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xix

At the undergraduate level, the organic chemistry curriculum at most universities 
is similar. Professors emphasize the fundamental concepts necessary to  understand 
how, when, and why organic molecules interact, while lab instructors familiarize 
students with important hands- on aspects of carrying out experiments. Bachelor’s 
students can expect to finish their studies with an idea of how molecules behave, 
how they are made, and how technologies such as NMR and IR can be used for 
their characterization. Those that enter graduate school are often surprised at the 
breadth of powerful technologies that make advanced organic chemistry the 
discipline it is today. Instead of a typical stirred round- bottomed flask, many reac-
tions are better done using photochemical, electrochemical, or flow reactors. 
Computational chemistry, once reserved for dedicated experts, can now be used 
by organic chemists to help predict outcomes, understand selectivity, and deci-
pher reaction mechanisms. Automation technology can be used to generate large 
amounts of data with limited amounts of material, and data processing software 
can be used to extract subtle trends.

Due to their prominence in the recent literature, trainees and established 
 chemists alike would benefit from gaining expertise with these technologies to be 
best prepared for solving the diverse synthetic challenges that come their way. 
However, the barrier to learning techniques without formal instruction can be 
high. Even if one is fortunate enough to have access to advanced training, the 
expert instructor may not necessarily curate the course to the needs and the back-
ground of a synthetic chemist. The primary literature and recent textbooks have 
similar limitations  – while there is no shortage of resources, experts generally 
write to other experts, and the interested organic chemist may have critical gaps in 
their understanding and struggle with subdiscipline- specific jargon.

The goal of this text is to help fill this gap by providing synthetic chemists with 
a user- friendly starting point to initiate their journey in developing new skills and 
knowledge. In each of the 11 chapters, experts communicate basic information 
about an impactful technology in a manner accessible to a classically trained 
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synthetic chemist. Chapters also includes a glossary of common terminology, a 
general introduction to the technology of interest, case- study examples of how it 
may useful to synthetic chemists, a practical discussion about steps one may take 
to put knowledge into practice, and references to recommended further reading. 
The book seeks to be a go- to resource for organic chemists at or above the gradu-
ate level that wish to expand the breadth of tools they can use to perform, analyze, 
and interpret chemistry experiments. After completion, the reader will be armed 
with the practical knowledge needed to comprehend the literature, to assess the 
strengths and limitations of each technique, and to begin applying modern tools 
to solve synthetic challenges. This will make it useful as a general resource for 
graduate students looking to expand their expertise, for instructors of graduate- 
level courses on advanced techniques for organic synthesis, and for industrial 
scientists seeking a beginner- friendly way to expand their knowledge.

The book is organized into four subsections. Chapters  1–4 describe different 
enabling technologies for performing chemical experiments – biocatalysis, photo-
chemistry, electrochemistry, and flow chemistry. While none of these topics are 
fundamentally new, their power as a tool for organic synthesis is becoming 
increasingly evident. These chapters will help the reader overcome the technical 
barrier hindering them from comfortably replicating experiments and designing 
their own. Chapters 5 and 6 focus on improved approaches to select, carry out, 
and analyze experiments. Specifically, Chapter 5 describes a statistical approach 
to experimentation that can be used to understand and optimize chemical reac-
tions. This Design of Experiments (DoE) technique is commonly employed by 
practicing scientists in many fields but is seldom taught to chemists. Chapter 6 
describes techniques that researchers can use to get more data using less time and 
fewer resources. This high- throughput experimentation (HTE) approach shows 
the reader how to carry out reactions in parallel and how the collected data can be 
interpreted to gain insights that might otherwise be missed. Chapters  7 and  8 
introduce the reader to computational chemistry tools that enable molecules and 
reactions to be modeled in silico, providing predictions and mechanistic insight to 
supplement experimentation. Chapter 7 provides a general overview of the most 
common computational tasks that an organic chemist may want to carry out and 
walks the reader through a beginner- friendly case study wherein the reactants, 
transition states, and products of a Diels–Alder reaction are calculated. Chapter 8 
builds upon the general knowledge given in the previous chapter and describes 
how computational chemistry can be used to predict the NMR spectrum of 
organic molecules. The goal of this chapter is to put this powerful technique into 
the hands of experimental chemists, which should be achievable after familiariz-
ing themselves with the simplified approach detailed throughout. Chapters 9–11 
provide the reader with an introduction to programming and machine learning. 
Computers already play a critical role in the daily life of a synthetic chemist, and 
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a little bit of familiarity with modern techniques can go a long way. Chapter 9 
provides a blueprint for understanding how and why a chemist may go about 
familiarizing themselves with programming. Chapter  10 describes a deep dive 
case study for using machine learning to facilitate reaction optimization,  providing 
a step- by- step guide that a beginner may follow to use the tool and to gain confi-
dence in harnessing other published algorithms. Chapter 11 explains how com-
puters can facilitate the planning of multistep synthesis by suggesting synthetic 
routes and reaction conditions. Helpful discussions on the current tools available, 
how they work, and their associated strengths and weaknesses are also described.

This project was only possible due to an immense amount of work by the 
authors who generously agreed to share their knowledge and meet the formidable 
task of communicating with a general audience. I am also indebted to the many 
students and postdoctoral fellows at the University of Ottawa that served as 
reviewers to help ensure that the content serves as a welcoming and beginner- 
friendly introduction to these topics that are becoming increasingly important to 
the modern synthetic chemists. I hope the readers agree that this goal has been 
met and that this marks the beginning of their journey to being a more well- 
rounded scientist capable of tackling diverse problems that come their way.

Stephen G. Newman
Ottawa

July 2023
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Glossary

API  Active pharmaceutical ingredient
BRENDA  A comprehensive enzyme information system
CALB  Lipase B from Candida antarctica
Cofactor  A non-protein chemical compound or metallic ion that is required for 

an enzyme’s role as a catalyst
DKR  Dynamic kinetic resolution
IRED  Imine reductase
NAD+/NADH  Nicotinamide adenine dinucleotide
Protein expression  Biological process where the protein is synthesized inside a cell
Recombinant DNA  DNA scaffold that contains the protein sequence of interest
TRIS  Tris(hydroxymethyl)aminomethane

1.1  Introduction

1.1.1  Enzymes – the Green and Sustainable Way of the Future

Recent efforts by chemists to actively reduce toxic waste production and minimize 
costs have led to the discovery of many green and sustainable technologies. Not 
surprisingly, the use of enzymes, Nature’s catalysts, has seen a major resurgence 
in academic and industrial interest over the past decade  – not only for their 
 sustainability and natural activities but for engineering them to perform novel 
 transformations beyond capabilities observed in a synthetic organic lab [1, 2].
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The attractiveness of using enzymes for transformations stems from their 
exquisite regio-  and stereoselectivities  – something that traditional chemists 
still struggle to achieve in the lab  – that enzymes often execute effortlessly. 
Moreover, we have seen the emergence of multienzyme cascades for the syn-
thesis of active pharmaceutical ingredients (APIs). A recent landmark example 
involves the synthesis of molnupiravir (MK- 4482), an orally dosed ribonucleo-
side analogue and inhibitor of influenza viruses, which has demonstrated 
activity against COVID- 19 when administered in animal models [3, 4]. In this 
work, McIntosh et al. developed a scalable three- step route toward MK- 4482 [5]. 
Using a cascade of five enzymes, MK- 4482 could be accessed from 
5- isobutyrylribose (Figure 1.1).

To the uninitiated, entering the world of enzyme- catalyzed chemical transfor-
mations can be incredibly daunting, especially when one is not equipped with a 
foundational understanding of what an enzyme is and how these macromole-
cules work. However, you may be surprised to hear that enzymology and chem-
istry are not too different from each other at all! With an undergraduate 
chemistry background, a chemist can easily harness the power of enzymes to 
perform desired transformations – a fact that we aim to convince you of over the 
next few pages.

However, while this chapter aims to illustrate the power of enzymes for novel 
and sustainable transformations, we do not want to inadvertently imply the use 
of these macromolecules is the be- all- end- all solution  – sometimes the use of 
traditional organic synthesis to access target molecules is the more logical solu-
tion. Therefore, when an enzyme might be used is a weighted question often 
involving the combination of various intricate factors, including efficiency 
and cost.

Over the following sections, we will do our best to educate you on these factors 
so that you can begin making an informed decision on this matter. We also aim to 

N

NH

O

O

O
HO

HO OH

OH

O

O

O

Enzymatic
cascade

O
O

HO OH

O

N

NH

O

N

O
O

HO OH

O

OH

N
H

NH

O

O

NH2OH
HMDS

Molnupiravir
(MK-4482)

Figure 1.1  A combined enzymatic cascade/hydroxylamination for the synthesis of 
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convince the reader that the use of enzymes is not limited to biologists and 
 biochemists but also readily available for use by synthetic chemists. With the fol-
lowing breakdown of important considerations to make when using an enzyme, 
we hope to instill confidence in the reader that a biological catalyst is not too dis-
similar to a chemical catalyst and can be readily obtainable from common suppliers.

We will also dispel common misconceptions and myths surrounding the use of 
enzymes and then give an overview of several classes of reactions that can be per-
formed with enzymes, including recent developments into more exotic transfor-
mations such as photobiocatalysis.

This chapter will then conclude with a snippet into recent trends and technolo-
gies that have harnessed the use of enzymes in novel ways. We hope that the 
information gained from reading this chapter will provide a strong foundation for 
the reader to develop confidence in the use of enzymes and begin their venture 
into the world of biocatalysis.

1.1.2  Enzymatic and Organic Catalysis Are Not too Different 
from Each Other

A seasoned chemist may be quite familiar with several stereoselective reactions 
whereby stereocontrol is dictated by the chiral environment of the reaction. For 
example, one model for the Corey–Bakshi–Shibata (CBS) reduction involves coordi-
nation of the respective carbonyl to the CBS catalyst in a specific spatial orientation, 
leading to stereoselective reduction of the carbonyl to the corresponding alcohol 
(Figure 1.2) [6]. Enzymes utilize a very similar concept to this reaction – the catalyst 
(enzyme) places a reactant (substrate) in a chiral environment (the active site), 
whereby stereoselectivity is dictated by the local reactive environment, leading to a 
selective reaction outcome. In the next subsection, we will look at how an enzyme 
achieves these feats.
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of where an achiral reactant is stereoselectively transformed in a chiral environment to 
the corresponding product in high enantiomeric excesses.
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1.1.3 Enzymes 101

Enzymes are known to accelerate reactions by more than 1017- fold [7]. How an 
enzyme achieves these colossal rate increases under aqueous conditions requires 
an understanding of the active site architecture in great molecular detail.

There are 20 essential amino acids found in nature. Enzymes are formed by cel-
lular machinery, which stitch together combinations of these amino acids in a 
genetically pre- defined sequence, making one very long polymer. This polymer is 
folded to give a precise three- dimensional structure (Figure 1.3). The active site is 
defined as the region of the enzyme where substrates bind and undergo catalysis. 
The catalytic cycle begins with the binding of the substrate in the active site. This 
process precisely positions all molecules involved in the catalysis (metals, sol-
vents, cofactors, etc.) in their respective orientations ready to achieve regio-  and 
stereoselectivity. Subsequent activation of the substrate initiates the reaction, gen-
erating a transition state, which is stabilized by interactions with the active site 
residues of the enzyme. Following effective conversion of the substrate, the prod-
uct is then released from the active site of the enzyme, completing one turnover 
and returning the catalyst back to its original state.

1.2   When Should I Choose an Enzyme over 
a Chemical Catalyst?

The choice of using a chemical catalyst over a biochemical solution needs to be 
assessed on a case- by- case basis, often involving a detailed cost–benefit analysis. 
For example, chemical asymmetric imine reduction often requires the use of 
expensive precious metals, such as Ir, Rh, Ru, and Pd (Figure 1.4) [8]. While recent 
methods have moved toward Earth- abundant solutions, such as employing iron 
or nickel, all these still require decoration with expensive chiral ligands that can-
not be recycled [8], making the overall synthesis very environmentally and eco-
nomically demanding.

In contrast, imine reductases (IREDs) can perform stereoselective reductions 
without the use of expensive metals and can be performed under aqueous condi-
tions mitigating the need for organic solvents. Since the initial report of IREDs in 
2010  [9], many advancements have been made to use these enzymes for novel 
synthetic transformations [9, 10]. In fact, Matzel et al. published an elegant proce-
dure for performing biocatalytic dynamic kinetic resolutions (DKRs) of aldehydes 
using IREDs (Figure  1.5). This method exploits the stereo- preference of the 
enzyme for either the R-  or S- chiral center [11].

The use of enzymes in this case showcases the re- opening of the chemical win-
dow, enabling unprecedented reaction conditions, merging asymmetric reduction 
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and water media. This would be near impossible to achieve with classical  reducing 
agents, such as NaBH4 or Na(CH3COO)3BH.

Next, we move the reader on to build an understanding of the variables associ-
ated with using a biocatalyst and here, they will gain foundational knowledge on 
how to gauge whether a chemical or biochemical solution is appropriate for 
 solving a target problem.

1.3   Key Considerations for Running Biocatalytic  
Reactions

With a primary level of appreciation of the power of enzymes, we can now con-
tinue our journey by addressing the variables that define a biocatalytic reaction. 
We will also illustrate how these variables change depending on the system that is 
being applied for the reaction. Before we advance in that direction, we will first 
begin by dissipating common myths surrounding the use of enzymes.

1.3.1  Dispelling Myths

The uptake of biocatalysis in academic and industrial applications has increased 
significantly in recent years [12, 13]. Despite the positive perception of the technol-
ogy, the breadth of applications remains rather modest. A factor that contributes to 
this lack of progress may be associated with the perceived notion of the limitations 
of biocatalysts – their availability, cost, ease of use, substrate scope, and operational 
stability. We aim to address these factors in the following subsections.
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