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Preface

Since the introduction of LED technology at the turn of the century and the
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control of human biorhythms, there has been a new dynamic in colour and light
quality research, coupled with intensive research in the fields of neurobiology,
sleep research, psychology, human medicine and occupational science, with the
aim of qualitatively and quantitatively exploring the relationship between radiation
properties and mechanisms of action in the brain as well as in physical organs.

Based on the conviction that such valuable scientific findings, which will certainly
continue to be collected over the next few years, should already be implemented in
lighting design, lighting product development, and lighting planning, the authors
saw the need to combine and bundle these scientific findings with technological and
systems engineering advances, such as the Internet of Things, networking of com-
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developing the concepts of measuring circadian-effective metrics and for the joint
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1

1

Introduction and Motivations

1.1 Introduction: A Historical Review. Current Issues

The International Commission on Illumination (CIE) defined the 2 ∘ standard colour
matching functions in September 1931, more than 90 years before the publication of
this book: the so-called x(𝜆), y(𝜆), z(𝜆) functions for visual colour matching with a
visual field of view of 1–4 ∘. This made it possible to calculate the tristimulus values
and chromaticity coordinates for any colour stimulus of any spectral composition
in the visible wavelength range, to characterise perceived colours and communicate
them in scientific and industrial processes. In addition, from the end of the nine-
teenth century until today, the following steps of development have taken place in
lighting technology:

(a) In lighting technology and photometry: from the end of the nineteenth century
until around the 1980s, some parts of the world experienced a steadily grow-
ing development of the industrialisation process (e.g. mechanical engineering,
shipbuilding, electrical engineering, and construction), so that research in light-
ing technology concentrated on formulating the requirements for workplaces
in offices and manufacturing on the basis of physiological visual performance
such as contrast perception ability, visual acuity, reading speed, or error rate of
the work performed, using the parameters illuminance (in lux) or luminance
(in cd m−2) as a basis. The results of research in this field up to the end of the
twentieth century formed the basis for today’s international and national light-
ing standards [1–3].

(b) In light source technology: from 1879 to 1999, there were several important
developmental steps from incandescent lamps to high-pressure discharge
lamps, halogen incandescent lamps, three-band fluorescent lamps, and com-
pact fluorescent lamps (see Table 1.1). From 1994 to the present day, light source
technology has undergone enormous progress with the new development of
high-power LEDs. The luminous efficacy of white LEDs exceeds the values
of commonly used discharge lamps (e.g. T5 lamps, Cosmopolis lamps, and
HMI lamps). The high luminous efficacy of the LEDs, rated according to the
V(𝜆)-function for daytime vision, contributes positively to the worldwide effort
to save energy and protect the environment.

Human Centric Integrative Lighting: Technology, Perception, Non-Visual Effects, First Edition.
Tran Quoc Khanh, Peter Bodrogi, and Trinh Quang Vinh.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.



2 1 Introduction and Motivations

Table 1.1 Major milestones in the development of light source technology.

Year Contents

1854 Goebel: Light bulb with bamboo fibre
1879 Edison: Incandescent lamp with carbon filament
1900 Cooper, Hewitt: Patent on mercury vapour lamp
1906 Introduction of the tungsten metal filament lamp with nitrogen filling
1934 Introduction of the low-pressure discharge lamp with phosphors
1959–1960 Introduction of the tungsten halogen lamp
1971 Fluorescent lamps with a three-band concept
1980 Introduction of the CFL-i (energy-saving) lamp
1994 White LED based on InGaN material

Source: TU Darmstadt.

(c) In CIE – colorimetry: the history of CIE – colorimetry is characterised by the
constant efforts to define perceptual colour attributes (brightness, lightness,
hue, chroma, and saturation) and to arrange them in a perceptually equidistant
colour space. If these perceptually equidistant colour spaces are created,
the colour differences between different colours can be calculated there and
used for industrial quality control. One benefit of accurate colour difference
calculation is the colour rendering index. This task was carried out at several
levels of knowledge over the last decades (see Table 1.2 as well as [6, 7]). The
research results of colour science have been used in the colour industry (display
technology, film technology, printing technology, and textile industry), and
more intensively since about 2010 in lighting technology and light source
technology (LED, OLED).

Since the beginning of the twenty-first century, some development trends relevant
to lighting technology have intensified as follows:

● Societies in large parts of the world (North America, Europe, China, Japan, and
South-East Asia) have been oriented towards information technology. The way
of working, the work processes (day and night rhythms), as well as the work
equipment (monitors, data, and display devices), have reached a new quality.
In addition to quality features such as illuminance or uniformity and glare,
other discussions about light and health, well-being during office work, stress
reduction, and increased concentration through lighting have been added.

● The previous light source technologies had the decisive disadvantage that the
spectrum and colour of the lamps could only be varied to a small extent. Today’s
high-power and mid-power LEDs with their high luminous efficacies and with
a few advantages such as dimmability, controllability, and integrability also
have the great advantage that they can be formed from coloured and white
LEDs into a lighting system of variable spectral composition (chromaticity,
colour temperature). The dynamic light formed in this way enhances the colour
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Table 1.2 Major milestones in the development of CIE colorimetry.

Year Contents

Year Contents
1931 Definition of the 2 ∘ – standard colour matching functions x(𝜆), y(𝜆), and z(𝜆)
1960 Definition of the UCS diagram (Uniform Colour Scale)
1964 Definition of the CIE 1964 (U*V *W *) colour space
1964 Definition of the colour matching functions x10(𝜆), y10(𝜆), and z10(𝜆) for 10 ∘ field

of view
1976 Definition of the 2 colour spaces CIE L*a*b* (or CIELAB) and CIE L*u*v* (or

CIELUV)
2004 CIE Publication: a colour appearance model for colour management systems:

CIECAM02, Publication No. 159 (Vienna: Central Bureau of the CIE, 2004) [4]
2006 Definition of the CAM02-UCS colour space based on the colour appearance

model CIECAM02 [5]

Source: TU Darmstadt.

and light quality of interior lighting, for the evaluation of which non-visual,
colour-technological, and photometric approaches are now increasingly expected
to come into play.

This makes it clear that the three important components of lighting technology
(photometry, colorimetry, and light source technology) should be used much more
intensively and closely together in current and future research for the evaluation
of the colour and light quality of workplaces and in the lighting industry for the
development of new lighting products. In addition – in the period between 2000 and
today – the non-visual effects of light have been investigated by various international
research groups. Despite numerous efforts in the experimental field, these findings
are only partially implemented in the practice of lighting product development and
lighting design in a comprehensible and interpretable way.

According to the above considerations, the authors elaborated on the present book
to answer the following questions:

1. How do the visual and non-visual mechanisms in the brain and in other physio-
logical areas function during night-time hours and during the day?

2. Which influencing parameters and which initial parameters with which metrics
in the physiological and psychological – emotional area are decisive for the
description of the subjective and objective characteristics of health, well-being,
and work performance of human beings? To what extent can scientists and
product developers control these parameters – according to the findings to date?
Where is there still a need for research?

3. What findings are known so far about the effects of light at night? The focus will
be on the relationship between irradiation and its effects on humans.

4. What findings have been made so far for the time during the day? Can
some of them be scientifically established to the extent that the long-awaited



4 1 Introduction and Motivations

recommendation values for lighting designs as well as for the development of
intelligent lighting products can be put up for discussion?

5. How to record, measure, and interpret the visual and non-visual parameters of
lighting with daylight and electric light? Such measurements should be carried
out not only with laboratory measuring devices but also with portable, inexpen-
sive, and accurate measuring units to plausibly record the effects of light in alter-
nating and dynamically changing workplaces and places where people stay.

Derived from these important questions, this book (except for this chapter) is
divided into the thematic blocks summarised in Figure 1.1.

Chapter 2:

- Fundamentals of eye physiology 
- Receptors, ipRGC cells
- Metrics for visual and non-visual effects
- Perception of light and colour 

Chapter 3:

- Brain processing, signal networks

Chapter 6:

- Chromaticity, colour temperature and colour 
renderingt colour preference

- Semantics of colour rendering

Chapter 7:

- Lighting quality models
- Illuminance, colour temperature and saturation

Chapter 4:

- Visual performance, work performance

Chapter 5:

- Brightness and visual clarity

Chapter 8:

-  Correlation and relationship among visual and non-
visual parameters

Chapter 9:

- Psychological and emotional aspects of lighting
- Effects of light during the night
- Effects of light during the day

Chapter 10:

- Metrology of visual and non-visual parameters in 
interior and exterior lighting

Chapter 11:

- Intelligent illumination technology 
- Smart lighting / internet of light, cloud concepts 
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2

Fundamentals of Lighting Technology – Basic Visual and
Non-visual Aspects

This chapter summarises the basics of modern lighting technology (including
colorimetry), with special emphasis on the connection between the visual and
non-visual components of the human visual system to understand the most impor-
tant aspects of Human-Centric Lighting. Section 2.1 deals with the structure of
the eye and the retina to illustrate the mechanisms of visual and non-visual signal
processing. Section 2.2 presents the basic photometric and colorimetric parameters
and the modelling of colour appearance. The basics of non-visual aspects such
as melatonin suppression at night, their modelling as well as the spectral activity
functions and the metrics for the consideration of non-visual influencing variables
are discussed in Section 2.3.

2.1 The Human Visual System. Visual and Non-visual
Signal Processing

To understand the basic concepts of Human-Centric Lighting, the structure, and
functioning of the human eye, including the retina (the ‘biological image receptor’),
should first be understood. Figure 2.1 illustrates the structure of the human eye.

As can be seen in Figure 2.1, the human eye is an ellipsoid with an average length
of about 26 mm and a diameter of about 24 mm. The eye is rotated in all directions
with the help of eye muscles. The outer layer is called the sclera. The sclera contin-
ues in front as a transparent cornea. The choroid supplies the retina with oxygen
and nourishment. The retina is the photoreceptive layer of the eye, containing both
the photoreceptors and those cells that pre-process the signals from the photorecep-
tors through neuronal connections (ganglion cells, amacrine and bipolar cells, and
horizontal cells), see Figure 2.2.

The vitreous body is responsible for maintaining the ellipsoidal shape of the eye.
It consists of a suspension of water (98%) and hyaluronic acid (2%). The optical sys-
tem of the human eye is a complex, slightly decentered lens system that projects an
inverted and reduced image of the surroundings onto the retina. The cornea, anterior
chamber, and iris form the front part of this optical system, followed by the poste-
rior chamber and the biconvex lens of the eye. The lens is held in place by the zonula
fibres.

Human Centric Integrative Lighting: Technology, Perception, Non-Visual Effects, First Edition.
Tran Quoc Khanh, Peter Bodrogi, and Trinh Quang Vinh.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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Anterior
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Fovea

Choroidea Zonule fibers

Visual
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O

Figure 2.1 Structure of the human eye. O (optic disk): blind spot – the point where the
optic nerve crosses the eye and transmits the pre-processed neuronal signals from the
retina towards the visual cortex. Source: Reproduced with permission from Wiley-VCH [1].

Cones

ON CBC

Brain
ipRGC

All All

RBC
ON CBC

Cone

Rods Figure 2.2 Schematic representation
of the retinal circuits in humans.
Photoreceptor connections via the cone
bipolar cells (ON CBCs), amacrine cells
(AII), and rod bipolar cells (RBCs),
ipRGC: intrinsically photosensitive
retinal ganglion cell with the pigment
melanopsin. Source: Reproduced from
Lucas et al. [2] with permission from
Trends in Neurosciences.

By tensing the ciliary muscles, the focal length of the lens can be changed.
The angle of vision intersects the retina at the fovea centralis, the site of the
sharpest vision. The most important optical parameters of the components of
the ocular medium include the refractive indices (which typically range from
1.33 to 1.43) and the spectral transmission factors. All parameters vary consider-
ably in different individuals and are subject to significant changes with age. In
particular, accommodation, visual acuity, and pupillary responses are impaired
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with age. The spectral transmission of the ocular media decreases significantly with
age, especially for short wavelengths (see Section 12.6.1 for details).

After light rays reach the retina, they pass through the retinal layers and, in the
central retina, also through the so-called macula lutea (a yellow pigment layer that
protects the central retina) before reaching the photoreceptors, which are located on
the back of the retina. The blind spot is the location (labelled O in Figures 2.1 and
2.3) where the optic nerve passes through the eye. The retina is blind at the O spot
because the density of rods and cones is zero there.

The retina (a layer with an average thickness of 250 μm) is part of the optical sys-
tem of the eye and with its photoreceptor structure also part of the visual brain. The
retina contains a complex cell layer with two types of photoreceptors, rods and cones.
Both the rod and cone receptors are connected to the nerve fibres of the optic nerve
via a complex network of the pre-processing cells mentioned above, which calcu-
lates further neuronal signals from the receptor signals. The retina contains about
6.5 million cones and 110–125 million rods, while the number of nerve fibres is about
1 million. The density of the rods and cones varies and depends on the position of
the retina (see Figure 2.3).

There is also a third type of photosensitive cell, the so-called ipRGC (intrinsic
photosensitive retinal ganglion cell, which contains the pigment melanopsin), which
is responsible for regulating the circadian rhythm, see Section 2.3. Figure 10.3
illustrates the distribution of ipRGCs on the retina. According to the illustration
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Figure 2.3 Rod density (solid curve) and cone density (dots) as a function of retinal
position (abscissa: in degrees) drawn according to Oesterberg’s data [3]. O: Blind spot; inset
diagram: cone mosaic of the rod-free inner fovea with an extension of approx. 1.25 ∘, i.e.
approx. 350 μm. Red dots: long-wavelength-sensitive cone photoreceptors (L-cones). Green
dots: medium-wavelength-sensitive cones (M-cones). Blue dots: short-wavelength sensitive
cones (S-cones). Source: Reproduced with permission from Wiley-VCH [1], except for the
inset diagram. Source of inset diagram: Figure 1.1 from Sharpe, L. T., Stockman, A., Jägle, H.,
& Nathans, J. (1999), Opsin genes, cone photopigments, colour vision, and colourblindness,
pp. 3–51 in [4]. Reproduced with permission from Cambridge University Press.
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in Figure 2.2, which reflects current knowledge of neurophysiology, the signals
from the cones and rods are also transmitted not only to the ‘normal’ ganglion cells
but also to the photosensitive ganglion cells ipRGCs. The signals of the ipRGCs in
turn flow into both visual and non-visual signal processing channels, whereby the
visual and non-visual channels are strongly interconnected in the human brain, see
Figure 2.2, Figure 10.6 as well as Chapter 3 of this book.

Due to the photopigment melanopsin, the ipRGCs (which represent only approx.
1–5% of the retinal ganglion cells [2]) are directly sensitive to light and can therefore
also respond to light in isolation from the rest of the retina [2]. They are connected
in situ to the rod and cone photoreceptors via the retinal circuits, see Figure 2.2. As
a result, the ipRGC signal can be influenced by both intrinsic melanopsin photore-
ception and extrinsic rod and cone signals [2], see also Figure 2.13. Figure 2.3 shows
rod and cone density as a function of retinal position, while the inset diagram of
Figure 2.3 shows the long, medium, short (LMS) cone mosaic (which is similar to a
digital camera) of the rod-free inner fovea.

As can be seen in Figure 2.3, there are no receptors at the site of the blind spot
because the optic nerve exits the eye at this point (labelled O). The fovea is in the
centre of the macula lutea region. A characteristic value to show the diameter of
the fovea is 1.5 mm, which corresponds to a visual angle of about 5 ∘. The fovea is
responsible for the best visual acuity due to the high cone receptor density, see the
cone density maximum in Figure 2.3. Outside the fovea, cone diameter increases
to about 4.5 μm, cone density decreases, and rod density (diameter of rods: 2 μm)
increases to reach a rod density maximum at about 18–20 ∘.

Rods are responsible for night vision, also called scotopic vision, at a luminance
lower than 0.001 cd m−2. Rods are more sensitive than cones, but they become com-
pletely inactive above about 60–100 cd m−2. Cones are responsible for daytime vision
or photopic vision (at a luminance of about 10 cd m−2 or higher). The transitional
area between scotopic (rod) vision and photopic (cone) vision is called the twilight
or mesopic area, where both the rods and cones are active. Acceptable colour quality
(see Section 6.7) can only be expected in the photopic range.

In addition to pupil contraction, the transition between rod and cone vision in the
mesopic area represents a second important adaptation mechanism of the human
visual system to changing light conditions (so-called adaptation). There is a third
adaptation mechanism, the gain control of the receptor signals.

Photoreceptors contain pigments (opsins, certain types of proteins) that change
their structure when they absorb photons and generate neural signals that are
pre-processed by the horizontal, amacrine, bipolar, and ganglion cells of the
retina to provide neural signals for later processing through the various visual
and non-visual channels of the visual system. There are three types of cones (see
the cones labelled red, green, and blue in Figure 2.2 as well as Figure 2.3) with
pigments of different spectral sensitivity, the so-called L- (long-wave sensitive),
M- (medium-wave sensitive) and S-cone (short-wave sensitive) cones. L-, M-, and
S-signals for the perception of homogeneous colour fields and for coloured spatial
structures (e.g. a red-purple rose with fine colour shadings).


