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Preface 

Fractional calculus and fractional control are one of the rapidly developing research 
areas in current science and engineering. Due to some advantageous properties 
of fractional calculus itself, fractional-order models have significant research and 
applications in various fields, such as physics, biology, and control theory. However, 
like anything else, fractional calculus has its imperfections. So far, fractional 
calculus lacks the intuitive simplicity of explanation that integer-order calculus 
offers. Furthermore, at the application level, fractional-order models often exhibit 
complex dynamic behaviors, which can be stable, unstable, or even chaotic. This 
complexity poses challenges for the further development of fractional-order theory. 

Therefore, in the face of these challenges, there is an urgent need for research 
into control theories and methodologies for fractional-order systems to ensure their 
stability and facilitate practical applications. This is the primary motivation behind 
the publication of this book. This book primarily discusses several classes of typical 
fractional-order ordinary differential systems and fractional-order partial differential 
systems, such as fractional-order chaotic system, fractional-order mathematical 
model in biology, and fractional-order reaction-diffusion system. Furthermore, this 
book also explores the application of control methods such as sliding mode control 
and feedback control for these fractional-order systems. This book can be used by 
researchers to carry out studies on stability and control theory of fractional systems. 

Here, I would like to express my gratitude to the other co-authors of this book. 
Without their contributions and involvement, this book would not have come to 
fruition. I would also like to thank Dr Na Zhang, Dr Hui Fu, and Ying Li for their 
contributions to the research outcomes of this book. Thanks to all the editors at 
Springer Publishing for their hard work. 

The contents of the book are divided into three parts, and they are organized 
as follows. Chapter 1 provides a brief introduction to the research background of 
this book, as well as several types of fractional-order systems, including fractional-
order ordinary differential systems, fractional-order partial differential systems, 
and fractional-order mathematical models in biology. Chapters 2–5 investigate 
synchronization and stability issues of various fractional-order ordinary differential 
systems, along with sliding mode control design. Chapters 6–8 address the stability
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and synchronization problems of fractional-order reaction-diffusion control systems 
using sliding mode control and feedback control methods. Chapters 9 and 10 
research the dynamic behavior of fractional-order mathematical models in biology 
with functional response functions. 

Due to the limitations of the author’s knowledge, there may be some shortcom-
ings and errors in this book. We sincerely hope and welcome readers to provide 
criticism and suggestions for this book. 

Weihai, SD, China Yonggui Kao 
April, 2023 
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Chapter 1 
Introduction 

1.1 Background 

Fractional-order (FO) calculus has developed for more than 300 years, but it has not 
attracted much attention until recent decades. Compared with the classical integer-
order derivative, it is known that the fractional derivative has better performance in 
simulating long-memory processes and materials, abnormal diffusion, long-range 
interactions, long-term behaviors, power laws, allometric scaling laws, and so on 
[1]. Up to now, fractional calculus has become a hot research topic due to its ability 
to describe fractal geometry, power law phenomena, memory characteristics, and 
other related processes [2, 3]. Fractional calculus theory and methods are widely 
employed in fields such as physics [4], viscoelastic theory [5], control science [6– 
16], diffusion phenomenon [17–20], biology [21–25], neural networks [26–31], 
engineering and technology [32–36] as well as scientific computing [37–39]. 

While fractional calculus has begun to make its mark in several domains, 
showcasing distinct advantages over integer-order models, its applications still face 
significant challenges. On one hand, fractional-order models are often employed 
to simulate complex nonlinear phenomena, which are frequently accompanied by 
modeling uncertainties and various external disturbances in real-world scenarios. 
Consequently, fractional-order models tend to be exceedingly complex nonlinear 
systems. On the other hand, fractional-order operators themselves exhibit weak 
singularity, long-term behaviors, nonlocality, among other characteristics, and con-
sidering that fractional-order systems are infinite-dimensional systems, these often 
lead to the manifestation of intricate dynamical behaviors, making the utilization of 
such systems, which are difficult to predict and may be unstable, a daunting task in 
practical applications. Considering that most real-world applications require a stable 
and reliable system, it is essential to develop and study the control of fractional-order 
systems in the face of the challenges mentioned above. 
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2 1 Introduction

Next, we will provide a brief introduction to the main types of fractional-order 
systems studied in this book. 

1.2 Fractional Chaos Systems 

Chaos is a complex phenomenon that is unique to nonlinear systems. It is a kind 
of motion with internal randomness, local instability, and overall nonperiodicity 
generated by deterministic systems that are extremely sensitive to the initial 
conditions. Chaotic motion blurs the boundary between deterministic and stochastic 
motion and provides a new way of thinking for analyzing various natural phenomena 
and even sheds insight on some basic concepts of human understanding of nature. 
The existence of chaos in nature and human society has been widely accepted, and 
how to use the results of chaos theory to solve practical problems in the real world 
has become one of the important issues in the development of nonlinear science. 
In recent years, chaos science has become a popular research topic at home and 
abroad, and its research and applications are rapidly expanding in many fields, 
such as nuclear energy systems, biomedical engineering, laser research, secure 
communication, and information technology. 

With the emergence of fractional electronic circuits and the development of 
fractional calculus theory, the study of fractional chaos has become a hot research 
topic in the field of fractional calculus [40, 41]. Fractional systems provide a better 
intrinsic nature and accuracy than traditional integer systems in describing real-
world physical phenomena. Fractional systems are dynamic systems containing 
fractional derivatives and fractional integrals, and many systems in physics and 
engineering can be effectively modeled as fractional systems. Compared with 
integer chaotic systems, the chaotic attractors of fractional chaotic systems are more 
complex, and past research on the stability and control of fractional differential 
equations and fractional nonlinear systems has resulted in a large number of 
control strategies for fractional chaotic systems. Chaos has been found in numerous 
fractional nonlinear systems, such as fractional Chua circuits [42], fractional Lorenz 
systems [43], fractional Chen systems [44], fractional Liu systems [45], etc. 
Fractional systems are beneficial for the use of chaotic systems in image encryption 
and promoting the steady development of chaos theory. Therefore, it is important 
to study fractional chaotic systems effectively. For fractional chaotic systems, the 
control problem has gradually received extensive interest from researchers in the 
field of fractional control [46, 47], and various control methods have been proposed 
based on the stability theory of fractional differential equations [48, 49].
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1.3 Fractional Reaction–Diffusion Systems 

Since the concept of reaction–diffusion equations was proposed, the research of 
reaction–diffusion equations has been paid increasing attention by scholars in 
several fields because a large number of physical, biological, and chemical models 
in the real world can be summarized as reaction–diffusion equations. Therefore, it 
is of great practical significance to study the reaction–diffusion equation [50–53]. 

Fractional-order reaction–diffusion systems are distributed parameter systems. In 
practical applications, the dynamical characteristics of many systems are not only 
time-dependent but also space-dependent, so they cannot be modeled by centralized 
parametric systems but must be described by fractional parametric systems. A 
distributed parameter system is an infinite-dimensional dynamical system described 
by a partial differential equation, an integral equation, a generalized differential 
equation, or a differential equation in an abstract space. The inputs, outputs, states, 
and parameters of a distributed parameter system are functions of time and space 
variables and can therefore more accurately describe objects whose state space is 
spatiotemporally distributed. For example, distributed parameter systems are widely 
used in engineering control processes such as large heating furnaces and elastic 
vibration systems, in chemical processes in nuclear reactor control systems, and 
physical processes such as electromagnetic fields. Partial differential equations are 
an effective tool for describing distributed parameter systems, and the control meth-
ods for such systems can be divided into distributed control and boundary control. 
Distributed control is a control method in the spatial domain, which requires a 
large number of actuators and has good control performance. Boundary control only 
applies control signals at the system boundary, which is easier to implement in some 
application scenarios. Currently, scholars have proposed many control methods for 
integer-order distributed parameter systems, such as sliding mode control [54, 55], 
pinning control [56, 57], event-triggered control [58, 59], .H∞ control [60], etc. 
However, due to the weak singularity and nonlocality of fractional-order derivatives 
themselves, the stability studies on fractional-order distributed parameter systems 
are far more complicated and challenging than the stability and control theory in the 
integer-order sense. This has led to the fact that some control theory for integer-order 
systems cannot be directly extended to fractional-order systems. For this reason, 
fractional-order control has attracted much attention from scholars. The research 
on the stability and control of fractional-order distributed parameter systems is still 
in the early stage. In particular, academic results on control methods, stability, and 
synchronization of fractional-order reaction–diffusion systems are still very limited, 
and many issues need to be explored in more depth.
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1.4 Fractional Biomathematical Models 

With the development of fractional calculus theory, fractional differential equations 
are widely used in many fields, such as biomathematics [61–63], cybernetics [64– 
66], physics [67–69], engineering [70, 71], hydrology [72, 73], medicine [74–76], 
and so on. The introduction of fractional differential equation solves the problem 
of time memory, which makes the fractional ecosystem more reasonable than the 
ordinary differential ecosystem. On most occasions, fractional differential equation 
models seem to be more in line with the actual phenomenon than integer-order 
models. This is because fractional derivative and integral can describe the inherent 
memory and genetic characteristics of various materials and processes in most 
biological systems. 

When we use biomathematical models to study the survival status of the 
biological population, the relationship between two related biological populations 
was summarized as follows: predator–prey [77–79], competitive [80], reciprocal 
cooperative [81, 82], and so on. The research on the ecosystem of two species 
mainly focuses on the existence and uniqueness of solutions, uniform boundedness 
of solutions, global attractiveness of solutions [83, 84], stability of equilibrium 
points [85], periodic solution [86], and so on. Many scholars have done a great 
deal of research on the ecosystem of two species [87, 88]. However, when there 
are more than two species in the ecosystem, the relationship between populations 
becomes complex and diverse. And the study of the three species ecological model 
becomes relatively complex. In reference [89], there listed 34 kinds of reasonable 
Volterra models of three species. Many scholars have been concerned about the 
study of three species food chain model[90–92] for a long time because the food 
chain relationship is widespread and important in the ecosystem. In addition to 
the existence and uniqueness of solutions, uniform boundedness of solutions, and 
stability of equilibrium point, the ecosystem of three species often has complex 
dynamic behaviors such as bifurcation [93–95] and chaos [96]. The study on 
fractional-order biological systems involves the existence of solutions [97, 98], 
boundedness of solutions, stability of equilibrium point [99, 100], bifurcation [101], 
and chaos [102]. It is different from the integer-order ecosystem that the chaos may 
occur in ecosystem with orders less than 3 [103]. 

1.5 Organization of the Book 

This book focuses on the control, stability, and synchronization of fractional-order 
systems. The structure of the book can be summarized as follows: 

Chapter 1 introduces the system description, background knowledge, and the 
motivation for the book. 

Chapter 2 discusses the Lyapunov stability analysis of general fractional differ-
ential systems (GFDSs) and the adaptive sliding mode control (ASMC) of uncertain
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general fractional chaotic systems (UGFCSs) with uncertainty and external dis-
turbances. The chapter presents the existence and uniqueness of solutions, the 
Lyapunov stability criterion for GFDSs, and establishes general fractional integral 
type sliding surfaces and reaching law. Based on the proposed stability criterion, 
the chapter demonstrates that the states of UGFCSs can reach the sliding surface in 
finite time and asymptotically converge to zero along the sliding surface. 

Chapter 3 employs two ASMC strategies to achieve finite-time synchronization 
of uncertain general fractional unified chaotic systems (UGFUCSs) when uncer-
tainty and external disturbances exist. The chapter introduces the general fractional 
unified chaotic system (GFUCS), which can transition from the general Lorenz 
system to the general Chen system, and the general kernel function could compress 
and extend the time domain. The chapter applies two ASMC methods to achieve 
finite-time synchronization of UGFUCSs, where the system states arrive at sliding 
surfaces in finite time. 

Chapter 4 is dedicated to exploring the finite-time (FET) synchronization prob-
lem of time-varying delay fractional-order (FO) coupled heterogeneous complex 
networks (TFCHCNs) with external interference via a discontinuous feedback 
controller. 

Chapter 5 focuses on the Mittag–Leffler synchronization problem of fractional-
order memristor-based neural networks (FOMNNs) with time delays via a feedback 
controller and an adaptive controller, respectively. 

Chapter 6 mainly studies the existence of solutions and global Mittag–Leffler 
stability of delayed fractional-order coupled reaction–diffusion neural networks 
without strong connectedness. In this chapter, we provided the proof of existence 
and uniqueness of solutions for the studied system. Subsequently, we explored the 
sufficient conditions for global Mittag–Leffler stability of the system solutions using 
the hierarchy method from graph theory. 

Chapter 7 develops the sliding mode control method for coupled delayed 
fractional reaction–diffusion Cohen–Grossberg neural networks on a directed non-
strongly connected topology. In this chapter, we designed a new fractional-order 
integral type sliding mode switching function, which leads to the sliding mode 
functional. By designing the sliding mode control law, we achieved global Mittag– 
Leffler synchronization between two different CGNN systems. 

Chapter 8 discusses the projective synchronization of uncertain fractional-order 
reaction–diffusion systems via the fractional adaptive sliding mode control method. 
The prevalence of uncertainties is pervasive in real-world systems. We combine the 
theory of fractional calculus, sliding mode control, and adaptive control methods 
to design a fractional-order adaptive sliding mode control strategy to counteract 
uncertain disturbances. Moreover, we improve the constructed control law based 
on the properties of fractional derivatives, suppressing unnecessary oscillations of 
the control input while ensuring that the control performance is maintained or even 
improved. 

Chapter 9 investigates a fractional-order prey–predator system with Beddington– 
DeAngelis functional response, considering predator avoidance and prey shelter. 
It establishes conditions for solution existence and well-posedness and analyzes
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stability with Hopf bifurcation concerning fear coefficient, shelter rate, and frac-
tional derivative order. The study shows that stronger memory enhances species 
coexistence, while fading memory diminishes stability in the predator–prey system. 

Chapter 10 examines a fractional-order three species food chain with prey refuge 
and Holling-II functional response. It establishes solution existence, boundedness, 
and asymptotic behavior conditions, analyzing stability and bifurcation. Numerical 
simulations illustrate the impact of parameters like half-saturation constant, prey 
refuge coefficient, and fractional-order derivative on system stability. 
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Part I 
Control and Synchronization of Several 
Classes of General Fractional Systems



Chapter 2 
Adaptive Sliding Mode Control for 
Uncertain General Fractional Chaotic 
Systems 

This chapter focuses on the Lyapunov stability analysis of general fractional 
differential systems (GFDSs), as well as adaptive sliding mode control (ASMC) 
of uncertain general fractional chaotic systems (UGFCSs) with uncertainty and 
external disturbances. Initially, the existence and uniqueness of solutions and the 
Lyapunov stability criterion for GFDSs are presented and verified. Furthermore, 
general fractional integral type sliding surfaces and reaching law are established. 
Based on the proposed stability criterion, it is shown that the states of UGFCSs 
can reach the sliding surface and asymptotically converge to zero along the sliding 
surface. Lastly, the efficacy and efficiency of the proposed fractional controllers are 
demonstrated by numerical simulations. 

2.1 Introduction 

Fractional calculus with kernel functions is ideally suited to describe materials and 
physical processes with memory and genetic properties [1, 2]. Currently, fractional 
calculus has been used in a wide range of interesting and novel applications in a 
number of disciplines, including biomathematics [3, 4], reaction–diffusion [5, 6], 
neural network [7, 8], and has become a powerful mathematical modeling tool and 
mathematical analysis tool of great interest [9–11]. 

Exploring fractional calculus with new memory and genetic properties is of great 
importance for fractional modeling of nonlinear phenomena. Fractional calculus 
with general kernel functions has been proposed in some research works [12– 
15]. The general fractional calculus can not only reduce to the known fractional 
calculus, but also generate new memory effects. Recently, the physical meaning, 
function space, and boundedness are discussed in [16] and [17]. Using general 
fractional calculus, the kernel functions may be selected flexibly according to the 
actual phenomena. Furthermore, as the general kernel functions may compress and 
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extend the time domain, the suitable choice of kernel functions in the numerical 
simulation can shorten the simulation time. 

With the emergence of fractional electronic circuits and the development of 
fractional calculus theory, the study of fractional chaos has become a hot research 
topic in the field of fractional calculus [18, 19]. Chaos has been found in numerous 
fractional nonlinear systems, such as fractional Chua circuits [20], fractional Lorenz 
systems [21], fractional Chen systems [22], fractional Liu systems [23], etc. 

For fractional chaotic systems, the control problem has gradually received 
extensive interest from researchers in the field of fractional control [24, 25], 
and various control methods have been proposed based on the stability theory 
of fractional differential equations [26, 27]. In practical applications, it is often 
necessary to consider the uncertainty of the systems modeling and the interference 
of external disturbance. ASMC is the main control methods for dealing with 
systems uncertainty and external disturbances [28, 29]. ASMC techniques are able 
to estimate and compensate for systems uncertainties and unknown parameters in 
the controlled model [30]. The fractional ASMC method combines the advantages 
of both control techniques, ensuring robustness of the controlled systems while 
dealing with the variation or uncertainty of the parameters. 

In this chapter, ASMC methods are applied to UGFCSs to achieve chaotic 
control. Our principal contributions may be summarized as follows: 

(1) The existence and uniqueness of solutions for GFDSs and the general Lyapunov 
stability theorem are presented. 

(2) A general fractional integral sliding surface and reaching law are developed to 
ensure that the states of the systems can reach the sliding surface. 

(3) For UGFCSs, the ASMC is designed to stabilize the UGFCSs by estimating the 
unknown parameters with adaptive techniques. 

(4) Numerical simulations of UGFCSs under different kernel functions are carried 
out using a nonequidistant partition approach. 

This work is arranged as follows: Sect. 2.2 explores the fundamental definition 
of general fractional calculus and presents the existence and uniqueness of solutions 
and Lyapunov stability for GFDSs. In Sect. 2.3, ASMC designs for UGFCSs are 
investigated when uncertainty and external disturbance appear. Finally, numerical 
simulations are carried out to demonstrate the feasibility and efficiency of the 
proposed controller in Sect. 2.4. 

2.2 Preliminaries 

This section describes the space and definition of the general fractional calculus. 
Then, the general Lyapunov stability analysis is discussed. Consider the space
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.X
p
c (a, b)(c ∈ R, 1 ≤ p ≤ ∞) on .[a, b] for which .‖f ‖X

p
c

< ∞ [12], where 
the norm is given by 

. ‖f ‖X
p
c

=
⎧⎧ b

a

||tcf (t)
||p dt

t

⎫1/p

,

for .1 ≤ p < ∞, c ∈ R, and 

. ‖f ‖X∞
c

= ess sup
a≤t≤b

[tc|f (t)|],

for .p = ∞, c ∈ R. . Xp
c is identical to .Lp(a, b) as .c = 1/p (1 ≤ p ≤ ∞). 

Definition 2.1 ( [12, 13]) Let .f ∈ X
p
c (a, b), .g ∈ C1[a, b], .g(a) ≥ 0, and . g'(t) >

0. For  .0 ≤ a ≤ t ≤ b and .μ > 0, the general fractional integral of .f (t) is defined 
by 

.
g
aI

μ
t f (t) = 1

Γ (μ)

⎧ t

a

(g(t) − g(τ))μ−1 f (τ)g'(τ )dτ. (2.1) 

Following that, .ACn
δ [a, b] space is introduced, which is dependent on the general 

kernel functions .g(t). 

. ACn
δ [a, b] =

⎨
r(t) : [a, b] → C : δn−1[r(t)] ∈ AC[a, b]

⎬
,

where .δ = 1
g'(t)

d
dt
. 

Definition 2.2 ([14]) Let .μ > 0, .n = [μ] + 1 and .r ∈ ACn
δ [a, b]. The general 

Caputo derivative of .r(t) can be defined as 

.
Cg
a D

μ
t r(t) = 1

Γ (n − μ)

⎧ t

a

(g(t) − g(τ))n−μ−1 g'(τ )δnr(τ )dτ. (2.2) 

For .μ = n, then . 
Cg
a Dn

t r(t) = δnr(t).

Next, analyze the initial value problem of GFDSs 

.

⎧
Cg
a D

μ
t x(t) = f (t, x(t)),

x(a) = xa,
(2.3) 

where .μ ∈ (0, 1), .t ∈ [a, T ], .f ∈ C(G,R), .G = [a, T ] × D, and .D ⊂ R. 

Theorem 2.1 Suppose .f (t, x(t)) ∈ C(G,R), and for .t ∈ [a, T ] and .x1(t), . x2(t) ∈
D, there exists a constant .L > 0, such that . |f (t, x1(t)) − f (t, x2(t))| ≤ L‖x1(t) −
x2(t)‖. And there exists .M > 0, such that .|f (t, x(t))| ≤ M < +∞. Then, existence


