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Preface

By Trotter approximations, see Trotter, 1958, we mean roughly speaking, the contin-
uous dependence of a semigroup {S (t) : t ≥ 0} on its infinitesimal generator A, and
vice versa, that is, the continuous dependence of A on {S (t) : t ≥ 0}. In the proof
of the main result from Trotter, 1958, it is not clear if the limit of the resolvents
R(λ, An), n ∈ N of An is itself a resolvent of some operator A. This was pointed out
and also corrected by Kato, 1959. See Pazy [1]. Hence, such approximations are also
called Trotter-Kato approximations. The objective of this research monograph is to
present a systematic study on Trotter-Kato approximations of stochastic differential
equations in infinite dimensions and applications.

A study on stochastic differential equations (SDEs) in infinite dimensions was
initiated in the 1960s by Curtain [1] and Curtain and Falb [1, 2], followed in
the 1970s by Métivier and Pistone [1], Chojnowska-Michalik [1], Ichikawa [1,
2], Haussman [1] and Zabczyk [1], among others, using the semigroup theoretic
approach; and Pardoux [1, 2] using the variational approach of Lions [1] from
the deterministic case. Note, however, that a strong foundation of SDEs in infi-
nite dimensions in the semilinear case was first laid by the pioneering work of
A. Ichikawa in 1982 in Ichikawa [3]. All these aforementioned attempts in infi-
nite dimensions were generalizations of the celebrated work on stochastic ordinary
differential equations introduced by K. Itô in the 1940’s in Itô [1] and independently
by Gikhman [1] in a different form. Today, the theory of SDEs in the sense of Itô,
in infinite dimensions, is a well-established area of research; see, for instance, the
excellent monographs by Curtain and Pritchard [1], Itô [2], Métivier [2], Belopol-
skaya and Dalecky [1], Rozovskii [1], Ahmed [1], Da Prato and Zabczyk [1],
Kallianpur and Xiong [1] and Gawarecki and Mandrekar [1]. Throughout this book,
we shall use mainly the semigroup theoretic approach as it is our interest to study
Trotter-Kato approximations of mild solutions of SDEs in infinite dimensions.

To the best of our knowledge, Kannan and Bharucha-Reid, 1985, were the first
to introduce and study Trotter-Kato approximations of linear stochastic integrodif-
ferential evolution equations of Volterra-Itô type in Hilbert spaces. They considered
the existence and uniqueness of mild solutions of such a class of equations and also
proved the convergence of mild solutions of the Trotter-Kato approximating equa-
tions to the mild solution of the original stochastic equation in mean-square. Further,
it was shown that the corresponding induced probability measures Pn converge
weakly to P. They also obtained error estimates by introducing a version of the
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Trotter-Kato approximation, namely a zeroth order approximation, that is, approx-
imating a stochastic integrodifferential equation by a deterministic evolution equa-
tion, among others. Since then, such results were obtained for many classes of
stochastic differential equations.

The book begins in Chapter 1 with a brief introduction and considering moti-
vating problems like heat equations, an electric circuit, an interacting particle
system, lumped control systems and the option and stock price dynamics, to
study, in the following chapters, the abstract SDEs in infinite dimensions like
stochastic evolution equations, including such equations with a delay, McKean-
Vlasov stochastic evolution equations, neutral stochastic partial differential equa-
tions and stochastic evolution equations with Poisson jumps, including the Lévy
martingales. The book also deals with abstract stochastic equations such as
stochastic integrodifferential equations, uncertain stochastic evolution equations
and stochastic evolution equations in unconditional martingale difference (UMD)
Banach spaces.

In Chapter 2, to make the book as self-contained as possible and reader-
friendly, all the necessary mathematical background that will be needed later on
will be provided. As the book studies SDEs using mainly the semigroup theory,
it is first intended to provide this theory including the fundamental Hille-Yosida
theorem. Then, the Trotter-Kato theorem, which is the main topic of this mono-
graph, is presented in detail. Next, some basics from probability and analysis
in Banach spaces are considered like those of the concepts of probability and
random variables, Wiener process, Poisson process and Lévy process, linear mono-
tone operators, accretive operators and UMD Banach spaces, among others, and
also state many fundamental theorems for an interested reader. With this prepara-
tion, we are ready to deal with stochastic calculus in infinite dimensions, namely
the concepts of Itô stochastic integral with respect to Q-Wiener and cylindrical
Wiener processes, stochastic integral with respect to a compensated Poisson random
measure, stochastic integral with respect to square integrable Lévy martingales,
stochastic integral in UMD Banach spaces and Itô’s formula in various settings. In
many parts of this book, the theory of stochastic convolution integrals is vital. This
therefore motivates the consideration of all the necessary results from this theory
without proofs. Moreover, we state some results on the convergence of stochastic
convolutions, the stochastic Fubini theorem and the Burkholder type inequality in
many forms. This chapter together with the appendices dealing with Pettis measura-
bility theorem, convergence of analytic semigroups and operators on Hilbert spaces,
more precisely, notions of trace class operators, nuclear and Hilbert-Schmidt opera-
tors, R-boundedness and γ-boundedness, etc. should provide a sound mathematical
background. Since there are many excellent references on this background mate-
rial such as Ahmed [1], Arendt et al [1], Barbu [1], Bharucha-Reid [1], Bichteler
[1], Brzeźniak et al [1], Da Prato and Zabczyk [1, 2], Dunford and Schwartz [1],
Gawarecki and Mandrekar [1], Hille and Philips [1], Hytönen et al [1], Ichikawa
[3], Joshi and Bose [1], Kallenberg [1], Kato [2, 4], Knoche [1], Kunita [1], Liu
[1], Marinelli, Di Persio and Ziglio [1], Métivier [1], Métivier and Pellaumail [1],
van Neerven, Veraar and Weis [1, 2], Pazy [1], Peszat and Zabczyk [1], Prévôt and
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Röckner [1], Protter [1], Stephan [1] and Yosida [2], to mention only a few, the
objective here is to keep this chapter quite brief. Finally, the chapter includes some
further topics on the Trotter-Kato theory like a Trotter-Kato type theorem and the
Trotter-Kato theorem for nonlinear evolutions. We shall also touch upon the cele-
brated Trotter-Kato formula, see Trotter, 1959, and Kato, 1978, and its applications
to resolve an optimal investment problem in incomplete markets in finance using
the celebrated Feynman-Kac formula. It is interesting to point out here that we shall
provide a proof of the latter formula using the Trotter-Kato formula in Appendix E.

Chapter 3 addresses the main results on Trotter-Kato approximations of many
classes of SDEs in Hilbert spaces. The chapter begins by motivating this study
from the pioneering work of Ichikawa, 1982, on semilinear stochastic evolution
equations. Then, the Trotter-Kato approximations of semilinear stochastic evolu-
tion equations are introduced and their existence and uniqueness of mild solu-
tions are established. It is also shown that the mild solutions of such approxi-
mating equations converge to the mild solution of the original equation in the mean-
square sense. These results are then generalized to semilinear stochastic evolution
equations with a delay. Next, a special form of a stochastic evolution equation is
considered that is related to the so-called McKean-Vlasov measure-valued evolu-
tion equation. Trotter-Kato approximations are then introduced for McKean-Vlasov
stochastic evolution equations. It is shown, as before, that the Trotter-Kato approx-
imating equations have unique mild solutions and that these solutions converge to
the mild solution of the original equation in mean-square. These results are subse-
quently generalized to McKean-Vlasov stochastic evolution equations with a multi-
plicative diffusion. Moreover, the chapter considers Trotter-Kato approximations of
neutral stochastic partial differential equations, linear and semilinear stochastic inte-
grodifferential equations, uncertain semilinear stochastic evolution equations from
the control theory and stochastic evolution equations driven by Lévy martingales
and Poisson random measures.

In Chapter 4, Trotter-Kato approximations of mild solutions of semilinear
stochastic evolution equations are considered in the UMD Banach spaces using
Lipschitz and local Lipschitz nonlinearities. In both these cases, to put it in simple
terms, the Trotter-Kato approximating equations are introduced and are shown to
have unique mild solutions. It is then proved that the solutions of these approxi-
mating equations converge to the mild solution of the original stochastic equation in
mean.

In Chapter 5, we consider some applications of Trotter-Kato approximations to
stochastic stability problems, in some sense. In other words, some interesting appli-
cations and consequences of the Trotter-Kato approximation, and its version, so-
called a zeroth order approximation, of mild solutions of SDEs are studied. Using
the latter, we shall begin by providing an estimate of the error in approximating
a semilinear stochastic evolution equation by a deterministic evolution equation.
As an application, we shall investigate a classical limit theorem on the dependence
of the semilinear stochastic evolution equation on a parameter. It is interesting to
mention here that the probability measures induced by the mild solutions of the
Trotter-Kato approximating equations converge weakly to the probability measure
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induced by the mild solution of the original stochastic equation. This program is
carried out later on for other classes of SDEs, namely stochastic evolution equa-
tions with a delay, McKean-Vlasov stochastic evolution equations, neutral stochastic
partial differential equations and stochastic integrodifferential equations.

In the last Chapter 6, we study some applications of Trotter-Kato approximations
to stochastic optimal control problems. More precisely, we begin with some inter-
esting applications of Trotter-Kato approximations to inverse and optimal output
feedback control problems for semilinear infinite dimensional systems with uncer-
tain semigroup generators. In other words, we present several typical and nontyp-
ical control problems and their solutions. The nontypical problems are related to
the control of the evolution of measures. We prove the existence of optimal feed-
back control laws for these systems in the presence of uncertainty of the principal
operator. We consider both deterministic and stochastic systems. Some interesting
applications to mass transfer problem, evasion problem and Hausdorff dimension
problem are also considered. Lastly, we present the necessary conditions of opti-
mality for the uncertain stochastic feedback control problem. The chapter also
includes a brief discussion on the system identification and optimization. The book
concludes with an interesting application of the Trotter-Kato formula to an optimal
investment problem in incomplete markets.

I have tried to keep the work of various authors drawn from all over the mathe-
matics literature as original as possible. I thank very much all of them whose works
have been included in the book with due citations they deserve in the bibliograph-
ical notes and remarks and elsewhere. To the best of my knowledge, I believe that I
have covered in this monograph all the work that I have known. I apologize to those
authors in case I have failed to include their work. This is not deliberate.

Mexico City, Mexico
July 1, 2023

T. E. Govindan
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{S (t) : t ≥ 0} C0-semigroup
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N2
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(
0,T ; L02
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0
2-predictable

processes Φ such that ||Φ||T < ∞
→ Strong convergence in L(X) or in X
⇀ Weak convergence
M2

T (X) Space of all X-valued continuous, square integrable
martingales
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Chapter 1

Introduction and Motivating
Examples

Stochastic differential equations, in the sense of Itô, arise quite naturally as math-
ematical models in many areas of science, engineering and finance. Problems such
as existence and uniqueness of mild solutions; stability and optimal control; contin-
uous dependence on initial values; Yosida and Trotter-Kato approximations, among
others, of mild solutions of stochastic differential equations in infinite-dimensional
spaces have been investigated by many authors, see Ahmed [1, 2], Bharucha-Reid
[1], Curtain and Pritchard [1], Da Prato [1], Da Prato and Zabczyk [1, 3, 4],
Gawarecki and Mandrekar [1], Govindan [13], Itô [2], Kallianpur and Xiong [1],
Kotelenez [1], Liu [1], Liu and Röckner [1], Lototsky and Rozovsky [1], Mandrekar
and Rüdiger [1], McKibben [2], Métivier [2], Peszat and Zabczyk [1] and Prévôt
and Röckner [1], to mention only a few, and the references cited therein.

In this introductory chapter, we motivate the study of some of the abstract
stochastic differential equations in infinite dimensions considered in this book by
modeling real-life problems quite briefly such as a heat equation, an electric circuit,
an interacting particle system, a lumped control system, the stock and option price
dynamics and an optimal investment problem in incomplete markets. Rigorous for-
mulations of some concrete problems and theoretical examples are taken up later on
in the forthcoming chapters.

1.1 A Heat Equation

Let us begin with the following heat equation with a stochastic perturbation of the
form

dx(z, t) =
∂ 2

∂ z2 x(z, t)dt+σx(z, t)dβ (t), t > 0, (1.1)

x(0, t) = x(1, t) = 0, x(z,0) = x0(z),

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
T. E. Govindan, Trotter-Kato Approximations of Stochastic Differential Equations
in Infinite Dimensions and Applications, https://doi.org/10.1007/978-3-031-42791-6 1
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where σ is a real number and β (t) is a real standard Wiener process or a Brownian
motion.

We shall also consider the semilinear stochastic heat equation

dx(z, t) =
[

∂ 2

∂ z2 x(z, t)−
x(z, t)

1+ |x(z, t)|
]
dt

+
σx(z, t)

1+ |x(z, t)|dβ (t), t > 0, (1.2)

xz(0, t) = xz(1, t) = 0, x(z,0) = x0(z),

where | · | is the absolute value on R= (−∞,∞). We refer to Ichikawa [1, 3] for more
details.

1.1.1 Stochastic Evolution Equations

The equation (1.2) can be formulated in the abstract setting as follows:
Let X and Y be real Hilbert spaces. Take X = L2(0,1) and Y = R. Define A =

d2/dz2 with D(A) = {x ∈ X |x,x′ absolutely continuous, x′, x′′ ∈ X , x′(0) = x′(1) =
0}, f : X → X and g : X → L(Y,X) (space of all bounded linear operators from Y
into X), where

f (x) = −g(x)
σ

= − x
1+ ||x||X , x ∈ X . (1.3)

With this notation, equation (1.2) can be expressed as a semilinear stochastic evolu-
tion equation in X as

dx(t) = [Ax(t)+ f (x(t))]dt+g(x(t))dw(t), t > 0, (1.4)

x(0) = x0,

where w(t) is a Y -valued Q-Wiener process.
The semilinear stochastic equations of the form (1.4) will be discussed in detail

in Section 3.1 and later on in Sections 3.6 and 6.1. More general semilinear stochas-
tic equations with time-varying coefficients will be studied in Sections 3.1.1, 5.1.1,
5.2.1 and 5.3.1; and in Section 5.1.2 with a finite-dimensional noise.

1.2 An Electric Circuit

Let us consider an electric circuit connected in series in which there are two resis-
tances, a capacitance and an inductance. Suppose that the current, x(t) amperes, at
time t flows through the circuit. We shall use volts for the voltage, ohms for the
resistance R, henry for the inductance L, farads for the capacitance c, coloumbs for
the charge on the capacitance, and seconds for the time as the units of measurement.
Under this system of units, it is known that the voltage drop across the inductance
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is Ldx(t)/dt, that across the resistances R and R1 is (R+R1)x(t) and that across the
capacitance is q/c, where q is the charge on the capacitance. It is also known that
x(t) = dq/dt. According to Kirchhoff’s law, the sum of the voltage drops around
the loop must be equal to the applied voltage

L
dx(t)
dt

+(R+R1)x(t)+
q
c
= 0. (1.5)

Differentiating equation (1.5) with respect to t, we have

L
d2x(t)
dt2

+(R+R1)
dx(t)
dt

+
1
c
x(t) = 0. (1.6)

The voltage across R1 is applied to a nonlinear amplifier A1. A special phase-shifting
network P is provided to the output. This introduces a constant time lag between the
input and the output P. Thus, the voltage drop across R in series with the output P
is given by

e(t) = qg(ẋ(t− r)),

where q is the gain of the amplifier to R measured through the network. In view of
this, equation (1.6) becomes

L
d2x(t)
dt2

+Rẋ(t)+qg(ẋ(t− r))+
1
c
x(t) = 0.

Lastly, a second device is introduced in the circuit to help stabilize the fluctuations
in the current. If ẋ(t) = y(t), the controlled system is then given by

ẋ(t) = y(t)+u1(t)

ẏ(t) = −R

L
y(t)− q

L
g(y(t− r))− 1

cL
x(t)+u2(t). (1.7)

The system (1.7) can be expressed in the matrix form as

Ẋ(t) = AX(t)+G(X(t− r))+BU, (1.8)

where

X=
(
x
y

)
, U=

(
u1

u2

)
, A=

(
0 1

−1/cL −R/L

)
, B=

(
1 0
0 1

)
,

and

G(X(t− r)) =
(

0
−qg(y(t− r))/L

)
.

Note that the controlled vector U is created and introduced by the stabilizer.
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1.2.1 Stochastic Evolution Equations with a Delay

Let X and Y be real Hilbert spaces. Motivated by this electric circuit and also by the
stochastic partial differential equations with a delay in general, see Taniguchi [1],
let us consider the following stochastic evolution equation with a delay in X of the
form

dx(t) = [Ax(t)+ f (xt)]dt+g(xt)dw(t), t > 0, (1.9)

x(t) = ϕ(t), t ∈ [−r,0], 0 ≤ r < ∞,

where xt(s) = x(t + s),−r ≤ s ≤ 0 is the finite history of x at t, A : D(A) → X
(possibly unbounded) is the infinitesimal generator of aC0-semigroup {S(t) : t ≥ 0},
f : C → X , where C = C([−r,0],X) (space of continuous functions from [−r,0] to
X), g :C → L(Y,X) and w(t) is a Y -valued Q-Wiener process. It is assumed that the
past process {ϕ(t),−r ≤ t ≤ 0} is known.

Such stochastic evolution equations with a constant delay will be considered in
Section 3.2. See also Sections 5.1.3 and 5.2.2.

1.3 An Interacting Particle System

Let us consider a chemical interacting particle system in which each particle moves
in a space governed by the dynamics of the following system of N coupled semilin-
ear stochastic evolutions equations

dxk(t) = [Axk(t)+ f (xk(t),μN(t))]dt+
√
Qdwk(t), t > 0, (1.10)

xk(0) = x0, k = 1,2, ...,N,

where μN(t) is the empirical measure given by

μN(t) =
1
N

N

∑
k=1

δxk(t)

of the N particles x1(t), x2(t),...,xN(t) at time t. According to McKean-Vlasov the-
ory, see McKean [1], Dawson and Gärtner [1] and Gärtner [1], among others, under
suitable conditions, the empirical measure-valued process μN converges in proba-
bility to a deterministic measure-valued function μ as N goes to infinity. It may
be noted that μ is the probability distribution of a solution process of the abstract
stochastic equation (1.11) that follows. See Kurtz and Xiong [1].
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1.3.1 McKean-Vlasov Stochastic Evolution Equations

Motivated by this interacting particle system, consider the McKean-Vlasov stochas-
tic evolution equation in a real Hilbert space X of the form

dx(t) = [Ax(t)+ f (x(t),μ(t))]dt+
√
Qdw(t), t > 0, (1.11)

μ(t) = probability distribution of x(t),

x(0) = x0,

where A : D(A) ⊂ X → X (possibly unbounded) is the infinitesimal generator of a
strongly continuous semigroup {S(t) : t ≥ 0} of bounded linear operators on X , f
is an appropriate X-valued function defined on X ×Mγ2(X), where Mγ2(X) denotes
a proper subset of probability measures on X , Q is a positive, symmetric, bounded
operator on X , w(t) is an X-valued cylindrical Wiener process and x0 is an X-valued
random variable that is assumed known. We refer to Sections 3.3.1, 5.1.4 and 5.2.3
for further details.

More general McKean-Vlasov type stochastic systems with a multiplicative dif-
fusion shall be considered in Section 3.3.2 and later on in Sections 5.1.5 and 5.2.4.

There are many situations that are modeled by equation (1.11). This phenomenon
is common in biological and physical sciences. We mention examples like dynam-
ics of charge density waves, chemical reactions, mean-field dynamics of soft spins,
power flow in mobile communication networks, population biology, etc. Another
interesting example is Kushner’s equation arising in the study of nonlinear filtering.
Given the history of the observation, the conditional probability law is governed by
an equation of the McKean-Vlasov type.

1.4 A Lumped Control System

Let Rm be an m-dimensional Euclidean space. One way of stabilizing lumped control
systems is to use a proportional-integral-differential (PID) feedback control. Let us
consider now a linear distributed system of the form

dx(t)
dt

= Ax(t)+ f (x(t))+Bu(t), t > 0, (1.12)

where x(t) ∈ X denotes the state, u(t) ∈ Rm is the control, A : D(A) ⊂ X → X is the
infinitesimal generator of an analytic semigroup {S(t) : t ≥ 0} on X , and B :Rm →X .

A PID control considered below is the feedback control u(t) and it is given by

u(t) = K0x(t)− d
dt

∫ t

0
K1(t− s)x(s)ds, (1.13)

where K0 : X → Rm is a bounded linear operator and K1 : [0,∞) → L(X ,Rm) is a
strongly continuous operator-valued map. The closed system corresponding to the
PID control (1.13) is of the form

d
dt

[
x(t)+B

∫ t

0
K1(t− s)x(s)ds

]
= (A+BK0)x(t)+ f (x(t)), t > 0,
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where it is known that A+BK0 is the infinitesimal generator of an analytic semi-
group.

1.4.1 Neutral Stochastic Partial Differential Equations

Motivated by this lumped control system, consider a neutral stochastic partial dif-
ferential equation in a real Hilbert space X of the form

d[x(t)+ f (t,x(t))] = [Ax(t)+a(t,x(t))]dt

+b(t,x(t))dw(t), t > 0, (1.14)

x(0) = x0,

where −A : D(−A) ⊂ X → X (possibly unbounded) is the infinitesimal generator
of a C0-semigroup {S(t) : t ≥ 0} on X , a : R+ ×X → X , where R+ = [0,∞), b :
R+ ×X → L(Y,X) and f : R+ ×X → D((−A)α), 0 < α ≤ 1, w(t) is a Y -valued
Q-Wiener process, and assume that the initial condition x0 is known. We refer to
Section 3.4 below for more details.

This class of equations will be studied in Sections 5.2.5 and 5.3.2.

1.5 A Hyperbolic Equation

Let us consider the following hyperbolic type deterministic integral equation

utt(t,z) = Δu(t,z)+
∫ t

0
b(t− s)Δu(s,z)ds+ f (t,z), t > 0, (1.15)

u(t,0) = u(t,π) = 0,

where Δ = ∂ 2/∂ z2, or the equivalent system

ut = v, vt = Δu+
∫ t

0
b(t− s)Δu(s, ·)ds+ f (t, ·).

Equation (1.15) can be expressed as

x′(t) = Ax(t)+
∫ t

0
B(t− s)x(s)ds+F(t), t > 0, (1.16)

where

x=
(
u
v

)
, F =

(
0
f

)
.

and

A=
(

0 I
Δ 0

)
, B(t) =

(
0 0

b(t)Δ 0

)
.
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1.5.1 Stochastic Integrodifferential Equations

Let us consider a stochastic version of the Volterra integrodifferential equation (1.16)
of the form

x′(t) = Ax(t)+
∫ t

0
B(t− s)x(s)dβ (s)+ f (t), t > 0, (1.17)

x(0) = x0,

where A is a linear operator (possibly unbounded) is the infinitesimal generator of a
C0-semigroup {S(t) : t ≥ 0} on a real Hilbert space X with domain D(A), f belongs
to a function space A on X-valued functions, B(t) is a (not necessarily bounded)
convolution kernel type linear operator on the domain D(A) (for each t ≥ 0) such that
B(·)x ∈ A for each x ∈ D(A), x0 is an X-valued known random variable and β (·) is
a Hilbert-Schmidt operator-valued Brownian motion. For details, see Section 3.5.1
below and Kannan and Bharucha-Reid [1]. See also Sections 5.1.6 and 5.3.3 for a
study on such equations.

We shall also be considering a semilinear stochastic integrodifferential equation
of the form

x′(t) = Ax(t)+
∫ t

0
B(t,s) f (s,x(s))ds

+
∫ t

0
C(t,s)g(s,x(s))dw(s)+F(t,x(t)), t > 0, (1.18)

x(0) = x0,

where A is a linear operator (possibly unbounded) is the infinitesimal generator
of a C0-semigroup {S(t) : t ≥ 0} on a real Hilbert space X ; B(t,s)0≤s≤t≤T and
C(t,s)0≤s≤t≤T (0 < T < ∞) are linear operators mapping X into X , F : [0,∞)×X →
X , f : [0,∞)×X → X and g : [0,∞)×X → L(Y,X), w(t) is a Y -valued Q-Wiener
process and x0 is a known random variable. For details, see Section 3.5.2 below.

See also Sections 5.1.7 and 5.3.4 for a study on such class of equations.
Integrodifferential equations arise quite naturally, for instance, in mechanics,

electromagnetic theory, heat flow, nuclear reactor dynamics, and population dynam-
ics, we refer to Kannan and Bharucha-Reid [1] and the references therein for details.
A dynamic system with memory may lead to integrodifferential equations.

1.6 The Stock Price and Option Price Dynamics

This classical problem was introduced by Merton [3]. The total change in the stock
price is composed of two types of changes. First, the normal vibrations in price, for
instance, occur due to temporary imbalance between supply and demand, changes
in capitalization rates, or other new information that causes marginal changes in the
stock’s value. It is known that this component is modeled by a standard geometric
Brownian motion with continuous sample paths. Second, the abnormal vibrations in
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price occur due to the arrival of important new information about the stock which
has a marginal effect on price. It is quite reasonable to expect that there will be
active times in the stock when such information arrives and quiet times when it does
not although these times are random. Naturally, important information arrives only
at discrete points in time. This component is modeled by a jump process.

According to the general efficient market hypothesis of Fama [1] and Samuelson
[1], the dynamics of the unanticipated part of the stock price motions should be a
martingale. Since the dynamics are assumed to be a continuous-time process, the
natural choice for the continuous component of the stock price change is a Wiener
process, while for the jump component is a Poisson-driven process.

Given that some important information on the stock arrives, i.e., a Poisson event
occurs, if S(t) is the stock price at time t and Y is the random variable to determine
the impact of this information, neglecting the continuous part, the stock price at
time t + h, S(t + h), will be the random variable S(t + h) = S(t)Y, given that one
such arrival occurs between t and t+h. We assume that Y has a probability measure
with compact support, Y ≥ 0 and {Y} are i.i.d..

As studied in Merton [2], the stock price returns are a mixture of both types and
can be written as a stochastic differential equation of the form

dS(t)
S(t)

= (α − γk)dt+σdβ (t)+dN(t), t > 0, (1.19)

where α is the instantaneous expected return on the stock, σ2 is the instantaneous
variance of the return, conditional that the Poisson event does not occur, β (t) is
a standard Wiener process and N(t) is the Poisson process. We assume that N(t)
and β (t) are independent. Here, γ is the mean number of arrivals per unit time and
k = E(Y− 1), where Y− 1 is the random variable percentage change in the stock
price if the Poisson event occurs.

It is interesting to observe that the σdβ (t) part describes the instantaneous part
of the unanticipated return due to the normal price vibrations while the dN(t) part
describes the abnormal price vibrations. If γ = 0, the return dynamics would be
identical to those considered in Black and Scholes [1] and Merton [4]. Equation
(1.19) may be rewritten as

dS(t)
S(t)

= (α − γk)dt+σdβ (t),

if the Poisson event does not occur, and

dS(t)
S(t)

= (α − γk)dt+σdβ (t)+(Y−1),

if the Poisson event occurs.
After having established the stock price dynamics, let us now consider the dynam-

ics of the option price. Suppose that the option price, W, can be written as a twice
continuously differentiable function of the stock price and time; namely
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W (t) = F(S, t). Given that the stock price is modeled by equation (1.19), then the
option return dynamics can be written similarly as

dW (t)
W (t)

= (αW − γkW )dt+σWdβ (t)+dNW (t), (1.20)

where αW is the instantaneous expected return on the option, σ2
W is the instantaneous

variance of the return, conditional that the Poisson event does not occur and NW (t) is
a Poisson process with parameter γ . We assume that NW (t) and β (t) are independent
and kW ≡ E(YW − 1), where YW − 1 is the random variable percentage change in
the option price if the Poisson event occurs.

1.6.1 Stochastic Evolution Equations with Poisson jumps

Motivated by this stock price and option price dynamics, consider the class of
stochastic differential equations with Poisson jumps in a Hilbert space X of the
form

dx(t) = [Ax(t)+ f (x(t))]dt+g(x(t))dw(t)

+
∫
Z
L(x(t),u)Ñ(dt,du), t > 0, (1.21)

x(0) = x0,

where Ñ is a compensated Poisson random measure associated with a counting Pois-
son random measure N; A, generally unbounded, is the infinitesimal generator of a
C0-semigroup {S(t) : t ≥ 0} on X ; f : X → X , g : X → L(Y,X) and L : X ×Y → X
are some measurable functions; w(t) is a Y -valued Q-Wiener process; and x0 is a
known random variable. We assume that Ñ(dt,du) is independent of w(t).

Stochastic equations of the type (1.21) shall be considered in Section 3.7.2.

1.7 An Optimal Investment Problem in Incomplete
Markets

In this section, we present a simple extension of the stochastic optimization problem
of Merton [1, 2] when the market is incomplete.

A financial market consists of two assets, a riskless and a risky one. The riskless
asset is a bond earning a constant interest rate, l, while the risky one is a stock whose
price, {S(t), t ≥ 0}, satisfies the stochastic differential equation

dS(t) = μ(Y (t))S(t)dt+σ(Y (t))S(t)dw1(t), t > 0, (1.22)

S(0) = S0 > 0.
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The stochastic factor, Y (t), satisfies

dY (t) = b(Y (t))dt+a(Y (t))
(

ρdw1(t)

+
√

1−ρ2dw2(t)
)
, t > 0, (1.23)

Y (0) = Y0 ∈ R.

Here, the process w(t) = (w1(t),w2(t)) is a standard Brownian motion with instan-
taneous correlation coefficient ρ .

Let us introduce the market price of the risk process {λ (t), t ≥ 0} as

λ (t) = λ (Y (t)) =
μ(Y (t))− l

σ(Y (t))
. (1.24)

We now make the following assumptions on the model coefficients:

(i) The functions μ : R → R and σ : R → (0,∞) are continuous.
(ii) The function b : R → R is continuously differentiable; and the functions a :

R → (0,∞) and λ : R → R are twice continuously differentiable.
(iii) The functions a,1/a,b,λ ,a′,b′,λ ′,a′′ and λ ′′ are absolutely bounded.

Under these assumptions, the system of SDEs (1.22) and (1.23) has a unique
strong solution, see Karatzas and Shreve [1].

An investor trades between the bond and the stock accounts in a finite (fixed)
horizon [0,T ] by generating a random payoff at time T called the terminal time.
The risk preferences of the investor at time T are modeled by a utility function,
namely UT .

It is assumed that UT : (0,∞) → R is strictly increasing, concave and twice con-
tinuously differentiable. Further, UT satisfies

0 < inf
x>0

(
−xU ′′

T (x)
U ′
T (x)

)
≤ sup

x>0

(
−xU ′′

T (x)
U ′
T (x)

)
< ∞, (1.25)

0 < inf
x>0

(
xγU ′

T (x)
) ≤ sup

x>0

(
xγU ′

T (x)
)
< ∞, (1.26)

for some γ > 0 and e(1+γ)zU ′′
T (e

z) is a uniformly continuous function of z ∈ R.
Given an initial endowment x > 0 at time t ∈ [0,T ), the discounted allocations

of the investor in the bond and the stock accounts at time s ∈ [t,T ] are denoted by
π0
s and πs, respectively. Then, the total discounted investment at time s, denoted by

Xπ,x,t
s , satisfies Xπ,x,t

s = π0
s +πs. We shall refer to Xπ,x,t

s as the discounted wealth.
Given π = {πs,s ∈ [0,T ]}, the process π0 = {π0

s ,s ∈ [0,T ]} is determined uniquely
by the self-financing condition. Therefore, we shall identify a trading strategy, or
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a policy, with the process π . It can be shown that the process {Xπ,x,t
s ,s ∈ [t,T ]}

satisfies

dXπ,x,t
s = σ(Y (s))πs

(
λ (Y (s))ds+dw1(s)

)
, s ∈ [t,T ], (1.27)

Xπ,x,t
t = x,

for any policy π that belongs to the set of admissible policies defined as follows.
Let us define A to be the set of admissible policies that consists of all locally

square-integrable F-progressively measurable stochastic processes π = {πs,s ∈
[0,T ]} such that for any initial condition (x, t) ∈ (0,∞)× [0,T ], the corresponding
discounted wealth process {Xπ,x,t

s ,s ∈ [t,T ]} given by (1.27) is strictly positive. In
addition, if γ ≥ 1, it is required that

E
∫ T

t
(Xπ,x,t

s )−p(1+π2
s )ds< ∞, forall p ≥ 0. (1.28)

The objective of the investor is to maximize the expected utility of terminal
wealth given today’s information and overall the admissible strategies. We define
the value funtion process J(x, t) for each (x, t) ∈ (0,∞)× [0,T ] as

J(x, t) = esssupπ∈AE

(
UT

(
Xπ,x,t
T

)∣∣Ft

)
. (1.29)

1.7.1 Hamilton-Jacobi-Bellman Equations

In the Markovian setting considered here, the value function process is typically
associated with the Hamilton-Jacobi-Bellman (HJB) equation. Precisely, J(x, t) is
expected to have a functional representation of the form

J(x, t) =U(x,Y (t), t), (1.30)

where U : D → R is a deterministic function that is defined on the domain

D= (0,∞)×R× [0,T ]. (1.31)

If such a function U exists, it is called a value function of the optimal investment
problem and it is expected to satisfy the HJB equation given by

Ut + maxπ

(
1
2

σ2(y)π2Uxx+π(σ(y)λ (y)Ux+ρσ(y)a(y)Uxy)
)

+
1
2
a2(y)Uyy+b(y)Uy = 0, (1.32)

with the terminal condition U(x,y,T ) =UT (x). We refer to Zariphopoulou [1] and
the references therein for details.

Note that the correlation coefficient ρ controls the incompleteness of the market,
that is, when |ρ| = 1, the market is complete.

We shall consider the equation (1.32) in Section 6.3.



Chapter 2

Mathematical Machinery

This chapter introduces the necessary mathematical background from the semigroup
theory, particularly the Trotter-Kato approximations, analysis and probability in
Banach spaces, Itô stochastic calculus, stochastic convolution integrals and further
topics on the Trotter-Kato theory, among others. We shall also include statements of
some fundamental results that may be of independent interest.

2.1 Semigroup Theory

Let (X , || · ||X) be a Banach space.

Definition 2.1 A one parameter family {S(t) : 0 ≤ t < ∞} of bounded linear opera-
tors mapping X into X is said to be a semigroup of bounded linear operators on X
if

(i) S(0) = I (I is the identity operator on X) and
(ii) S(t+ s) = S(t)S(s) for every t,s ≥ 0 (the semigroup property).

A semigroup of bounded linear operators, {S(t) : t ≥ 0}, is defined to be uni-
formly continuous if

lim
t↓0

||S(t)− I|| = 0.

The linear operator A defined by

D(A) = {x ∈ X : lim
t↓0

S(t)x− x
t

exists}, (2.1)

where D(A) is the domain of A, and

Ax= lim
t↓0

S(t)x− x
t

=
d+S(t)x

dt
|t=0 for x ∈ D(A), (2.2)

is said to be the infinitesimal generator of the semigroup {S(t) : t ≥ 0}.
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Theorem 2.1 A linear operator A is the infinitesimal generator of a uniformly con-
tinuous semigroup if and only if A is a bounded linear operator.

Proof See Pazy [1, Theorem 1.2, p. 2] or Ahmed [1, Theorem 1.2.3]. �

Definition 2.2 A semigroup {S(t) : t ≥ 0} of bounded linear operators on X is said
to be a strongly continuous semigroup of bounded linear operators if

lim
t↓0

S(t)x= x for every x ∈ X . (2.3)

A strongly continuous semigroup of bounded linear operators on X is called a C0-
semigroup. A C0-semigroup {S(t) : t > 0} is said to be compact if it is a compact
operator.

Theorem 2.2 Let {S(t) : t ≥ 0} be aC0-semigroup. Then, there exist constants α ≥ 0
and M ≥ 1 such that

||S(t)|| ≤ Meαt for 0 ≤ t < ∞. (2.4)

Proof See Pazy [1, Theorem 2.2, p. 4] or Ahmed [1, Theorem 1.3.1]. �

If α = 0, {S(t) : t ≥ 0} is defined to be uniformly bounded and if moreover
M = 1 it is called aC0-semigroup of contractions. If M = 1, {S(t) : t ≥ 0} is called a
pseudo-contraction semigroup. A semigroup {S(t) : t ≥ 0} is said to be of negative
type, or is exponentially stable if ||S(t)|| ≤ Me−αt , t ≥ 0 for some constants M > 0
and α > 0.

Corollary 2.1 If {S(t) : t ≥ 0} is a C0-semigroup then t → S(t)x, for every x ∈ X , is
a continuous function from R+ into X .

Proof See Ahmed [1, Corollary 1.3.2]. �

Theorem 2.3 Let A be an infinitesimal generator of a C0-semigroup {S(t) : t ≥ 0}.
Then,

(i) For x ∈ X ,

lim
h→0

1
h

∫ t+h

t
S(s)xds= S(t)x.

(ii) For x ∈ X ,

∫ t

0
S(t)xdx ∈ D(A) and A

(∫ t

0
S(t)xdx

)
= S(t)x− x.


