

IEEE Press Series on Electromagnetic Wave Theory

Douglas H. Werner, Series Editor

Advances in
Electromagnetics
Empowered by
Artificial Intelligence
and Deep Learning

Edited by
Sawyer D. Campbell
Douglas H. Werner

Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning

IEEE Press
445 Hoes Lane
Piscataway, NJ 08854

IEEE Press Editorial Board
Sarah Spurgeon, *Editor in Chief*

Jón Atli Benediktsson
Anjan Bose
James Duncan
Amin Moeness
Desineni Subbaram Naidu

Behzad Razavi
Jim Lyke
Hai Li
Brian Johnson

Jeffrey Reed
Diomidis Spinellis
Adam Drobot
Tom Robertazzi
Ahmet Murat Tekalp

Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning

Edited by

Sawyer D. Campbell and Douglas H. Werner

Department of Electrical Engineering
The Pennsylvania State University
University Park, Pennsylvania, USA

IEEE Press Series on Electromagnetic Wave Theory

Copyright © 2023 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at <http://www.wiley.com/go/permission>.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data Applied for:
Hardback ISBN: 9781119853893

Cover Image and Design: Wiley

Set in 9.5/12.5pt STIXTwoText by Straive, Chennai, India

To the memory of my mother Joyce L. Campbell

—Sawyer D. Campbell

To my devoted wife Pingjuan Li Werner and to the memory of my grandmother Flora L. Werner

—Douglas H. Werner

Contents

About the Editors *xxix*

List of Contributors *xx*

Preface *xxvi*

Section I Introduction to AI-Based Regression and Classification 1

1 Introduction to Neural Networks 3

Isha Garg and Kaushik Roy

1.1 Taxonomy 3

1.1.1 Supervised Versus Unsupervised Learning 3

1.1.2 Regression Versus Classification 4

1.1.3 Training, Validation, and Test Sets 4

1.2 Linear Regression 5

1.2.1 Objective Functions 6

1.2.2 Stochastic Gradient Descent 7

1.3 Logistic Classification 9

1.4 Regularization 11

1.5 Neural Networks 13

1.6 Convolutional Neural Networks 16

1.6.1 Convolutional Layers 17

1.6.2 Pooling Layers 18

1.6.3 Highway Connections 19

1.6.4 Recurrent Layers 19

1.7 Conclusion 20

References 20

2 Overview of Recent Advancements in Deep Learning and Artificial Intelligence 23

Vijaykrishnan Narayanan, Yu Cao, Priyadarshini Panda, Nagadastagiri Reddy Challapalle, Xiaocong Du, Youngeun Kim, Gokul Krishnan, Chonghan Lee, Yuhang Li, Jingbo Sun, Yeshwanth Venkatesha, Zhenyu Wang, and Yi Zheng

2.1 Deep Learning 24

2.1.1 Supervised Learning 26

2.1.1.1 Conventional Approaches 26

2.1.1.2 Deep Learning Approaches 29

2.1.2	Unsupervised Learning	35
2.1.2.1	Algorithm	35
2.1.3	Toolbox	37
2.2	Continual Learning	38
2.2.1	Background and Motivation	38
2.2.2	Definitions	38
2.2.3	Algorithm	38
2.2.3.1	Regularization	39
2.2.3.2	Dynamic Network	40
2.2.3.3	Parameter Isolation	40
2.2.4	Performance Evaluation Metric	41
2.2.5	Toolbox	41
2.3	Knowledge Graph Reasoning	42
2.3.1	Background	42
2.3.2	Definitions	42
2.3.3	Database	43
2.3.4	Applications	43
2.3.5	Toolbox	44
2.4	Transfer Learning	44
2.4.1	Background and Motivation	44
2.4.2	Definitions	44
2.4.3	Algorithm	45
2.4.4	Toolbox	46
2.5	Physics-Inspired Machine Learning Models	46
2.5.1	Background and Motivation	46
2.5.2	Algorithm	46
2.5.3	Applications	49
2.5.4	Toolbox	50
2.6	Distributed Learning	50
2.6.1	Introduction	50
2.6.2	Definitions	51
2.6.3	Methods	51
2.6.4	Toolbox	54
2.7	Robustness	54
2.7.1	Background and Motivation	54
2.7.2	Definitions	55
2.7.3	Methods	55
2.7.3.1	Training with Noisy Data/Labels	55
2.7.3.2	Adversarial Attacks	55
2.7.3.3	Defense Mechanisms	56
2.7.4	Toolbox	56
2.8	Interpretability	56
2.8.1	Background and Motivation	56
2.8.2	Definitions	57
2.8.3	Algorithm	57
2.8.4	ToolBox	58
2.9	Transformers and Attention Mechanisms for Text and Vision Models	58

2.9.1	Background and Motivation	58
2.9.2	Algorithm	59
2.9.3	Application	60
2.9.4	Toolbox	61
2.10	Hardware for Machine Learning Applications	62
2.10.1	CPU	62
2.10.2	GPU	63
2.10.3	ASICs	63
2.10.4	FPGA	64
	Acknowledgment	64
	References	64

Section II Advancing Electromagnetic Inverse Design with Machine Learning 81

3 Breaking the Curse of Dimensionality in Electromagnetics Design Through Optimization Empowered by Machine Learning 83

N. Anselmi, G. Oliveri, L. Poli, A. Polo, P. Rocca, M. Salucci, and A. Massa

3.1	Introduction	83
3.2	The <i>SbD</i> Pillars and Fundamental Concepts	85
3.3	<i>SbD</i> at Work in <i>EMs</i> Design	88
3.3.1	Design of Elementary Radiators	88
3.3.2	Design of Reflectarrays	92
3.3.3	Design of Metamaterial Lenses	93
3.3.4	Other <i>SbD</i> Customizations	96
3.4	Final Remarks and Envisaged Trends	101
	Acknowledgments	101
	References	102

4 Artificial Neural Networks for Parametric Electromagnetic Modeling and Optimization 105

Feng Feng, Weicong Na, Jing Jin, and Qi-Jun Zhang

4.1	Introduction	105
4.2	ANN Structure and Training for Parametric EM Modeling	106
4.3	Deep Neural Network for Microwave Modeling	107
4.3.1	Structure of the Hybrid DNN	107
4.3.2	Training of the Hybrid DNN	108
4.3.3	Parameter-Extraction Modeling of a Filter Using the Hybrid DNN	108
4.4	Knowledge-Based Parametric Modeling for Microwave Components	111
4.4.1	Unified Knowledge-Based Parametric Model Structure	112
4.4.2	Training with l_1 Optimization of the Unified Knowledge-Based Parametric Model	115
4.4.3	Automated Knowledge-Based Model Generation	117
4.4.4	Knowledge-Based Parametric Modeling of a Two-Section Low-Pass Elliptic Microstrip Filter	117
4.5	Parametric Modeling Using Combined ANN and Transfer Function	121

4.5.1	Neuro-TF Modeling in Rational Form	121
4.5.2	Neuro-TF Modeling in Zero/Pole Form	122
4.5.3	Neuro-TF Modeling in Pole/Residue Form	123
4.5.4	Vector Fitting Technique for Parameter Extraction	123
4.5.5	Two-Phase Training for Neuro-TF Models	123
4.5.6	Neuro-TF Model Based on Sensitivity Analysis	125
4.5.7	A Diplexer Example Using Neuro-TF Model Based on Sensitivity Analysis	126
4.6	Surrogate Optimization of EM Design Based on ANN	129
4.6.1	Surrogate Optimization and Trust Region Update	129
4.6.2	Neural TF Optimization Method Based on Adjoint Sensitivity Analysis	130
4.6.3	Surrogate Model Optimization Based on Feature-Assisted of Neuro-TF	130
4.6.4	EM Optimization of a Microwave Filter Utilizing Feature-Assisted Neuro-TF	131
4.7	Conclusion	133
	References	133

5 Advanced Neural Networks for Electromagnetic Modeling and Design 141

Bing-Zhong Wang, Li-Ye Xiao, and Wei Shao

5.1	Introduction	141
5.2	Semi-Supervised Neural Networks for Microwave Passive Component Modeling	141
5.2.1	Semi-Supervised Learning Based on Dynamic Adjustment Kernel Extreme Learning Machine	141
5.2.1.1	Dynamic Adjustment Kernel Extreme Learning Machine	142
5.2.1.2	Semi-Supervised Learning Based on DA-KELM	147
5.2.1.3	Numerical Examples	150
5.2.2	Semi-Supervised Radial Basis Function Neural Network	157
5.2.2.1	Semi-Supervised Radial Basis Function Neural Network	157
5.2.2.2	Sampling Strategy	161
5.2.2.3	SS-RBFNN With Sampling Strategy	162
5.3	Neural Networks for Antenna and Array Modeling	166
5.3.1	Modeling of Multiple Performance Parameters for Antennas	166
5.3.2	Inverse Artificial Neural Network for Multi-objective Antenna Design	175
5.3.2.1	Knowledge-Based Neural Network for Periodic Array Modeling	183
5.4	Autoencoder Neural Network for Wave Propagation in Uncertain Media	188
5.4.1	Two-Dimensional GPR System with the Dispersive and Lossy Soil	188
5.4.2	Surrogate Model for GPR Modeling	190
5.4.3	Modeling Results	191
	References	193

Section III Deep Learning for Metasurface Design 197

6 Generative Machine Learning for Photonic Design 199

Dayu Zhu, Zhaocheng Liu, and Wenshan Cai

6.1	Brief Introduction to Generative Models	199
6.1.1	Probabilistic Generative Model	199
6.1.2	Parametrization and Optimization with Generative Models	199

6.1.2.1	Probabilistic Model for Gradient-Based Optimization	200
6.1.2.2	Sampling-Based Optimization	200
6.1.2.3	Generative Design Strategy	201
6.1.2.4	Generative Adversarial Networks in Photonic Design	202
6.1.2.5	Discussion	203
6.2	Generative Model for Inverse Design of Metasurfaces	203
6.2.1	Generative Design Strategy for Metasurfaces	203
6.2.2	Model Validation	204
6.2.3	On-demand Design Results	206
6.3	Gradient-Free Optimization with Generative Model	207
6.3.1	Gradient-Free Optimization Algorithms	207
6.3.2	Evolution Strategy with Generative Parametrization	207
6.3.2.1	Generator from VAE	207
6.3.2.2	Evolution Strategy	208
6.3.2.3	Model Validation	209
6.3.2.4	On-demand Design Results	209
6.3.3	Cooperative Coevolution and Generative Parametrization	210
6.3.3.1	Cooperative Coevolution	210
6.3.3.2	Diatom Polarizer	211
6.3.3.3	Gradient Metasurface	211
6.4	Design Large-Scale, Weakly Coupled System	213
6.4.1	Weak Coupling Approximation	214
6.4.2	Analog Differentiator	214
6.4.3	Multiplexed Hologram	215
6.5	Auxiliary Methods for Generative Photonic Parametrization	217
6.5.1	Level Set Method	217
6.5.2	Fourier Level Set	218
6.5.3	Implicit Neural Representation	218
6.5.4	Periodic Boundary Conditions	220
6.6	Summary	221
	References	221
7	Machine Learning Advances in Computational Electromagnetics	225
	<i>Robert Lupoiu and Jonathan A. Fan</i>	
7.1	Introduction	225
7.2	Conventional Electromagnetic Simulation Techniques	226
7.2.1	Finite Difference Frequency (FDFD) and Time (FDTD) Domain Solvers	226
7.2.2	The Finite Element Method (FEM)	229
7.2.2.1	Meshing	229
7.2.2.2	Basis Function Expansion	229
7.2.2.3	Residual Formulation	230
7.2.3	Method of Moments (MoM)	230
7.3	Deep Learning Methods for Augmenting Electromagnetic Solvers	231
7.3.1	Time Domain Simulators	231
7.3.1.1	Hardware Acceleration	231
7.3.1.2	Learning Finite Difference Kernels	232
7.3.1.3	Learning Absorbing Boundary Conditions	234

7.3.2	Augmenting Variational CEM Techniques Via Deep Learning	234
7.4	Deep Electromagnetic Surrogate Solvers Trained Purely with Data	235
7.5	Deep Surrogate Solvers Trained with Physical Regularization	240
7.5.1	Physics-Informed Neural Networks (PINNs)	240
7.5.2	Physics-Informed Neural Networks with Hard Constraints (hPINNs)	241
7.5.3	WaveY-Net	243
7.6	Conclusions and Perspectives	249
	Acknowledgments	250
	References	250

8 Design of Nanofabrication-Robust Metasurfaces Through Deep Learning-Augmented Multiobjective Optimization 253

Ronald P. Jenkins, Sawyer D. Campbell, and Douglas H. Werner

8.1	Introduction	253
8.1.1	Metasurfaces	253
8.1.2	Fabrication State-of-the-Art	253
8.1.3	Fabrication Challenges	254
8.1.3.1	Fabrication Defects	254
8.1.4	Overcoming Fabrication Limitations	255
8.2	Related Work	255
8.2.1	Robustness Topology Optimization	255
8.2.2	Deep Learning in Nanophotonics	256
8.3	DL-Augmented Multiobjective Robustness Optimization	257
8.3.1	Supercells	257
8.3.1.1	Parameterization of Freeform Meta-Atoms	257
8.3.2	Robustness Estimation Method	259
8.3.2.1	Simulating Defects	259
8.3.2.2	Existing Estimation Methods	259
8.3.2.3	Limitations of Existing Methods	259
8.3.2.4	Solver Choice	260
8.3.3	Deep Learning Augmentation	260
8.3.3.1	Challenges	261
8.3.3.2	Method	261
8.3.4	Multiobjective Global Optimization	267
8.3.4.1	Single Objective Cost Functions	267
8.3.4.2	Dominance Relationships	267
8.3.4.3	A Robustness Objective	269
8.3.4.4	Problems with Optimization and DL Models	269
8.3.4.5	Error-Tolerant Cost Functions	269
8.3.5	Robust Supercell Optimization	270
8.3.5.1	Pareto Front Results	270
8.3.5.2	Examples from the Pareto Front	271
8.3.5.3	The Value of Exhaustive Sampling	272
8.3.5.4	Speedup Analysis	273
8.4	Conclusion	275

8.4.1	Future Directions	275
	Acknowledgments	276
	References	276
9	Machine Learning for Metasurfaces Design and Their Applications	281
	<i>Kumar Vijay Mishra, Ahmet M. Elbir, and Amir I. Zaghloul</i>	
9.1	Introduction	281
9.1.1	ML/DL for RIS Design	283
9.1.2	ML/DL for RIS Applications	283
9.1.3	Organization	285
9.2	Inverse RIS Design	285
9.2.1	Genetic Algorithm (GA)	286
9.2.2	Particle Swarm Optimization (PSO)	286
9.2.3	Ant Colony Optimization (ACO)	289
9.3	DL-Based Inverse Design and Optimization	289
9.3.1	Artificial Neural Network (ANN)	289
9.3.1.1	Deep Neural Networks (DNN)	290
9.3.2	Convolutional Neural Networks (CNNs)	290
9.3.3	Deep Generative Models (DGMs)	291
9.3.3.1	Generative Adversarial Networks (GANs)	291
9.3.3.2	Conditional Variational Autoencoder (cVAE)	293
9.3.3.3	Global Topology Optimization Networks (GLOnets)	293
9.4	Case Studies	294
9.4.1	MTS Characterization Model	294
9.4.2	Training and Design	296
9.5	Applications	298
9.5.1	DL-Based Signal Detection in RIS	302
9.5.2	DL-Based RIS Channel Estimation	303
9.6	DL-Aided Beamforming for RIS Applications	306
9.6.1	Beamforming at the RIS	306
9.6.2	Secure-Beamforming	308
9.6.3	Energy-Efficient Beamforming	309
9.6.4	Beamforming for Indoor RIS	309
9.7	Challenges and Future Outlook	309
9.7.1	Design	310
9.7.1.1	Hybrid Physics-Based Models	310
9.7.1.2	Other Learning Techniques	310
9.7.1.3	Improved Data Representation	310
9.7.2	Applications	311
9.7.3	Channel Modeling	311
9.7.3.1	Data Collection	311
9.7.3.2	Model Training	311
9.7.3.3	Environment Adaptation and Robustness	312
9.8	Summary	312
	Acknowledgments	313
	References	313

Section IV RF, Antenna, Inverse-Scattering, and Other EM Applications of Deep Learning 319

10	Deep Learning for Metasurfaces and Metasurfaces for Deep Learning 321
	<i>Clayton Fowler, Sensong An, Bowen Zheng, and Hualiang Zhang</i>
10.1	Introduction 321
10.2	Forward-Predicting Networks 322
10.2.1	FCNN (Fully Connected Neural Networks) 323
10.2.2	CNN (Convolutional Neural Networks) 324
10.2.2.1	Nearly Free-Form Meta-Atoms 324
10.2.2.2	Mutual Coupling Prediction 327
10.2.3	Sequential Neural Networks and Universal Forward Prediction 330
10.2.3.1	Sequencing Input Data 331
10.2.3.2	Recurrent Neural Networks 332
10.2.3.3	1D Convolutional Neural Networks 332
10.3	Inverse-Design Networks 333
10.3.1	Tandem Network for Inverse Designs 333
10.3.2	Generative Adversarial Nets (GANs) 335
10.4	Neuromorphic Photonics 339
10.5	Summary and Outlook 340
	References 341
11	Forward and Inverse Design of Artificial Electromagnetic Materials 345
	<i>Jordan M. Malof, Simiao Ren, and Willie J. Padilla</i>
11.1	Introduction 345
11.1.1	Problem Setting 346
11.1.2	Artificial Electromagnetic Materials 347
11.1.2.1	Regime 1: Floquet–Bloch 348
11.1.2.2	Regime 2: Resonant Effective Media 349
11.1.2.3	All-Dielectric Metamaterials 350
11.2	The Design Problem Formulation 351
11.3	Forward Design 352
11.3.1	Search Efficiency 353
11.3.2	Evaluation Time 354
11.3.3	Challenges with the Forward Design of Advanced AEMs 354
11.3.4	Deep Learning the Forward Model 355
11.3.4.1	When Does Deep Learning Make Sense? 355
11.3.4.2	Common Deep Learning Architectures 356
11.3.5	The Forward Design Bottleneck 356
11.4	Inverse Design with Deep Learning 357
11.4.1	Why Inverse Problems Are Often Difficult 359
11.4.2	Deep Inverse Models 360
11.4.2.1	Does the Inverse Model Address Non-uniqueness? 360
11.4.2.2	Multi-solution Versus Single-Solution Models 360
11.4.2.3	Iterative Methods versus Direct Mappings 361
11.4.3	Which Inverse Models Perform Best? 361
11.5	Conclusions and Perspectives 362

11.5.1	Reducing the Need for Training Data	362
11.5.1.1	Transfer Learning	362
11.5.1.2	Active Learning	363
11.5.1.3	Physics-Informed Learning	363
11.5.2	Inverse Modeling for Non-existent Solutions	363
11.5.3	Benchmarking, Replication, and Sharing Resources	364
	Acknowledgments	364
	References	364
12	Machine Learning-Assisted Optimization and Its Application to Antenna and Array Designs	<i>371</i>
	<i>Qi Wu, Haiming Wang, and Wei Hong</i>	
12.1	Introduction	371
12.2	Machine Learning-Assisted Optimization Framework	372
12.3	Machine Learning-Assisted Optimization for Antenna and Array Designs	375
12.3.1	Design Space Reduction	375
12.3.2	Variable-Fidelity Evaluation	375
12.3.3	Hybrid Optimization Algorithm	378
12.3.4	Robust Design	379
12.3.5	Antenna Array Synthesis	380
12.4	Conclusion	381
	References	381
13	Analysis of Uniform and Non-uniform Antenna Arrays Using Kernel Methods	<i>385</i>
	<i>Manel Martínez-Ramón, José Luis Rojo Álvarez, Arjun Gupta, and Christos Christodoulou</i>	
13.1	Introduction	385
13.2	Antenna Array Processing	386
13.2.1	Detection of Angle of Arrival	387
13.2.2	Optimum Linear Beamformers	388
13.2.3	Direction of Arrival Detection with Random Arrays	389
13.3	Support Vector Machines in the Complex Plane	390
13.3.1	The Support Vector Criterion for Robust Regression in the Complex Plane	390
13.3.2	The Mercer Theorem and the Nonlinear SVM	393
13.4	Support Vector Antenna Array Processing with Uniform Arrays	394
13.4.1	Kernel Array Processors with Temporal Reference	394
13.4.1.1	Relationship with the Wiener Filter	394
13.4.2	Kernel Array Processor with Spatial Reference	395
13.4.2.1	Eigenanalysis in a Hilbert Space	395
13.4.2.2	Formulation of the Processor	396
13.4.2.3	Relationship with Nonlinear MVDM	397
13.4.3	Examples of Temporal and Spatial Kernel Beamforming	398
13.5	DOA in Random Arrays with Complex Gaussian Processes	400
13.5.1	Snapshot Interpolation from Complex Gaussian Process	400
13.5.2	Examples	402
13.6	Conclusion	403
	Acknowledgments	404
	References	404

14	Knowledge-Based Globalized Optimization of High-Frequency Structures Using Inverse Surrogates	409
	<i>Anna Pietrenko-Dabrowska and Sławomir Koziel</i>	
14.1	Introduction	409
14.2	Globalized Optimization by Feature-Based Inverse Surrogates	411
14.2.1	Design Task Formulation	411
14.2.2	Evaluating Design Quality with Response Features	412
14.2.3	Globalized Search by Means of Inverse Regression Surrogates	414
14.2.4	Local Tuning Procedure	418
14.2.5	Global Optimization Algorithm	420
14.3	Results	421
14.3.1	Verification Structures	422
14.3.2	Results	423
14.3.3	Discussion	423
14.4	Conclusion	428
	Acknowledgment	428
	References	428
15	Deep Learning for High Contrast Inverse Scattering of Electrically Large Structures	435
	<i>Qing Liu, Li-Ye Xiao, Rong-Han Hong, and Hao-Jie Hu</i>	
15.1	Introduction	435
15.2	General Strategy and Approach	436
15.2.1	Related Works by Others and Corresponding Analyses	436
15.2.2	Motivation	437
15.3	Our Approach for High Contrast Inverse Scattering of Electrically Large Structures	438
15.3.1	The 2-D Inverse Scattering Problem with Electrically Large Structures	438
15.3.1.1	Dual-Module NMM-IEM Machine Learning Model	438
15.3.1.2	Receiver Approximation Machine Learning Method	440
15.3.2	Application for 3-D Inverse Scattering Problem with Electrically Large Structures	441
15.3.2.1	Semi-Join Extreme Learning Machine	441
15.3.2.2	Hybrid Neural Network Electromagnetic Inversion Scheme	445
15.4	Applications of Our Approach	450
15.4.1	Applications for 2-D Inverse Scattering Problem with Electrically Large Structures	450
15.4.1.1	Dual-Module NMM-IEM Machine Learning for Fast Electromagnetic Inversion of Inhomogeneous Scatterers with High Contrasts and Large Electrical Dimensions	450
15.4.1.2	Nonlinear Electromagnetic Inversion of Damaged Experimental Data by a Receiver Approximation Machine Learning Method	454
15.4.2	Applications for 3-D Inverse Scattering Problem with Electrically Large Structures	459
15.4.2.1	Super-Resolution 3-D Microwave Imaging of Objects with High Contrasts by a Semi-Join Extreme Learning Machine	459
15.4.2.2	A Hybrid Neural Network Electromagnetic Inversion Scheme (HNNEMIS) for Super-Resolution 3-Dimensional Microwave Human Brain Imaging	473
15.5	Conclusion and Future work	480
15.5.1	Summary of Our Work	480
15.5.1.1	Limitations and Potential Future Works	481
	References	482

16	Radar Target Classification Using Deep Learning	487
	<i>Youngwook Kim</i>	
16.1	Introduction	487
16.2	Micro-Doppler Signature Classification	488
16.2.1	Human Motion Classification	490
16.2.2	Human Hand Gesture Classification	494
16.2.3	Drone Detection	495
16.3	SAR Image Classification	497
16.3.1	Vehicle Detection	497
16.3.2	Ship Detection	499
16.4	Target Classification in Automotive Radar	500
16.5	Advanced Deep Learning Algorithms for Radar Target Classification	503
16.5.1	Transfer Learning	504
16.5.2	Generative Adversarial Networks	506
16.5.3	Continual Learning	508
16.6	Conclusion	511
	References	511
17	Koopman Autoencoders for Reduced-Order Modeling of Kinetic Plasmas	515
	<i>Indranil Nayak, Mrinal Kumar, and Fernando L. Teixeira</i>	
17.1	Introduction	515
17.2	Kinetic Plasma Models: Overview	516
17.3	EMPIC Algorithm	517
17.3.1	Overview	517
17.3.2	Field Update Stage	519
17.3.3	Field Gather Stage	521
17.3.4	Particle Pusher Stage	521
17.3.5	Current and Charge Scatter Stage	522
17.3.6	Computational Challenges	522
17.4	Koopman Autoencoders Applied to EMPIC Simulations	523
17.4.1	Overview and Motivation	523
17.4.2	Koopman Operator Theory	524
17.4.3	Koopman Autoencoder (KAE)	527
17.4.3.1	Case Study I: Oscillating Electron Beam	529
17.4.3.2	Case Study II: Virtual Cathode Formation	532
17.4.4	Computational Gain	534
17.5	Towards A Physics-Informed Approach	535
17.6	Outlook	536
	Acknowledgments	537
	References	537
	Index	543

About the Editors

Sawyer D. Campbell is an Associate Research Professor in Electrical Engineering and associate director of the Computational Electromagnetics and Antennas Research Laboratory (CEARL), as well as a faculty member of the Materials Research Institute (MRI), at The Pennsylvania State University. He has published over 150 technical papers and proceedings articles and is the author of two books and five book chapters. He is a Senior Member of the Institute of Electrical and Electronics Engineers (IEEE), OPTICA, and SPIE and Life Member of the Applied Computational Electromagnetics Society (ACES). He is the past Chair and current Vice Chair/Treasurer of the IEEE Central Pennsylvania Section.

Douglas H. Werner holds the John L. and Genevieve H. McCain Chair Professorship in Electrical Engineering and is the director of the Computational Electromagnetics and Antennas Research Laboratory (CEARL), as well as a faculty member of the Materials Research Institute (MRI), at The Pennsylvania State University. Prof. Werner has received numerous awards and recognitions for his work in the areas of electromagnetics and optics. He holds 20 patents, has published over 1000 technical papers and proceedings articles, and is the author of 7 books and 35 book chapters. He is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE), the Institute of Engineering and Technology (IET), Optica, the International Society for Optics and Photonics (SPIE), the Applied Computational Electromagnetics Society (ACES), the Progress In Electromagnetics Research (PIER) Electromagnetics Academy, and the National Academy of Inventors (NAI).

List of Contributors

Sensong An

Department of Electrical & Computer Engineering
University of Massachusetts Lowell
Lowell, MA
USA

and

Department of Materials Science & Engineering
Massachusetts Institute of Technology
Cambridge, MA
USA

N. Anselmi

ELEDIA Research Center (ELEDIA@UniTN – University of Trento)
DICAM – Department of Civil, Environmental, and Mechanical Engineering
Trento
Italy

Wenshan Cai

School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA
USA

Sawyer D. Campbell

The Pennsylvania State University
University Park, PA
USA

Yu Cao

School of Electrical, Computer and Energy Engineering
Arizona State University
Tempe, AZ
USA

Nagadastagiri Reddy Challapalle

School of Electrical Engineering and Computer Science
The Pennsylvania State University
University Park, PA
USA

Christos Christodoulou

Department of Electrical and Computer Engineering
The University of New Mexico
Albuquerque, NM
USA

Xiaocong Du

School of Electrical, Computer and Energy Engineering
Arizona State University
Tempe, AZ
USA

Ahmet M. Elbir

Interdisciplinary Centre for Security
Reliability and Trust (SnT)
University of Luxembourg
Luxembourg

Jonathan A. Fan

Department of Electrical Engineering
 Stanford University
 Stanford, CA
 USA

and

Department of New Communications
 Purple Mountain Laboratories
 Nanjing, Jiangsu Province
 China

Feng Feng

School of Microelectronics
 Tianjin University
 Tianjin
 China

Hao-Jie Hu

Institute of Electromagnetics and Acoustics
 Xiamen University
 Xiamen
 China

Clayton Fowler

Department of Electrical & Computer
 Engineering
 University of Massachusetts Lowell
 Lowell, MA
 USA

Ronald P. Jenkins

The Pennsylvania State University
 University Park, PA
 USA

Isha Garg

Elmore School of Electrical and Computer
 Engineering
 Purdue University
 West Lafayette, IN
 USA

Jing Jin

College of Physical Science and Technology
 Central China Normal University
 Wuhan
 China

Arjun Gupta

Facebook
 Menlo Park, CA
 USA

Youngeun Kim

School of Engineering & Applied Science
 Yale University
 New Haven, CT
 USA

Rong-Han Hong

Institute of Electromagnetics and Acoustics
 Xiamen University
 Xiamen
 China

Youngwook Kim

Electronic Engineering
 Sogang University
 Seoul
 South Korea

Wei Hong

State Key Laboratory of Millimeter Waves
 School of Information Science and Engineering
 Southeast University
 Nanjing, Jiangsu Province
 China

Slawomir Koziel

Faculty of Electronics, Telecommunications
 and Informatics
 Gdansk University of Technology
 Gdansk
 Poland

and

Engineering Optimization & Modeling Center
 Reykjavik University
 Reykjavik
 Iceland

Robert Lupoiu
 Department of Electrical Engineering
 Stanford University
 Stanford, CA
 USA

Gokul Krishnan
 School of Electrical, Computer and Energy
 Engineering
 Arizona State University
 Tempe, AZ
 USA

Jordan M. Malof
 Department of Electrical and Computer
 Engineering
 Duke University
 Durham, NC
 USA

Mrinal Kumar
 Department of Mechanical and Aerospace
 Engineering
 The Ohio State University
 Columbus, OH
 USA

Manel Martínez-Ramón
 Department of Electrical and Computer
 Engineering
 The University of New Mexico
 Albuquerque, NM
 USA

Chonghan Lee
 School of Electrical Engineering and Computer
 Science
 The Pennsylvania State University
 University Park, PA
 USA

A. Massa
 ELEDIA Research Center (ELEDIA@UniTN –
 University of Trento)
 DICAM – Department of Civil, Environmental,
 and Mechanical Engineering
 Trento
 Italy

Yuhang Li
 School of Engineering & Applied Science
 Yale University
 New Haven, CT
 USA

and
 ELEDIA Research Center
 (ELEDIA@TSINGHUA – Tsinghua University)
 Haidian, Beijing
 China

Qing Liu
 Institute of Electromagnetics and Acoustics
 Xiamen University
 Xiamen
 China

and
 ELEDIA Research Center (ELEDIA@UESTC –
 UESTC)
 School of Electronic Science and Engineering
 University of Electronic Science and
 Technology of China
 Chengdu
 China

Zhaocheng Liu
 School of Electrical and Computer Engineering
 Georgia Institute of Technology
 Atlanta, GA
 USA

and

School of Electrical Engineering
 Tel Aviv University
 Tel Aviv
 Israel

and

ELEDIA Research Center (ELEDIA@UIC –
 University of Illinois Chicago)
 Chicago, IL
 USA

Kumar Vijay Mishra

Computational and Information Sciences
 Directorate (CISD)
 United States DEVCOM Army Research
 Laboratory
 Adelphi, MD
 USA

Weicong Na

Faculty of Information Technology
 Beijing University of Technology
 Beijing
 China

Vijaykrishnan Narayanan

School of Electrical Engineering and Computer
 Science
 The Pennsylvania State University
 University Park, PA
 USA

Indranil Nayak

ElectroScience Laboratory and Department of
 Electrical and Computer Engineering
 The Ohio State University
 Columbus, OH
 USA

G. Oliveri

ELEDIA Research Center (ELEDIA@UniTN –
 University of Trento)
 DICAM – Department of Civil, Environmental,
 and Mechanical Engineering
 Trento
 Italy

Willie J. Padilla

Department of Electrical and Computer
 Engineering
 Duke University
 Durham, NC
 USA

Priyadarshini Panda

School of Engineering & Applied Science
 Yale University
 New Haven, CT
 USA

Anna Pietrenko-Dabrowska

Faculty of Electronics, Telecommunications
 and Informatics
 Gdansk University of Technology
 Gdansk
 Poland

L. Poli

ELEDIA Research Center (ELEDIA@UniTN –
 University of Trento)
 DICAM – Department of Civil, Environmental,
 and Mechanical Engineering
 Trento
 Italy

A. Polo

ELEDIA Research Center (ELEDIA@UniTN –
 University of Trento)
 DICAM – Department of Civil, Environmental,
 and Mechanical Engineering
 Trento
 Italy

Simiao Ren

Department of Electrical and Computer
 Engineering
 Duke University
 Durham, NC
 USA

P. Rocca

ELEDIA Research Center (ELEDIA@UniTN – University of Trento)
 DICAM – Department of Civil, Environmental, and Mechanical Engineering
 Trento
 Italy

and

ELEDIA Research Center
 (ELEDIA@XIDIAN – Xidian University)
 Xi'an, Shaanxi Province
 China

José Luis Rojo Álvarez

Departamento de Teoría de la señal y
 Comunicaciones y Sistemas Telemáticos y
 Computación
 Universidad Rey Juan Carlos
 Fuenlabrada, Madrid
 Spain

Kaushik Roy

Elmore School of Electrical and Computer
 Engineering
 Purdue University
 West Lafayette, IN
 USA

M. Salucci

ELEDIA Research Center (ELEDIA@UniTN – University of Trento)
 DICAM – Department of Civil, Environmental, and Mechanical Engineering
 Trento
 Italy

Wei Shao

School of Physics, University of Electronic
 Science and Technology of China
 Institute of Applied Physics
 Chengdu
 China

Jingbo Sun

School of Electrical, Computer and Energy
 Engineering
 Arizona State University
 Tempe, AZ
 USA

Fernando L. Teixeira

ElectroScience Laboratory and Department of
 Electrical and Computer Engineering
 The Ohio State University
 Columbus, OH
 USA

Yeshwanth Venkatesha

School of Engineering & Applied Science
 Yale University
 New Haven, CT
 USA

Bing-Zhong Wang

School of Physics, University of Electronic
 Science and Technology of China
 Institute of Applied Physics
 Chengdu
 China

Haiming Wang

State Key Laboratory of Millimeter Waves
 School of Information Science and Engineering
 Southeast University
 Nanjing, Jiangsu Province
 China

and

Department of New Communications
 Purple Mountain Laboratories
 Nanjing, Jiangsu Province
 China

Zhenyu Wang

School of Electrical, Computer and Energy
 Engineering
 Arizona State University
 Tempe, AZ
 USA

Douglas H. Werner

The Pennsylvania State University
University Park, PA
USA

Qi Wu

State Key Laboratory of Millimeter Waves
School of Information Science and Engineering
Southeast University
Nanjing, Jiangsu Province
China

and

Department of New Communications
Purple Mountain Laboratories
Nanjing, Jiangsu Province
China

Li-Ye Xiao

Department of Electronic Science
Xiamen University, Institute of
Electromagnetics and Acoustics
Xiamen
China

Amir I. Zaghoul

Bradley Department of Electrical and
Computer Engineering
Virginia Tech
Blacksburg, VA
USA

Hualiang Zhang

Department of Electrical & Computer
Engineering
University of Massachusetts Lowell
Lowell, MA
USA

Qi-Jun Zhang

Department of Electronics
Carleton University
Ottawa, ON
Canada

Bowen Zheng

Department of Electrical & Computer
Engineering
University of Massachusetts Lowell
Lowell, MA
USA

Yi Zheng

School of Electrical Engineering and Computer
Science
The Pennsylvania State University
University Park, PA
USA

Dayu Zhu

School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA
USA

Preface

The subject of this book is the application of the rapidly growing areas of artificial intelligence (AI) and deep learning (DL) in electromagnetics (EMs). AI and DL have the potential to disrupt the state-of-the-art in a number of research disciplines within the greater electromagnetics, optics, and photonics fields, particularly in the areas of inverse-modeling and inverse-design. While a number of high-profile papers have been published in these areas in the last few years, many researchers and engineers have yet to explore AI and DL solutions for their problems of interest. Nevertheless, the use of AI and DL within electromagnetics and other technical areas is only set to grow as more scientists and engineers learn about how to apply these techniques to their research. To this end, we organized this book to serve both as an introduction to the basics of AI and DL as well as to present cutting-edge research advances in applications of AI and DL in radio-frequency (RF) and optical modeling, simulation, and inverse-design. This book provides a comprehensive treatment of the field on subjects ranging from fundamental theoretical principles and new technological developments to state-of-the-art device design, as well as examples encompassing a wide range of related sub-areas. The content of the book covers all-dielectric and metallo-dielectric optical metasurface deep-learning-accelerated inverse-design, deep neural networks for inverse scattering and the inverse design of artificial electromagnetic materials, applications of deep learning for advanced antenna and array design, reduced-order model development, and other related topics.

This volume seeks to address questions such as “What is deep learning?,” “How does one train a deep neural network?,” “How does one apply AI/DL to electromagnetics, optics, scattering, and propagation problems?,” and “What is the current state-of-the-art in applied AI/DL in electromagnetics?” The first chapters of the book provide a comprehensive overview of the fundamental concepts and taxonomy of artificial intelligence, neural networks, and deep learning in order to provide the reader with a firm foundation on which to stand before exploring the more technical application areas presented in the remaining chapters. Throughout this volume, theoretical discussions are complemented by a broad range of design examples and numerical studies. We hope that this book will be an indispensable resource for graduate students, researchers, and professionals in the greater electromagnetics, antennas, photonics, and optical communities.

This book comprises a total of 17 invited chapters contributed from leading experts in the fields of AI, DL, computer science, optics, photonics, and electromagnetics. A brief summary of each chapter is provided as follows.

Chapter 1 introduces the fundamentals of neural networks and a taxonomy of terms, concepts, and language that is commonly used in AI and DL works. Moreover, the chapter contains a discussion of model development and how backpropagation is used to train complex network architectures. Chapter 2 provides a survey of recent advancements in AI and DL in the areas of

supervised and unsupervised learning, physics-inspired machine learning models, among others as well as a discussion of the various types of hardware that is used to efficiently train neural networks. Chapter 3 focuses on the use of machine learning and surrogate models within the system-by-design paradigm for the efficient optimization-driven solution of complex electromagnetic design problems such as reflectarrays and metamaterial lenses. Chapter 4 introduces both the fundamentals and advanced formulations of artificial neural network (ANN) techniques for knowledge-based parametric electromagnetic (EM) modeling and optimization of microwave components. Chapter 5 presents two semi-supervised learning schemes to model microwave passive components for antenna and array modeling and optimization, and an autoencoder neural network used to reduce time-domain simulation data dimensionality. Chapter 6 introduces generative machine learning for photonic design which enables users to provide a desired transmittance profile to a trained deep neural network which then produces the structure which yields the desired spectra; a true inverse-design scheme. Chapter 7 discusses emergent concepts at the interface of the data sciences and conventional computational electromagnetics (CEM) algorithms (e.g. those based on finite differences, finite elements, and the method of moments). Chapter 8 combines DL with multiobjective optimization to examine the tradeoffs between performance and fabrication process uncertainties of nanofabricated optical metasurfaces with the goal of pushing optical metasurface fabrication toward wafer-scale. Chapter 9 explores machine learning (ML)/DL techniques to reduce the computational cost associated with the inverse-design of reconfigurable intelligent surfaces (RISs) which offer the potential for adaptable wireless channels and smart radio environments. Chapter 10 presents a selection of neural network architectures for Huygens' metasurface design (e.g. fully connected neural networks, convolutional neural networks, recurrent neural networks, and generative adversarial networks) while discussing neuromorphic photonics wherein meta-atoms can be used to physically construct neural networks for optical computing. Chapter 11 examines the use of deep neural networks in the design synthesis of artificial electromagnetic materials. For both forward and inverse design paradigms, the major fundamental challenges of design within that paradigm, and how deep neural networks have recently been used to overcome these challenges are presented. Chapter 12 introduces the framework of machine learning-assisted optimization (MLAO) and discusses its application to antenna and antenna array design as a way to overcome the limitations of traditional design methodologies. Chapter 13 summarizes the basics of uniform and non-uniform array processing using kernel learning methods which are naturally well adapted to the signal processing nature of antenna arrays. Chapter 14 describes a procedure for improved-efficacy electromagnetic-driven global optimization of high-frequency structures by exploiting response feature technology along with inverse surrogates to permit rapid determination of the parameter space components while rendering a high-quality starting point, which requires only further local refinement. Chapter 15 introduces four DL techniques to reduce the computational burden of high contrast inverse scattering of electrically large structures. These techniques can accelerate the process of reconstructing model parameters such as permittivity, conductivity, and permeability of unknown objects located inside an inaccessible region by analyzing the scattered fields from a domain of interest. Chapter 16 describes various applications of DL in the classification of radar images such as micro-Doppler spectrograms, range-Doppler diagrams, and synthetic aperture radar images for applications including human motion classification, hand gesture recognition, drone detection, vehicle detection, ship detection, and more. Finally, Chapter 17 explores the use of Koopman autoencoders for producing reduced-order models that mitigate the computational burden of traditional electromagnetic particle-in-cell algorithms, which are used to simulate kinetic plasmas due to their ability to accurately capture complicated transient nonlinear phenomena.

We owe a great debt to all of the authors of each of the 17 chapters for their wonderful contributions to this book, which we believe will provide readers with a timely and invaluable reference to the current state-of-the-art in applied AI and DL in electromagnetics. We would also like to express our gratitude to the Wiley/IEEE Press staff for their assistance and patience throughout the entire process of realizing this book – without their help, none of this would be possible.

June 2023

Sawyer D. Campbell and Douglas H. Werner
Department of Electrical Engineering
The Pennsylvania State University
University Park, Pennsylvania, USA