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Preface 

This is the second volume of a collection of surveys on topics that are at the 
forefront of current research in geometry. They are intended for graduate students 
and researchers. Some of these surveys are based on lectures given by their authors 
to middle-advance and graduate students, and all of them can be used as bases 
for courses on geometry. Each chapter concentrates on a topic which I consider 
particularly interesting and which is worth highlighting. The topics include Riemann 
surfaces, metric geometry, Finsler geometry, Riemannian geometry, projective 
geometry, symplectic geometry, Teichmüller spaces and combinatorial group theory. 

I would like to thank Elena Griniari for her kind support and care for this project, 
and the reviewers of the various chapters for their valuable anonymous work. My 
warm thanks go to all the authors, for a fruitful and friendly collaboration. 

Nisyros (Dodecanese), Greece Athanase Papadopoulos 
September 2023
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Chapter 1 
Introduction 

Athanase Papadopoulos 

Abstract This chapter contains a description of the various subjects covered in the 
book. 

Keywords Conformal geometry · Metric geometry · Teichmüller spaces · 
Surfaces immersed in 3-manifolds · Symplectic geometry · Grassmann spaces · 
Finite homogeneous metric spaces · Polytopes · The Gauss–Bonnet formula · 
Isoperimetry · Coxeter groups 

AMS Codes 12D10, 14H55, 20B25, 26C10, 30F10, 30F20, 20F55, 30F30, 
30F60, 32G15, 51F20, 51F15, 51M35, 53A35, 53D30, 53C70, 57K10 

This is the second volume of a collection of multi-authored surveys in geometry. The 
project of publishing these volumes arose from the conviction that the mathematical 
community is in need of good surveys of topics that are at the heart of current 
research. Thus I have asked some colleagues and friends to write an expository 
article on a subject they have been working on, which I find particularly important 
or interesting. I hope the result will be of use to mathematicians, both beginners and 
experienced. 

The topics surveyed in the present volume include the conformal and the 
metric geometry of surfaces, Teichmüller spaces, surfaces immersed with prescribed 
extrinsic curvature in 3-dimensional manifolds, symplectic geometry, the metric 
theory of Grassmann spaces, finite homogeneous metric spaces, projective metric 
spaces, regular and semi-regular polytopes, the Gauss–Bonnet formula and its 
higher-dimensional versions, isoperimetry in finitely generated groups, and Coxeter 
groups. Let me review now each chapter in some detail. 

A. Papadopoulos (�) 
Institut de Recherche Mathématique Avancée and Centre de Recherche et Expérimentation sur 
l’Acte Artistique, Strasbourg, France 
e-mail: papadop@math.unistra.fr 
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2 A. Papadopoulos

Chapter 2, by Norbert A’Campo and me, is titled Geometry on surfaces, a source 
for mathematical developments. It is an overview of the theory of surfaces equipped 
with various structures: volume forms, almost complex structures, Riemannian 
metrics of constant curvature, quasiconformal structures, and others. Several topics 
discussed originate in the Riemann mapping theorem and its generalization, the 
uniformization theorem. The theory of Riemann surfaces is intertwined with 
topology and combinatorics. Higher-dimensional structures are also discussed. We 
also review several applications of a colored graph associated with a branched 
covering of the sphere, which we call a net, or a Speiser net. Nevanlinna, 
Teichmüller and others obtained criteria, using this graph, for the determination 
of the type of a simply connected surface, that is, to know whether the surface is 
conformally equivalent to the Euclidean plane or to the unit disc. The same graph 
appears in the theory of dessins d’enfants as well as in a realization theorem of 
Thurston concerning the characterization of some branched coverings of the sphere. 
Combinatorial characterizations of polynomials and rational maps among a class of 
branched covers of the sphere are discussed. We also survey the notion of rooted 
colored trees associated with slalom polynomials, and certain graphs that are used 
in the stratification of the space of monic polynomials. New models of the Riemann 
sphere and of hyperbolic 2- and 3-spaces appear at several places of the survey, 
some of them in an unexpected manner, using algebra (the ring of polynomials). By 
analogy, some constructions based on the field of complex numbers are extended to 
arbitrary fields. 

Chapter 3, by Ken’ichi Ohshika, is titled Teichmüller spaces and their various 
metrics. This chapter is a survey of three different Finsler metrics on Teichmüller 
space: the Teichmüller metric, Thurston’s asymmetric metric and the earthquake 
metric. In particular, the author presents some recent results he obtained with 
Y. Huang, H. Pan and A. Papadopoulos on the so-called earthquake metric, also 
introduced by Thurston. He reviews a duality established in that paper between the 
tangent space at an arbitrary point of Teichmüller space equipped with the earth-
quake norm and the cotangent space at the same point equipped with Thurston’s 
co-norm. He also reports on a result, also obtained in that paper, saying that the 
earthquake metric is not complete, and he provides a description of its completion. 

Chapter 4 by Marc Troyanov is titled Double forms, curvature integrals and the 
Gauss-Bonnet formula. We recall that the Gauss–Bonnet formula for surfaces is a 
major achievement of nineteenth century differential geometry, and is one of the 
very good examples of how topology is closely related to geometry. In its simplest 
form, the formula says that for a closed surface S equipped with a Riemannian 
metric, the integral of the Gaussian curvature is equal (up to a universal constant) 
to the Euler characteristic of the surface. There are much more evolved forms 
of the formula. Troyanov, in Chap. 4, recalls that the generalized Gauss–Bonnet 
formula is due to the effort of several mathematicians, namely, K. F. Gauss, P. 
Bonnet, J. Binet, and W. von Dyck, and that extensions of this formula to higher-
dimensional Riemannian manifolds were obtained in the twentieth century by H. 
Hopf, W. Fenchel, C. B. Allendoerfer, A. Weil and S.S. Chern. The extended 
formula establishes relations between the Euler characteristic of a smooth, compact
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Riemannian manifold with (possibly empty) boundary and a curvature integral over 
the manifold plus a boundary term that involves a combination of curvature and the 
second fundamental form over the boundary. In this chapter, the author revisits the 
higher-dimensional formula using the formalism of double forms, a tool introduced 
by G. de Rham and further developed by R. Kulkarni, J. Thorpe and A. Gray in the 
1960s and 1970s. In particular, he surveys the history and the techniques around 
Chern’s version of the formula, which uses É. Cartan’s moving frame formalism. 
He explores the geometric nature of the boundary term and he provides examples 
and applications. This chapter is also an occasion for Troyanov to make a detailed 
account of the various tools that were used by various authors in the proof of the 
higher-dimensional Gauss–Bonnet formula, starting with H. Hopf’s problem on 
the Curvatura Intega, including the theories of double forms with their geometric 
applications, the Pfaffian, the moving frame, the Gauss–Kronecker curvature of 
hypersurfaces, the Lipschitz–Killing curvature, and several other notions. 

Chapter 5, by Graham Smith, is titled Quaternions, Monge–Ampère structures 
and .κ-surfaces. This chapter combines Riemannian geometry, conformal geometry, 
symplectic geometry and quaternionic geometry (an analogue of complex geometry 
where the field of complex numbers is replaced by that of quaternions). The study 
is based on a work of F. Labourie. The latter developed, in his paper Problèmes de 
Monge-Ampère, courbes pseudo-holomorphes et laminations, published in 1997, a 
theory of surfaces immersed in three-manifolds with prescribed extrinsic curvature. 
This theory has found applications in hyperbolic geometry, general relativity, 
Teichmüller theory and other domains. Labourie’s key insight is that if the second 
fundamental form of an immersed surface of prescribed extrinsic curvature is 
positive definite (the surface is then called infinitesimally strictly convex), then 
its Gauss lift is a pseudo-holomorphic curve for some suitable almost complex 
structure. This allows the application of Gromov’s theory developed in his paper 
Pseudo-holomorphic curves in symplectic manifolds (1987), and in particular, 
his compactness results for families of immersed surfaces of prescribed extrinsic 
curvature in 3-dimensional Riemannian manifolds. Smith, in this chapter, builds on 
Labourie’s work, of which he gives a quaternionic reformulation. This leads him 
to simpler proofs of Labourie’s results, and at the same time, to generalisations to 
higher-dimensions. Two theorems of Labourie are in the background: a compact-
ness result for sequences of quasicomplete pointed infinitesimally strictly convex 
immersed surfaces in a complete, oriented, 3-dimensional Riemannian manifold 
with prescribed curvature, and a description of the accumulation points of such a 
sequence. A key result of this chapter establishes a relation between the solutions of 
the 2-dimensional Monge–Ampère equation and pseudo-holomorphic curves. 

Chapter 6, by Peter Kristel and Eric Schippers, is titled Lagrangian Grassman-
nians of polarizations. This chapter is an introduction to polarization theory in 
symplectic and orthogonal geometries. In this setting, one starts with a triple of 
structures on a real vector space, namely, an inner product, a symplectic form and 
a complex structure, the triple satisfying a compatibility condition that ensures that 
when we are provided with two out of these three structures, we can reconstruct 
the third one, if it exists (which is not always the case). The specification of such
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a compatible triple is equivalent to a decomposition of the complexified ambient 
vector space into the eigenspaces of the complex structure. A familiar example 
of such a triple of structures is that of a Kähler manifold, where the manifold 
is equipped with three compatible structures: a Riemannian metric, an integrable 
complex structure and a symplectic form. Kristel and Schippers adopt the natural 
point of view of fixing one of these structures, and studying the space of structures 
of a second type allowing the reconstruction of a compatible structure of the 
third type. For example, we can fix a symplectic manifold and study the space 
of integrable complex structures on the manifold such that this manifold admits 
a compatible Riemannian metric. In the case where either the symplectic form or 
the inner product is fixed, we get a Grassmannian of polarizations. Polarizations 
appear in several contexts of algebraic and complex geometry: in the study of moduli 
spaces, in the theory of metaplectic and spin representations, and in conformal 
field theory. In Chap. 6, Kristel and Schippers survey this circle of ideas, in which 
the underlying vector spaces are allowed to be infinite-dimensional, emphasizing 
the symmetry of the symplectic and orthogonal settings. The authors consider 
two particular situations: the Riemannian one, in which the polarization is an 
orthogonal decomposition, and the symplectic one, in which the polarization is 
a symplectic decomposition. The potential fields of applications of this theory of 
polarizations include representation theory, loop groups, complex geometry, moduli 
spaces, quantization, and conformal field theory. 

The next three chapters are concerned with metric geometry. 
Chapter 7, by Árpád Kurusa, is titled Metric characterizations of projective-

metric spaces. The author starts by recalling Hilbert’s Problem IV of the list of 
problems he proposed in 1900 at the Paris International Congress of Mathemati-
cians. The problem asks for the construction of all the projective metrics on an 
open convex subset of projective space, that is, the metrics whose geodesics are 
the intersections of this open subset with the projective lines of the ambient space. 
Kurusa addresses the general question of characterizing such spaces under the effect 
of adding some additional conditions on the metric. On the same occasion, he 
surveys notions like Hilbert and Minkowski metrics, projective center, Ptolemaic 
metric, Erdös ratio, conics in metric spaces, general Finsler projective metrics, the 
Ceva and Menelaus properties, and other properties of triangles in a projective-
metric setting. Notions such as plane and line perpendicularity, equidistance of 
lines, bisectors, medians, bounded curvature and others, that hold in a general 
metric space, are used. These properties were introduced in such a general setting 
by Herbert Busemann. The questions of characterizing Minkowski planes, of 
Hilbert geometries and of the three classical geometries, which were extensively 
investigated by Busemann, are addressed by Kurusa, who also mentions several 
open problems on this topic. 

Chapter 8, by the same author, titled Supplement to “Metric Characterization 
of projective-metric spaces”, is a supplement to the previous chapter whose goal 
is to provide proofs of two theorems. The first one, due to B. B. Phadke, says that 
a projective-metric space is a Minkowski plane if all equidistants to geodesics are 
geodesics. The proof that the author provides is different from Phadke’s original
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proof. The second theorem, due to the author, says that a projective-metric plane 
has the Ceva property (a generalization of the classical Ceva property) if and only 
if it is either a Minkowski plane or a model of hyperbolic or elliptic geometry. The 
proofs are long, which is the reason why these theorems are included in a separate 
chapter. 

Chapter 9, by Boumediene Et-Taoui, is titled Metric problems in projective and 
Grassmann spaces. In this chapter, the author studies metric problems in real, 
complex and quaternionic spaces concerning equiangular lines and equi-isoclinic n-
subspaces. Let us recall the setting. We take . F to be the real, complex or quaternionic 
field. Let .p ≥ 3 and .r ≥ 2 be two integers. A collection of lines in . Fr is said to be 
equiangular if any two lines in this collection make the same nonzero angle. A set 
of p n-subspaces in . Fr is said to be equi-isoclinic if this set spans . Fr and if any two 
lines in this set make the same non-zero angle. As the author notes, such structures 
appear, under various names, in fields such as discrete geometry, combinatorics, 
harmonic analysis, frame theory, coding theory and quantum information theory. 
The author addresses two natural questions, namely, (i) How many equiangular lines 
can be placed in . Fr? (ii) How many equiangular equi-isoclinic n-subspaces can be 
placed in . Fr? The chapter is a survey of the work done and the developments due 
to various authors in the last 70 years on these and related questions, interpreted in 
the setting of the metric geometry of projective and Grassmann spaces. This metric 
setting involves classical and fundamental works of Menger, Blumenthal, Lemmens, 
Seidel and others, as well as works of the author himself with co-authors. 

Chapter 10, by Valeriı̆ Berestovskiı̆ and Yuriı̆ Nikonorov, is titled On the geom-
etry of finite homogeneous subsets of Euclidean spaces. The authors review recent 
results on finite homogeneous metric spaces, that is, spaces on which their isometry 
group acts transitively. They are especially interested in finite homogeneous metric 
subspaces of a Euclidean space that represent vertex sets (assumed to lie on a sphere) 
of compact convex polytopes whose isometry groups are transitive on the vertex 
set. In particular, the authors are led to the classification of regular and semiregular 
polytopes in Euclidean spaces, according to whether or not they satisfy the normal 
homogeneity property or the Clifford–Wolf homogeneity property on their vertex 
sets. The metric spaces that satisfy these two properties constitute a remarkable 
subclass of the class of homogeneous metric spaces. These properties are stronger 
than the usual homogeneity properties used for homogeneous metric spaces. The 
definitions of normal and Clifford–Wolf homogeneity involve a property satisfied 
by the isometry taking one point to the other, in the definition of homogeneity. 
The fact that such a study is closely related to the theory of convex polytopes in 
Euclidean spaces makes it natural to first check the presence of these properties for 
the vertex sets of regular and semiregular polytopes. Berestovskiı̆ and Nikonorov 
are then led to the study of the m-point homogeneity property and to the notion 
of point homogeneity degree for finite metric spaces. They discuss several recent 
results, in particular, the classification of polyhedra with all edges of equal length 
and with 2-point homogeneous vertex sets, and they present results on the point 
homogeneity degree for some important classes of polytopes. While discussing 
these classification results, the authors explain in detail the main tools used for the
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study of the relevant objects, and they discuss prospects for future results, presenting 
several open problems. 

Chapter 11, by Gue-Seon Lee and Ludovic Marquis, is titled Discrete Coxeter 
groups. It is an introduction to Coxeter groups, with a focus on how these groups can 
be used for the construction of discrete subgroups of Lie groups. Coxeter groups are 
geometrically defined groups. They were introduced in 1934 by H. S. M. Coxeter. 
They are generated by reflections in some spaces. They generalize the Euclidean 
reflection groups and the symmetry groups of regular polyhedra. They appear in 
several areas of mathematics, in particular in the theory of representations of discrete 
groups in Lie groups. The topics discussed in this chapter include, besides the 
general Coxeter groups, the theories of reflection groups in hyperbolic space, convex 
cocompact projective reflection groups, projective reflection groups, divisible and 
quasi-divisible domains in Hilbert geometry, and Anosov representations. The latter 
constitute a generalization of the class of discrete convex cocompact representations 
of hyperbolic groups into rank one Lie groups to the setting of representations 
of hyperbolic groups into semi-simple Lie groups. Anosov representations were 
introduced by Labourie in his paper Anosov flows, surface groups and curves in 
projective space (2006), in which he studies Hitchin representations. 

Chapter 12, by Bruno Luiz Santos and Marc Troyanov, is titled Isoperimetry in 
finitely generated groups. The setting is that of infinite finitely generated groups 
equipped with word metrics associated with finite symmetric sets of generators. 
An isoperimetric inequality is an inequality between the size of an arbitrary 
finite set and the size of its boundary (for an appropriate definition of boundary). 
In this chapter, the authors revisit the work done in the 1980s–1990s by N. 
Varopoulos, T. Coulhon and L. Saloff-Coste on isoperimetric inequalities in finitely 
generated groups, adding new results and establishing relations with other topics. 
In particular, they obtain lower bounds for the isoperimetric quotient that appears 
in the isoperimetric inequality in terms of the .U -transform, which is a variant of 
the classical Legendre transform of a function, or its generalization, the Legendre– 
Fenchel transform, which is used in physics. The chapter also includes a review of 
some basic elements from geometric group theory (growth functions, amenability, 
the Cheeger constant, etc.) as well as some basic elements from the theory of .U -
transform, including some computational techniques, and the relation between the 
.U -transform and the Legendre transform. 

The first two chapters of this volume are based on lectures given by the 
authors at two thematic programs at Banaras Hindu University, in December 
2019 and December 2022, which I organized with Bankteshwar Tiwari. The 
programs were funded by CIMPA (Centre International de Mathématiques Pures 
et Appliquées), IMU (International Mathematical Union), SERB (Science and 
Engineering Research Board of the Government of India), NBHM (National Board 
of Higher Mathematics of the Government of India), and SRICC (Sponsored 
Research and Industrial Consultancy Cell) and ISC-BHU (the Institute of Science 
of Banaras Hindu University).



Chapter 2 
Geometry on Surfaces, a Source 
for Mathematical Developments 

Norbert A’Campo and Athanase Papadopoulos 

Abstract We present a variety of geometrical and combinatorial tools that are 
used in the study of geometric structures on surfaces: volume, contact, symplectic, 
complex and almost complex structures. We start with a series of local rigidity 
results for such structures. Higher-dimensional analogues are also discussed. Some 
constructions with Riemann surfaces lead, by analogy, to notions that hold for 
arbitrary fields, and not only the field of complex numbers. The Riemann sphere 
is also defined using surjective homomorphisms of real algebras from the ring 
of real univariate polynomials to (arbitrary) fields, in which the field with one 
element is interpreted as the point at infinity of the Gaussian plane of complex 
numbers. Several models of the hyperbolic plane and hyperbolic 3-space appear, 
defined in terms of complex structures on surfaces, and in particular also a 
rather elementary construction of the hyperbolic plane using real monic univariate 
polynomials of degree two without real roots. Several notions and problems 
connected with conformal structures in dimension 2 are discussed, including dessins 
d’enfants, the combinatorial characterization of polynomials and rational maps of 
the sphere, the type problem, uniformization, quasiconformal mappings, Thurston’s 
characterization of Speiser nets, stratifications of spaces of monic polynomials, and 
others. Classical methods and new techniques complement each other. 

Keywords Geometric structure · Conformal structure · Almost complex 
structure (J -field) · Riemann sphere · Uniformization · The type problem · 
Rigidity · Model for hyperbolic space · Cross ratio · Belyi’s theorem · 
Riemann–Hurwitz formula · Chasles 3-point function · Branched covering · Type 
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2.1 Introduction 

Given a differentiable surface, i.e., a 2-dimensional differentiable manifold, one can 
enrich it with various kinds of geometric structures. Our first aim in the present 
survey is to give an introduction to the study of surfaces equipped with locally rigid 
and homogeneous geometric structures. 

Formally, a geometric structure on a surface S is given by a section of 
some bundle associated with its tangent bundle T S. We shall deal with specific 
examples, mostly, volume forms, almost complex structures (equivalently, confor-
mal structures, since we are dealing with surfaces) and Riemannian metrics of 
constant Gaussian curvature. We shall also consider quasiconformal structures on 
surfaces. Foliations with singularities, Morse functions, meromorphic functions and 
differentials on almost complex surfaces induce geometric structures that are locally 
rigid and homogeneous only in the complement of a discrete set of points on the 
surface. Laminations, measured foliations and quadratic differentials are examples 
of less homogeneous geometric structures. They play important roles in the theory 
of surfaces, as explained by Thurston, but we shall not consider them here. 

A theorem of Riemann gives a complete classification of non-empty simply 
connected open subsets of . R2 that are equipped with almost complex structures. 
Only two classes remain! This takes care at the same time of the topological 
classification of such surfaces without extra geometric structure: they are all 
homeomorphic. The classical proof of this topological fact invokes the Riemann 
Mapping Theorem, that is, it assumes the existence of an almost complex structure 
on the surface. Likewise, only two classes remain in the classification of non-
empty open connected and simply connected subsets of . R2 that are equipped 
with a Riemannian metric of constant curvature: the Euclidean and the Bolyai– 
Lobachevsky plane. The latter is also called the non-Euclidean or hyperbolic plane. 

No classification theorem similar to that of simply connected open subsets of . R2

holds in . R3, even if one restricts to contractible subsets. See [113] for the historical 
example, now called “Whitehead manifold”, which, by a result of Gabai [39], is a 
manifold of small category, i.e., it is covered by two charts, both of which being 
copies of . R3 that moreover intersect along a third copy of . R3. 

We shall be particularly concerned with almost complex structures, i.e., con-
formal structures, on surfaces. The theory of such structures is intertwined with 
topology. This is not surprising: Riemann’s first works on functions of one complex
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variable gave rise at the same time to fundamental notions of topology. He conceived 
the notion of “n-extended multiplicity” (Mannigfaltigkeit), an early version of n-
manifold, he introduced basic notions like connectedness and degree of connectivity 
for surfaces, which led him to the discovery of Betti numbers in the general setting 
(see Andé Weil’s article [112] on the history of the topic), he classified closed 
surfaces according to their genus, he introduced branched coverings, and he was the 
first to notice the topological properties of functions of one complex variable (one 
may think of the construction of a Riemann surface associated with a multi-valued 
meromorphic function). At about the same time, Cauchy, in his work on the theory 
of functions of one complex variable, introduced path integrals and the notion of 
homotopy of paths. We shall see below many such instances of topology meeting 
complex geometry. 

In several passages of the present survey, we shall encounter graphs that are used 
in the study of Riemann surfaces. They will appear in the form of: 

1. Speiser nets associated with branched coverings of the sphere: these are used in 
Thurston’s realization theorem for branched coverings (Sect. 2.6.3), in the type 
problem (Sect. 2.7.2), in the theory of dessins d’enfants (Sect. 2.8.1) and in a 
cell-decomposition of the space of rational maps (Sect. 2.8.4); 

2. rooted colored trees associated with slalom polynomials (Sect. 2.8.2); 
3. pictures of monic polynomials used for the stratification of the space of slalom 

polynomials (Sect. 2.8.3). 

At several places, we shall see how familiar constructions using the field 
of complex numbers can be generalized to other fields. Conversely, algebraic 
considerations will lead to several models of the Riemann sphere and of 2- and 
3-dimensional hyperbolic spaces. Relations with the theory of knots and links will 
also appear. 

Let us give now a more detailed outline of the next sections: 
In Sect. 2.2 we present a few classical examples of rigidity and local rigidity 

results in the setting of geometric structures on n-dimensional manifolds. A theorem 
due to Jürgen Moser, whose proof is sometimes called “Moser’s Trick”, deals with 
the classification up to isotopy of volume forms on compact connected oriented n-
dimensional manifolds. We show how this proof can be adapted to the symplectic 
and contact settings. A local rigidity result (which we call a Darboux local rigidity 
theorem) gives a canonical form for volume, symplectic and contact forms on non-
empty connected and simply connected open subsets .(S, ω) of . Rn. 

In dimension two, almost complex structures are also locally rigid, and we 
present a Darboux-like theorem for them. The question of the existence and 
integrability of J -structures on higher-dimensional spheres arises naturally. We 
survey a result due to Adrian Kirchhoff which says that an n-dimensional sphere 
admits a J -structure if and only if the .(n + 1)-dimensional sphere admits a 
parallelism, that is, a global field of frames. This deals with the question of the 
existence of J -fields on higher-dimensional spheres, which we also discuss in the 
same section: only . S6 carries such a structure. 

Section 2.3 is concerned with the first example of Riemann surface, namely, 
the Riemann sphere. We give several models of this surface. Its realization as the
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projective space .P1(C) leads to constructions that are valid for any field k and not 
only for . C. In the same section, we review a realization of .P1(C) with its round 
metric as a quotient space of the group .SU(2) of linear transformations of . C2 of 
determinant 1 preserving the standard Hermitian product. The intermediate quotient 
.SU(2)/{±Id} is isometric to .P 3(R) and also to the space .Tl=1P

1(C) of length 1 
tangent vectors to . S2. In this description, oriented Möbius circles on .P1(C) (that 
is, the circles of the conformal geometry of .P1(C)) lift naturally to oriented great 
circles on .S3 = SU(2). Also, closed immersed curves without self-tangencies lift to 
classical links (that is, links in the 3-sphere). 

In Sect. 2.4, we present another model of the Riemann sphere, together with 
models of the hyperbolic plane and of hyperbolic 3-space. A model of the Riemann 
sphere is obtained using algebra, namely, fields and ring homomorphisms. In this 
model, the point at infinity of the complex plane is represented by . F1, the field 
with one element. The notion of shadow number is introduced, as a geometrical 
way of viewing the cross ratio. The hyperbolic plane appears as a space of ideals 
equipped with a geometry naturally given by a family of lines. In this way, the 
hyperbolic plane has a very simple description which arises from algebra. The cross 
ratio is used to prove a necessary and sufficient condition for a generic configuration 
of planes in a real 4-dimensional vector space to be a configuration of complex 
planes. We then introduce the notions of compatible (or J -conformal) Riemannian 
metric and we prove the existence and uniqueness of such metrics on homogeneous 
Riemann surfaces with commutative stabilizers. We describe several models of 
spherical geometry (surfaces of constant curvature +1), and of 2- and 3-dimensional 
hyperbolic spaces in terms of the complex geometry of surfaces. We then study the 
notion of J -compatible Riemannian metrics. An existence result of such metrics is 
the occasion to characterize homogeneous Riemann surfaces up to bi-holomorphic 
equivalence. 

In Sect. 2.5, we reduce generality by assuming that the surface S is an open 
connected and path-connected non-empty subset of the real plane . R2. Fundamental 
results appear. For instance, the theorem saying that two open connected and path-
connected non-empty subsets of the real plane . R2 are diffeomorphic, a consequence 
of the Riemann Mapping Theorem. This theorem says that any nonempty open 
subset of the complex plane which is not the entire plane is biholomorphically 
equivalent to the unit disc. The Riemann Mapping Theorem generalized to any 
simply connected Riemann surface (and not restricted to open subsets of the plane) 
is the famous Uniformization Theorem. It leads to the type problem, which we 
consider in Sect. 2.7. 

The next section, Sect. 2.6, is concerned with some aspects of branched coverings 
between surfaces. A classical combinatorial formula associated with such an object 
is the Riemann–Hurwitz formula. It leads to some natural problems which are still 
unsolved. A combinatorial object associated with a branched covering of the sphere 
is a Jordan curve that passes through all the critical values and which we call a 
Speiser curve. Its lift by the covering map is a graph we call a net, or  Speiser net, 
an object that will be used several times in the rest of the survey. A theorem of



2 Geometry on Surfaces, a Source for Mathematical Developments 11

Thurston which we recall in this section gives a characterization of oriented graphs 
on the sphere that are Speiser graphs of some branched covering of the sphere by 
itself. Thurston proved this theorem as part of his project of understanding what 
he called the “shapes” of rational functions of the Riemann sphere. In the same 
section, we introduce a graph on a surface which is dual to the net, often known in 
the classical literature under the name line complex, which we use in an essential 
way in Sect. 2.7. We reserve the name line complex to another graph. 

The type problem, reviewed in Sect. 2.7, is the problem of finding a method for 
deciding whether a simply connected Riemann surface, defined in some specific 
manner (e.g., as a branched covering of the Riemann sphere, or as a surface 
equipped with some Riemannian metric, or obtained by gluing polygons, etc.) is 
conformally equivalent to the Riemann sphere, or to the complex plane, or to the 
open unit disc. We review several methods of dealing with this problem, mentioning 
works of Ahlfors, Nevanlinna, Teichmüller, Lavrentieff and Milnor. Besides the 
combinatorial tools introduced in the previous sections (namely, nets and line 
complexes), the works on the type problem that we review use the notions of almost 
analytic function and quasiconformal mapping. 

In the last section, Sect. 2.8, combinatorial tools are used for other approaches to 
Riemann surfaces, in particular, in the theory of dessins d’enfants, in applications to 
knots and links and in the theory of slalom polynomials. Two different stratifications 
of the space of monic polynomials are presented. 

2.2 Rigidity of Geometric Structures 

In this section, we give several examples of locally rigid structures on surfaces. A 
classical example of a non-locally rigid structure is a Riemannian metric on any 
manifold of dimension . ≥ 2. 

2.2.1 Volume, Symplectic and Contact Forms 

Moser’s theorem says that only the total volume of a smooth volume form on a 
connected compact manifold matters, namely, two volume forms of equal total 
volume are isotopic. More precisely: 

Theorem 2.2.1 (Moser [77]) Let M be a compact connected oriented manifold 
of dimension n equipped with two smooth volume forms . ω0 and . ω1 of equal total 
volume. Then there exists an isotopy .φt , t ∈ [0, 1], satisfying . φ∗

t (tω1+(1−t)ω0) =
ω0. In particular, we have .ω0 = φ∗

1ω1.
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Proof Clearly .ω1 = f ω0 for some positive function f , since for any . p ∈ M

and for any oriented frame .X1, · · · , Xn at p we have .ω0(X1, · · · , Xn) > 0 and 
.ω1(X1, · · · , Xn) > 0. It follows  that .t ⎜→ ωt = tω1 + (1− t)ω0 is a path of volume 
forms that connects the form . ω0 to the form . ω1 and we have 

. 
d

dt

∫
[M]

ωt =
∫

[M]
d

dt
ωt

=
∫

[M]
ω1 − ω0 (differentiating the formula for t ⎜→ wt)

= 0 (since the two forms have the same volume).

Thus, the de Rham cohomology class .[ω1−ω0] vanishes on the connected manifold 
M , therefore there exists a smooth .(n − 1)-form . α with .dα = ω1 − ω0. Hence, 
.
d
dt

ωt = dα. 
In order to construct the required isotopy . φt satisfying .(φt )

∗ωt = ω0, we need a 
time-dependent vector field . Xt whose flow . φX

t induces the isotopy . φt and such that 
the equality .(φX

t )∗ωt = ω0 holds. Differentiating, using the Cartan formula and the 
fact that .dωt = 0, yields 

. 0 = d

dt
(φX

t )∗ωt = (φX
t )∗(d(iXt ωt ) + dα) = (φX

t )∗(d(iXt ωt + α)).

The family of vector fields .X = (Xt )t∈[0,1] defined by .iXt ωt = −α satisfies 
the above equation. The equation .iXt ωt = −α has, for a given .(n − 1)-form . α, 
has a unique solution, since for each .t ∈ [0, 1], . ωt is a non-degenerate volume 
form. Therefore the family of forms .(φX

t )∗ωt is constant, hence .(φX
1 )∗ω1 = ω0 as 

required. ⨅⨆
The above result also holds for a symplectic form, that is, a closed nondegenerate 

differential 2-form, at the price of a stronger assumption. The proof works verbatim. 
Thus we get: 

Theorem 2.2.2 (J. Moser) Let M be a compact connected oriented manifold of 
dimension n equipped with two symplectic forms . ω0 and . ω1 of equal periods, i.e., 
with equal de Rham cohomology classes. Assume that the forms are connected by 
a smooth path . ωt of symplectic forms with constant periods, i.e., for all .t ∈ [0, 1], 
.[ωt ] = [ω0] in .H 2

dR(M). Then there exists an isotopy .φt , t ∈ [0, 1],with .φ∗
t ωt = ω0. 

In particular, .ω0 = φ∗
1ω1. . █

The so-called “Moser trick” works as a “simplification by d” in the equation 
.diXt ωt = −dα and it amounts to noticing that for a volume form . ω and for an 
.(n − 1)-form . β the equation .iXω = β has a unique solution X. 

From symplectic structures, we pass to contact forms and contact structures.
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A contact form . α on an n-dimensional manifold M is a pointwise non-vanishing 
differential 1-form such that at each point p in M the restriction of .(dα)p to the 
kernel of . αp is non-degenerate. 

A contact structure on M is a distribution of hyperplanes in the tangent bundle 
T M  given locally as a field of kernels of a contact form. 

Moser’s method also works, even more simply, without “trick” and without extra 
stronger assumption, for families of contact structures and it gives another proof of 
the Gray stability theorem for contact forms [41]: 

Theorem 2.2.3 (Gray [41]) Let .(α)t∈[0,1] be a smooth family of contact forms on a 
compact manifold M . Then there exists a t-dependent vector field . Xt on M with flow 
. φt and .kernel(φ∗

t αt ) = kernel(α0). In particular, there exists a family of positive 
functions .(ft )t∈[0,1] such that for all .t ∈ [0, 1], .φ∗

t αt = ftα0. 

Proof A measure for the variation of the kernel .[αt ] of . αt is the restriction .α̇t |[αt ] of 
.α̇t = d

dt
αt to the kernel . [αt ]. By the non-degeneration of the restriction .dα|[αt ], there 

exists a unique t-dependent vector field . Xt in the distribution (that is, the family of 
subspaces) .[αt ] with .α̇t |[αt ] + iXt dαt |[αt ] = 0. Hence the kernels of .φ∗

t αt do not vary 
since .

d
dt

φ∗
t [αt ] = φ∗

t (α̇t |[αt ] + iXt dαt |[αt ]) = 0. ⨅⨆
For more applications, see [73]. The use of a proper exhaustion allows us to 

extend the above theorem to pairs of volume forms on connected non-compact 
manifolds of equal finite or infinite total volume. 

Furthermore, the above proofs work also in a relative version: if the forms 
coincide on a closed subset A, then the time-dependent vector field . Xt vanishes 
along the subset A and generates a flow that fixes the subset A. The Darboux type 
rigidity theorems for volume, symplectic and contact forms follow: 

Theorem 2.2.4 (Local Darboux Rigidities) Let . ω be a volume or a symplectic 
form, and let . α be a contact form on an n-, 2n- or  .(2n + 1)-manifold 
M respectively. Then at each point of M there exists a coordinate chart 
.(x1, · · · , xn) or .(x1, · · · , xn, y1, · · · , yn) or .(x1, · · · , xn, y1, · · · , yn, z) respec-
tively such that the volume form is expressed by .ω = dx1 ∧ · · · ∧ dxn, the  
symplectic form by .ω = dx1 ∧ dy1 + · · · + dxn ∧ dyn and the contact form 
by .α = dz − y1dx1 − · · · − yndxn. . █
Remark The classical Darboux theorem holds in the setting of symplectic geom-
etry, see [29]. This theorem says that any symplectic manifold of dimension 2n is 
locally isomorphic (in this setting, it is said to be symplectomorphic) to the linear 
symplectic space . Cn equipped with its canonical symplectic form .

∑
dx ∧ dy. As  

a consequence, any two symplectic manifolds of the same dimension are locally 
symplectomorphic to each other.



14 N. A’Campo and A. Papadopoulos

2.2.2 Almost Complex Structures 

An almost complex structure J on a differentiable surface S is an endomorphism of 
the tangent bundle of S satisfying .J 2 = −Id. More precisely, . J = {Jp | p ∈ S}
is a smooth family of endomorphisms of tangent spaces .Jp : TpS → TpS such 
that at each point .p ∈ S, we have  .J 2

p = −IdTpS . The standard example is . (R2, J )

where J is the constant family of endomorphisms given by the matrix .( 0 −1
1 0 ). This  

corresponds to the plane . C equipped with multiplication by i. 
The following proof is not based upon the above method. 

Theorem 2.2.5 (Local J -Rigidity in Real Dimension 2) Let J be an almost 
complex structure on a surface S. Then at each point .p ∈ S there exists a coordinate 
chart .(x, y) such that .J ( ∂

∂x
) = ∂

∂y
holds. 

Proof (Sketch) First construct, using a partition of unity, an almost complex 
structure . J0 on the torus .T = R

2/Z2 such that the structures J and . J0 are 
isomorphic when restricted to open neighborhoods U of p on S and . U0 of 0 on 
T . Let . ω be a volume form on T and let .gω,J0 be the associated Riemannian metric 
.gω,J0(u, v) = ω(u, J0(v)). Let  f be the real function on T satisfying .f (0) = 0 and 
solving the partial differential equation 

. d(df ◦ J0) = −kgω,J0
ω,

where .kgω,J0
is the Gaussian curvature of the metric .gω,J0 . By the Gauss–Bonnet 

Theorem, .
∫
T

kgω,J0
ω = 0, therefore the equation admits a solution by Fourier theory. 

Now use the Gauss curvature formula: 

. kg
e2f ω,J0

ω = kgω,J0
ω + d(df ◦ J0) = 0.

The metric .ge2f ω,J0
has constant curvature 0, therefore .(T , J0) is bi-holomorphic 

to .C/𝚪 for some lattice . 𝚪 (a 2-generator discrete subgroup), which shows the 
statement for a local chart at .0 ∈ (T , J0), and hence also for a local chart at any 
.p ∈ (S, J ). ⨅⨆

For a detailed proof of Theorem 2.2.5, see  [8, p. 114–117]. This theorem shows 
that every almost complex structure on a differentiable surface S determines in a 
unique way a holomorphic structure in the usual sense (that is, a structure defined 
by an atlas of local charts with values in . C and holomorphic local changes). 

Exercise 2.2.1 Give a proof of Theorem 2.2.5 using Moser’s trick. 

Remark The first definition of an almost complex structure is due to Charles 
Ehresmann who addressed the question of the existence of a complex analytic 
structure on a topological (resp. differentiable) manifold of even dimension, from 
the point of view of the theory of fiber spaces; cf. Ehresmann’s talk at the 1950 ICM 
[33]. Ehresmann mentions the fact that H. Hopf addressed the same question from a
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different point of view. He notes in the same paper that by a method proper to even-
dimensional spheres he showed that the 4-dimensional sphere does not admit any 
almost complex structure, a result which was also obtained by Hopf using different 
methods. See also McLane’s review of Ehresmann’s work [84]. Ehresmann and 
MacLane also refer to the work of Wen-Tsün Wu [114, 115], who was a student 
of Ehresmann in Strasbourg. 

Remark The Nijenhuis tensor is an obstruction to local integrability of J -fields in 
higher dimensions, where Theorem 2.2.5 does not hold in the general case, see [8, 
p. 124–125]. Real dimension 2 is very special! 

2.2.3 Almost Complex Structures on n-Spheres 

The existence and integrability of J -structures in dimension 2 is very special. We 
mentioned that the 4-sphere . S4 does not admit any J -field (Ehresmann and Hopf), 
but the 6-sphere does. 

Clearly only spheres of even dimension can carry J -fields. Adrian Kirchhoff, in 
his PhD thesis (ETH Zürich 1947) [57] established a relationship between two non-
obviously related structures on spheres .S2n and .S2n+1 of different dimensions; we 
report on this now. 

Recall that a parallelism on a smooth n-manifold is a global field of frames, that 
is, a field of n tangent vectors which form a basis of the tangent space at each point. 

Theorem 2.2.6 (Kirchhoff [58]) The sphere .Sn, n ≥ 0, admits a J -field if and 
only if the sphere .Sn+1 admits a parallelism. 

Proof The case .n = 0 is special: the tangent space .T S0 is of dimension 0, therefore 
.J = IdT S0 is a J -field and . S1 admits a parallelism. 

“Only if” part for .n > 0: In .V = R
n+2 with the standard basis .e0, e1, · · · , en+1, 

let . Sn be the unit sphere in the span .[e1, · · · , en+1]. Let  .Sn+1 be the unit sphere of 
V . Assume that J is a J -field on . Sn. Let  .L : Sn+1 → GL(V ), v ⎜→ Lv, be the 
continuous map satisfying .Lv(e0) = v, v ∈ Sn+1, defined as follows: 

• First, for .v ∈ Sn, seen as the equator of .Sn+1, we set  
.Lv(v) = −e0, Lv(e0) = v, 
.Lv(u) = v + Jv(u − v), u ∈ [v, e0]⊥. 

• For .v ∈ Sn+1, we can write .v = sin(t)e0 + cos(t)v', v' ∈ Sn, t ∈] − π, π [. We 
then set 
.Lv = sin(t)IdV + cos(t)Lv' . 

We have .Lv◦Lv = −IdV for .v ∈ Sn, hence . Lv = sin(t)IdV +cos(t)Lv' ∈ GL(V )

for .v ∈ Sn+1, since the eigenvalues are .sin(t) ± cos(t)i. Observe that . Te0S
n+1 =

e0 + [e0]⊥ and .[e0]⊥ = [e1, · · · , en+1]. The differential . (DLv)e0 : Te0S
n+1 → V

at . e0 of . Lv maps the space .Te0S
n+1 onto an affine space of dimension .n + 1 in 

.TLv(e0)V that intersects transversely the ray . [v]. Then, for .v ∈ Sn+1, the images
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.(DLv)e0(e1), · · · , (DLv)e0(en+1) ∈ TvV define a frame in .TvS
n+1 = v + [v]⊥ by 

the projection parallel to . [v] onto .v + [v]⊥. 
“If” part: Work backwards. ⨅⨆
Ehresmann in his ICM talk [33] mentions Kirchhoff’s results [57]. 
In fact, by a celebrated result of Jeffrey Frank Adams [1], only the spheres 

.S1, S3, S7 admit a parallelism. This implies that . S4 does not admit any J -field and 

. S6 does. Adams’ result was obtained several years after Kirchhoff’s result. 
The question of the existence of a complex structure on . S6 is still wide open. How 

the Nijenhuis integrability condition for a J -field on . S6 translates into a property of 
framings on . S7 is the subject of a recent paper [67]. 

We end this section on rigidity by a word on exotic spheres: Any two dif-
ferentiable manifolds of the same dimension are locally diffeomorphic. But such 
manifolds may be homeomorphic without being diffeomorphic. The first examples 
of such a phenomenon are Milnor’s exotic 7-spheres [75]. In later papers, Milnor 
constructed additional examples. 

2.3 The First Compact Riemann Surface 

A Riemann surface is a complex 1-dimensional real manifold, or a 2-dimensional 
manifold equipped with a complex 1-dimensional structure, that is, an atlas whose 
charts take values in the Gaussian plane . C, with holomorphic transition functions. 

In this section, we shall deal with the simplest Riemann surface, the Riemann 
sphere. 

2.3.1 The Riemann Sphere 

The familiar round sphere in 3-space, together with its group of rigid motions, can be 
seen as a holomorphic object: its motions are angle-preserving. It is also a one-point 
compactification of the field of complex numbers. We shall see that this construction 
as a one-point compactification can be generalized to an arbitrary field. 

First we ask the question: 
Why do we need the Riemann sphere? 
The statement: “Every sequence of complex numbers has a convergent subse-

quence” is very true, indeed true for bounded sequences. The statement is salvaged 
without this assumption if we introduce a wish object w with the property that every 
sequence of complex numbers, for which no subsequence converges to a complex 
number, converges to w. In this way, from the familiar Gaussian plane . C, we gain  
a new space, .C ∪ {w} in which the above statement improves from very true to 
true. This topological construction is the familiar one-point compactification of non 
compact but locally compact spaces.
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Very true is also the statement: “The ratio . a
b
is well defined as long as . (a, b) /=

(0, 0)”. Again the statement becomes true if we introduce by wish a new object 
.w /∈ k with . a0 = w, a /= 0. This algebraic construction applies to any field k, and 
not only . C. 

In both constructions the object w appears as a newcomer, an immigrant, with a 
special restricted status. 

It is Riemann who gave an interpretation of the new set .X = C ∪ {w} together 
with a very rich structure . Σ on it, for which the new element gains unrestricted 
status. In short, the automorphism group of .(X,Σ) acts transitively on this space, 
that is, the space X is homogeneous. 

The above topological construction also shows that the newcomer w is above any 
bound, so from now on we use the symbol . ∞ for w. 

Here is another construction of an infinity, valid for any field. 
Let k be a field. An element .λ ∈ k can be interpreted as a linear map . a ∈ k ⎜→

λa ∈ k. Its  graph .Gλ ⊂ k × k is the vector subspace .{(a, λa) | a ∈ k} of dimension 
1 in .k×k. So we get an embedding .ι : λ ∈ k ⎜→ P

1(k) of the field k in the projective 
space .P1(k) of all 1-dimensional vector subspaces in .k × k. The vector subspace 
.G = {(0, b) | b ∈ k} is the only one which is not in the image of the embedding . ι. 

The element . λ can be retrieved from . Gλ as a slope: indeed, for any .(a, b) ∈ Gλ, 
if .(a, b) /= (0, 0) then .a /= 0 and .λ = b

a
. 

So the missing vector subspace G corresponds to the forbidden fraction . 10 = ∞
and can be called . G∞. 

In the case where .k = R, this is the well-known embedding of . R in the circle of 
directions up to sign. Extending .ι : k ∪ {∞} → P

1(k) by .ι(∞) = G∞ gives the 
interpretation of .k ∪ {∞} as the projective space .P1(k). Each linear automorphism 
A of the k-vector space . k2 induces a self-bijection .GA of .k ∪ {∞} = P

1(k). If the  
matrix of A is the .2 × 2-matrix .( a b

c d ) ∈ GL(2, k), then .GA(Gλ) = Gλ' with . λ' =
aλ+b
cλ+d

. The transformation .G ∈ P
1(k) ⎜→ GA(G) ∈ P

1(k) or .λ ⎜→ aλ+b
cλ+d

is called a 
fractional linear or Möbius transformation. Note that in particular .GA(G∞) = a

c
. 

Given a general field k, an important structure on .P
1(k) is provided by a 4-point 

function which we shall study in Sect. 2.4.3. 
At this stage, we restrict to the case .k = C. The above construction of .P1(k) for 

an arbitrary field k gives the familiar construction of .P1(C) = (C2−{0})/C∗, where 
. C∗ denotes the multiplicative group of nonzero complex numbers. 

The set .C ∪ {∞} = P
1(C) carries many structures. First, there is the structure of 

a differentiable manifold given by the following atlas: We set . U0 = P
1(C) \ {G∞}

and .U∞ = P
1(C) \ {G0}. Observe that .U0 = {Gλ | λ ∈ C} and that every . G ∈ U∞

is of the type .G'
σ = {(σb, b) | b ∈ C} for .σ ∈ C. 

Define maps .z0 : U0 → C by .z0(Gλ) = λ and .z∞ : U∞ → C by .z∞(G'
σ ) = σ . 

Both maps are bijections. For .G ∈ U0 ∩ U∞ the two maps are related; indeed, 
.z0(G)z∞(G) = 1. It follows that the system .((U0, z0), (U∞, z∞)) is an atlas for a 
manifold structure with coordinates functions .(z0, z∞). Its quality is hidden in the 
quality of the coordinate change. For .G ∈ U0∩U∞, from the above implicit relation 
it follows that .z∞(G) = 1/z0(G), z0(G) = 1/z∞(G). This coordinate change is
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differentiable; therefore .C ∪ {∞} = P
1(C) is a smooth manifold with charts in the 

Gaussian plane . C. 
The smooth 2-dimensional real manifold .C ∪ {∞} = P

1(C) is diffeomorphic to 
the unit sphere in the three-dimensional real vector space . R3. More precisely, the 
coordinate change .φ∞,0 : C∗ = z0(U0) → z∞(U∞) = C

∗ is given in terms of the 
natural coordinate z on . C∗, by  .φ∞,0(z) = 1/z. The smooth map . φ∞,0 : C∗ → C

∗
is moreover holomorphic, so the above atlas provides .C ∪ {∞} = P

1(C) with the 
structure of a Riemann surface. This Riemann Surface is the Riemann Sphere. 

Let U be an open subset of the Gaussian plane . C. Riemann defined a map . φ :
U → C to be holomorphic without using an expression that evaluates the map at 
given points. The idea is the following. The real tangent bundles T U  and .TC come 
with a field . mi of endomorphisms. (The notation . mi stands for “multiplication by 
i”.) The value .mi,p of the field . mi at the point p is the linear map . mi,p : TpU →
TpU, u ⎜→ iu. To be holomorphic by Riemann’s definition is given by the following 
property of the differential: 

. (Dφ)p(mi,p(u)) = mi,φ(p)((Dφ)p(u)).

In words, this means that the differential .Dφ is .C-linear. 
Riemann’s characterization of holomorphic maps together with the local J -

Rigidity Theorem 2.2.5 allows us to define a Riemann surface .(S, J ) as a real 
2-dimensional differentiable manifold S equipped with a smooth field of endomor-
phisms .J : T S → T S of its tangent bundle satisfying .J ◦ J = −IdT S . 

The Riemann Sphere is the first example of a compact Riemann surface. The 
most familiar non-compact Riemann surface is the Gaussian plane . C. Another most 
important Riemann surface is the unit disc in . C. This is also the image of the 
southern hemisphere by the stereographic projection from the North pole onto a 
plane passing through the equator. This projection is holomorphic. The importance 
of the unit disc stems from the fact that it is equipped with the Poincaré metric, 
which makes it a model for the hyperbolic plane. 

2.3.2 The Group SU(2) and Its Action on the Riemann Sphere 

Now that we are familiar with the Riemann sphere, we study a group action on it. 
Let .< u, v >Herm be the usual Hermitian product on . C2. This is the complex 

bilinear form on . C defined by .< u, v >Herm= u1v̄1 + u2v̄2. The Hermitian 
perpendicular .L⊥ to a complex vector subspace L is again a complex vector 
subspace. 

The group of determinant 1 linear transformations of .C
2 that preserve 

.< u, v >Herm is the group .SU(2) consisting of all matrices of the form 

.( a b
−b̄ ā

), (a, b) ∈ C
2, aā + bb̄ = 1. This group acts on the Riemann sphere by 

Möbius transformations, in fact, by rotations. The map .( a b
−b̄ ā

) ⎜→ (a, b) defines a 

diffeomorphism .SU(2) → S3 and induces a Lie group structure on the sphere . S3.
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The group .SU(2) acts transitively by conformal automorphisms on the Riemann 
sphere .P1(C). The stabilizer of .L = {(λ, 0) | λ ∈ C} in .SU(2) is the group 
.( a 0
0 ā ), a ∈ C, aā = 1, which is isomorphic to the group of complex numbers of 

norm 1. The quotient construction induces a Riemannian metric on 

. P
1(C) = SU(2)/StabSU(2)(L).

A marked element in .P
1(C) is a pair .(L, u) where . u = (a, b) ∈ C

2, aā +bb̄ = 1
and .L = [u] = {λu | λ ∈ C}. Note that this representation is redundant since u 
determines .L = [u]. 

The group .SU(2) acts simply transitively on marked elements in .P
1(C). 

The involution .L ⎜→ L⊥ extends to marked elements: map . (L, u) = (L, (a, b))

first to .u⊥ = (b̄,−ā) and next to .(L⊥, u⊥) with .L⊥ = [u⊥]. 
A marked element .(L, u) determines a path in .P1(C) by . Lu : t ∈ [0, π ] ⎜→

Lu(t) = [cos(t)u + sin(t)u⊥], which in fact is a simple closed curve. Its velocity at 
.t = 0 is a length 1 tangent vector .Vu ∈ T[u](P1(C)). Observe that .Vu = V−u and 
.Viu = −Vu. The path . Lu lifts to . H⊥

u : t ∈ [0, π ] ⎜→ H⊥
u (t) = cos(t)u+ sin(t)u⊥ ∈

S3, which is a geodesic from u to . −u perpendicular to the foliation on . S3 by the 
Hopf circles .Hv = {v' ∈ S3 | v' = λv}, v ∈ S3. Hopf circles . Hv map to points, and 
geodesics .H⊥

u map to simple closed geodesics in .P
1(C). 

The map .±u ∈ S3/{±Id} = P
3(R) ⎜→ Vu ∈ T (P1(C)) induces a bijection onto 

the length 1 vectors to .P
1(C). Observe that .SU(2) acts almost simply transitively on 

length 1 tangent vectors to .P
1(C). The quotient group .PSU(2) = SU(2)/{±Id} acts 

simply transitively on length 1 tangent vectors. 

2.4 All Three Planar Geometries and Hyperbolic 3-Space 
Simultaneously 

2.4.1 A Stratification of the Riemann Sphere Arising from 
Algebra 

Bernhard Riemann was aware of the (Riemann) sphere being the complex plane 
union a point at infinity. His point of view on complex analysis was very geometric. 
In this section, we wish to describe an incarnation of the Riemann sphere which 
arises from algebra. For more details on this model, see [8, Chap. 3, §3.1] and [9, 
Chap. 1, §8.3]. 

The starting object is the set . Σ of surjective ring homomorphisms from the ring 
.R[X] of polynomials in one unknown X with real coefficients to a field F . On  
the set . Σ we introduce two equivalence relations. The first relation, . ∼, declares 
.f : R[X] → F and .f ' : R[X] → F ' to be equivalent if there exists a field 
isomorphism .φ : F → F ' with .f ' = φ ◦ f .
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The relation .f ∼ f ' holds if and only if the ideals .kernel(f ), kernel(f ') in . R[X]
are equal. 

The second relation, . ∼X, requires .f ∼ f ' and moreover .f (X) = f '(X) holds 
in .R[X]/kernel(f ) = R[X]/kernel(f '). 

Up to field isomorphism, there are only three fields, F , that are hit by a surjective 
ring homomorphism .f : R[X] → F , namely, the fields . C, . R and . F1 where . F1 is the 
field with one element, that is, the field where .0 = 1 holds. The field . F1 corresponds 
to the ideal .ρ = R[X] consisting of the whole ring, which is prime, maximal but 
not proper. 

Exercise The two fields .R, F1 have only the identity as automorphism and the field 
.C = {a + bi | a, b ∈ R} only two automorphisms as .R-algebra, but as many field 
automorphisms the power set of the real numbers. 

In the following we will describe the quotient sets .Σ/ ∼, Σ/ ∼X together with 
natural structures on these sets. 

All ideals in .R[X] are principal, that is, any such ideal is generated by a single 
element (it is obtained by multiplication of such an element by an arbitrary element 
of the ring). Kernels of .f ∈ Σ are prime ideals, that is, the quotient of .R[X] by such 
an ideal is an integral domain (the product of any two nonzero elements is nonzero). 
Thus, we have three kinds of kernels of f , namely, .ρ = (1) = R[X], .(X−a), a ∈ R, 
and .((X − a)2 + b2), a, b ∈ R, b > 0. Therefore the set .Σ/ ∼ is identified with 
.C+ ∪ R ∪ {ρ}. Here we use the notation .C± = {a + bi | a, b ∈ R,±b > o} for the 
upper/lower half planes. 

The kernel of the ring homomorphism f is not sufficient in order to describe its 
class in .Σ/ ∼X if .kernel(f ) = ((X − a)2 + b2). One needs moreover to specify a 
root .a + bi ∈ C+ or .a − bi ∈ C−. Thus the set .Σ/ ∼X is a disjoint union of 4 strata 
.Σ/ ∼X= C+ ∪ C− ∪ R ∪ {ρ}. 

The fields .C,R,F1 = {0} are realized as sub-.R-algebras in . C, so an alternative 
description of the set .Σ/ ∼X is the set of .R-algebra homomorphism from . R[X]
to . C. 

We shall see that the set .R = Σ/ ∼X and its strata carry a rich panoply of 
structures. The set .R = C+ ∪ C− ∪ R ∪ {ρ} is identified with the Riemann sphere 
.C ∪ {∞}. Structures, such as the Chasles three point function (defined below) 
on .R ⊂ R, or the hyperbolic geometry on . C+, will appear naturally. Naturally 
means here that the construction that leads to the structure commutes with the .R-
algebra automorphisms of .R[X]. For instance, it commutes with the substitutions 
that consist in translating X to .X − t, t ∈ R, or with stretching X to .λX, λ ∈ R

∗. 
The ideal .(X − a) maps to the ideal .(X − a − t) by translation and to .(X − a

λ
) by 

stretching. 
A first example is the Chasles 3-point function .Ch(A,B,C) on the stratum . R

consisting of the ideals .(X − a), a ∈ R, defined as follows: Given three distinct 
such points, .A = (X − a), B = (X − b), C = (X − c), define .Ch(A,B,C) = b−a

c−a
. 

In words, .Ch(A,B,C) is the ratio of the monic generators of B and C evaluated 
at the zero of the monic generator of A.
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The next example is the 4-point function cross ratio .cr(A,B,C,D): for 4 distinct 
points .A = (X − a), B = (X − b), C = (X − c),D = (X − d), define 
.cr(A,B,C,D) = Ch(A,B,C)Ch(D,C,B) = b−a

c−a
. c−d
b−d

. In words, this is Chasles 
evaluated at the first three points times Chasles evaluated at the last three points 
in the reverse order. It is truly a remarkable fact that the cross ratio function 
extends to a 4-point real function on .P1(R) and to a 4-point complex function on 
.P
1(C) = C ∪ {ρ} if one transfers the above wishful calculus with .w = ∞ to . ρ. 
The multiplicative monoid .R∗[X] of polynomials which do not vanish at 0 has 

also automorphisms that do not directly fit with the interpretation as polynomials 
with unknown X. In particular, they are not ring automorphisms, but monoid 
automorphisms. A main example is the twisted palindromic symmetry: perform 
on a polynomial .P(X) the substitution .X → −1

X
, followed by stretching with 

factor .(−X)degree(P ). (The palindromic symmetry is said to be twisted, because 
of the minus signs.) Then the ideal .(X − a) maps to the ideal . (−X(−1

X
− a)) =

(1 + aX) = (X + 1
a
). The Chasles function restricted to . R∗ does not commute 

with the symmetry .a ⎜→ −1
a
, but the cross ratio commutes. (This property is among 

the ones that make the cross ratio more natural than the Chasles 3-point function.) 
This symmetry, which is an involution, extends to a fixed point free involution . σP of 
.R ∪ {ρ} = P

1(R). Remarkably, the symmetry . σP commutes with the cross ratio . cr. 
In this sense, . cr is more natural than . Ch. 

The above operations of real translation and stretching, i.e., substituting .X− t for 
X or . λX for X with .t ∈ R, λ ∈ R

∗, together with the twisted palindromic symmetry 
induce bijections of the set .{(X − u)(X − ū) | u ∈ C+} of monic polynomials of 
degree 2 without real roots. Composing these bijections generates a group G. It is  
a remarkable fact that this group is, as an abstract group, isomorphic to the group 
.PGL(2,R). It is also a remarkable fact that the abstract group .PGL(2,R) carries a 
unique structure of Lie group. So there is also a topology on G, which allows us to 
define the subgroup .G0 ⊂ G as the connected component of the neutral element in 
the Lie group .G = PGL(2,R). The group . G0 is isomorphic to the group .PSL(2,R). 

The fixed point free involution . σP on .P
1(R) = R∪ {ρ} = ∂C̄+ extends to . C+ by 

putting .σP(u) = −1
u

for an involution with i as unique fixed point. 
The group . G0 acts transitively and faithfully on the above strata .C± and on 

.R ∪ {ρ}. From this action one gets a topology on the strata and also, as we will 
explain, a geometry on . C+. It is also remarkable that this geometry, in fact, the 
planar hyperbolic geometry, can also be explained in a more elementary way in 
term of the interpretation as ideals. 

The action of . G0 on .C+ is the so-called modular action of .PSL(2,R) on . C+. 
Thinking of an element .g ∈ G0 as a real .2 × 2 matrix of determinant 1 up to sign, 
.±( a b

c d ), the action on .u ∈ C+ is given by .(g, u) ⎜→ au+b
cu+d

. 
The modular action of .G0 on .C+ extends to the projective action of . G =

PGL(2,R) on .∂C̄+ = P
1(R) and also to the projective action of the complex group 

.PGL(2,C) on .P
1(C). 

The hyperbolic geometry on .C+ can also be defined in terms of ideals in the 
following rather elementary way.


