing new strategies to 
improve light penetration and delivery directly to cells 
minimizes energy losses and maximizes productivity. Light 
penetration can be increased by changing PBR orientation 
(horizontal, vertical, or tilted), using solar tracking devices to 
change the direction of the light coming to the PBR surface 
(Castrillo et al. 2018), optimizing light intensity and spectral 
distribution to prevent photoinhibition from excess light 
(Ooms et al. 2016), and maintaining heterogeneous light 
distribution to eliminate dark zones (Nwoba et al. 2019; De  
la Hoz Siegler 2022). 

Several studies optimizing microalgae and cyanobacteria 
cultivation have focused on improving CO2 gas–liquid mass 
transfer by improving reactor configurations to increase the 
contact between the gas and liquid phases. The initial bubble 
size is known to affect CO2 mass transfer rate, with a smaller 
initial bubble size (R = 0.98 mm) resulting in increased CO2 

fixation. Hence, a small bubble is more suitable to be sup-
plied in PBRs for the purpose of high CO2 fixation (Barahoei 
et al. 2020). However, producing micro- or nanobubbles is a 
high energy-consuming process in which high-pressure 
devices are needed. Besides, high shear stress that is 
generated because of the bursting of small bubbles is damag-
ing to algal cells. 

Xu et al. (2020) developed a spiral-ascending CO2 dis-
solver to enhance the CO2 dissolution rate and prolong gas–



liquid contact time to improve microalgal growth in a hori-
zontal tubular PBR. This cost-efficient and effective CO2 

dissolver reduced the bubble generation diameter by 23.4% 
and increased the CO2 mass transfer rate by 69.2%. In 
another study, Gonçalves et al. (2021) designed an 
Oscillatory Flow Reactor with Smooth Periodic Constrictions 
(OFR-SPC) to improve CO2 mass transfer without 
compromising fluid turbulence, which can negatively impact 
the most sensitive cells. This system promoted high gas– 
liquid mass transfer rates with low power consumption and 
controlled fluid turbulence. Therefore, it can be a promising 
technology to be used in microalgal cultivation, replacing the 
commonly used bubble-column and airlift PBRs. 
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2.5.2 Cultivation Parameters 

The efficiency of the biological CO2 capture process is also 
affected by CO2 concentration, temperature, and 
pH. Temperature affects the solubility of CO2 as well as the 
specific growth rates. CO2 solubility decreases as tempera-
ture increases. Thus, to improve the solubility of CO2, the 
culture medium must be maintained at cooler temperatures. 
Each microorganism has its own optimal growth temperature, 
with thermophilic strains typically having higher specific 
growth rate than mesophilic or psychrophilic organisms. 
For CO2 bio-capture from stationary point sources, thermo-
philic microalgal and cyanobacterial strains can be used to 
tolerate the high temperature of flue gas without causing a 
decrease in cell growth. Varshney et al. (2018) reported 
isolation of two novel green algal strains, Asterarcys 
quadricellulare and C. sorokiniana, from water bodies that 
were near a steel plant in India. These strains had high 
specific growth rates of up to 0.06 h-1 and 0.1 h-1 , respec-
tively. Furthermore, they were able to tolerate high 
temperatures up to 43 °C and high concentration of CO2 

and NOx. In addition, they reported that when they eliminated 
NO coming from the flue gas, strains were able to accumulate 
lipids up to 44% to 46% of dry biomass. The tolerance for 
high temperature and CO2 concentration and their ability to 
accumulate lipid make these strains very attractive for CO2 

bio-capture applications. 
The pH of the culture media also has a direct impact on the 

dissolution of CO2 and other inorganic molecules, as it 
affects the chemical equilibrium between HCO3

- and 
CO3 

2-, precipitation of phosphates, volatilization of ammo-
nia, and the solubility of trace elements. Moreover, it directly 
affects cell growth due to its effect on the activity of different 
enzymes. For many microalgae and cyanobacteria strains, the 
optimum pH value is between 7 and 9. However, some 
organisms are known to thrive in extreme conditions. For 
instance, Spirulina grows optimally in highly alkaline 
conditions (pH 9–11). Alkaline conditions, at pH above 

11.0, can reduce the contamination risk from grazers, 
protozoa, and other competing algae. As discussed in Sect. 
2.3.2, it also increases the CO2 mass transfer rate and total 
dissolved inorganic carbon concentration. 

Mixing is another key cultivation parameter that affects 
the gas–liquid mass transfer in PBRs. Poor mixing can cause 
dead areas that lack nutrients and CO2, thus reducing overall 
reactor productivity. Increasing mixing rates through 
mechanical agitation or aeration can improve the CO2 mass 
transfer, but it results in higher power consumption and 
introduce excessive shear stress and cellular damage. 

2.5.3 Future Direction and Opportunities 

Carbon capture technologies based on microalgae and 
cyanobacteria cultures are promising for a carbon-neutral 
future. However, for successful implementation of this tech-
nology, innovation in culture strategies, integration with 
other processes, and process optimization are needed. 

Integration of other CO2 capture processes with 
microalgae and cyanobacteria cultures can increase overall 
CO2 capture and recovery. Chemical absorption technologies 
are based on the ability of different solvents, such as ionic 
liquids and alkaline solutions, to react with CO2 (Vega et al. 
2020). The successful integration of chemical absorption of 
CO2 with Spirulina cultivation was demonstrated by De Rosa 
et al. (2015). Membrane separation uses a CO2 permeable 
membrane to allow the CO2 to pass through, while 
preventing other flue gasses from reaching the culture 
media. In this way, inhibition of the cell by toxic gasses is 
avoided (Cheng et al. 2021). 

Recent studies have focused on the identification of highly 
efficient microalgae and cyanobacteria strains and on enhanc-
ing the efficiency of CO2-fixing enzymes through genetic 
engineering (Barati et al. 2021). Increased CO2 assimilation 
and biomass growth were reported by construction of new 
NADPH consumption pathways (Zhou et al. 2016), while the 
photosynthetic efficiency of Nannochloropsis sp. was 
improved by overexpression of RuBisCO activase (Wei 
et al. 2017). These achievements, however, need to be 
demonstrated at larger scale to ensure that the genetic 
constructs are stable over long cultivation periods. 

2.6 Conclusion 

Biological capture of CO2 is a promising approach to miti-
gate CO2 emissions and remove excess carbon from the 
atmosphere. Large-scale cultivation of microalgae and 
cyanobacteria provides environmental benefits with the pos-
sibility of producing a wide portfolio of valuable products for 
further a more sustainable and circular bioeconomy.



Although significant progress in bio-capture of CO2 by 
microalgae and cyanobacteria has been achieved, additional 
research efforts are needed to improve CO2 capture 
efficiency. 
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