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Preface 

We proudly introduce in this book the selected and peer-reviewed papers presented 
in the Eighth Asian Conference on Mechanics of Functional Materials and Structures 
(ACMFMS 2022) which was held in the Indian Institute of Technology, Guwahati, 
from December 11 to 14, 2022. I would like to present in brief the history of the 
series of this conference. 

The first conference was hosted in 2008 by Prof. Fumihiro Ashida (Shimane 
University, Japan) in Matsue, Japan. Subsequently, it has been held in Nanjing, 
China (2010); 3rd in New Delhi, India (2012); 4th in Nara, Japan (2014); 5th in 
Shanghai, China (2016); and 6th in Tainan, Taiwan (2018). The 7th conference was 
to be held in Sendai, Japan, on October 2–5, 2020. However, due to the ongoing 
COVID-19 pandemic, the decision was made to hold the conference via online mode 
from March 12 to 15, 2021. The 7th Asian Conference on Mechanics of Functional 
Materials and Structures (ACMFMS 2020) was chaired by Fumio Narita (Tohoku 
University, Japan). 

This multidisciplinary conference had attracted participation from prestigious 
academic institute, e.g., IIT Delhi, IIT Bombay, IIT Madras, IIT Mandi, IIT Kanpur, 
IIT Kharagpur, and many more and research institutes from India and abroad (China, 
Japan, Bangladesh, Dubai, Canada, and Singapore). Participants have attended, inter-
acted, and exchanged innovative ideas. Many Ph.D. research scholars also attended, 
and this has enabled them to acquire international exposure and encourage them to 
undertake research activities in their areas of interest. The conference has brought 
many prominent scientists, technologists, and young researchers from different 
parts of the world together for showcasing their achievements and discussing new 
research trends and the emerging field of mechanics. The scientific program included 
plenary sessions, invited lectures, and oral presentations. The conference has 4 
plenary sessions, 2 semi-plenary sessions, 8 keynotes, 26 invited lectures, and 100 
presentations. 

This book entitled Recent Advances in Mechanics of Functional Materials and 
Structures consists of 53 chapters and includes different topics related to the fields 
of Mechanics of Functional and Intelligent Materials, Mechanics of Functional and 
Smart materials, Structural Health Monitoring, Elasticity (Mathematical, Thermo,

v



vi Preface

Electro, Electromagneto, Photo), Plasticity (Mathematical, Multiscale, Thermo, 
Visco), Fracture and Damage Mechanics, Impact Mechanics and Dynamic Mate-
rial Behavior, Contact Mechanics, Solid-Fluid Interaction, Bio-mechanics, Bio-
materials, etc. We believe that these selected papers will guide the future direction 
of research. 

We would like to acknowledge the financial support provided by sponsors to 
make the event financially viable for hosting a huge number of student participants. 
I would like to thank BRNS, CSIR, DRDO, SERB, TIH IITG, ADMECA Design 
and Engineering solutions LLP, and EDS Technologies. It was impossible to make 
the conference successful without their support. 

We wish to thank all the authors, reviewers, sponsors, invited speakers, members of 
the advisory board, the organizing team, student volunteers, and all others who have 
contributed to the successful organization of the conference. We are very grateful 
to Prof. T. G. Sitharam, Director, Head of the Department of Mechanical Engi-
neering, and Prof. K. S. R. Krishna Murthy, IIT Guwahati, for their encouragement 
and providing the necessary infrastructure. We sincerely thank the team of research 
scholars Mr. Abir Saha, Mr. Vaibhav R. Partap, Mr. Mukesh Kumar, Mr. Nikhil D. 
Kulkarni, Miss Mridusmita Bora, Mr. Viwek Kumar, and Ms. Akanksha for their 
help in bringing out this book. 

A large number of members in the steering committee, international advisory 
committee, local organizing committee, and manuscript review committee are highly 
acknowledged for their time-to-time help and support for these technical events. 

Last but not least, the editors sincerely appreciate the significant contribution of 
Mrs. Vaishnavi O. Bichkar for bringing out this book. She has contributed signifi-
cantly in managing all these chapters and communicated with the authors for shaping 
these books. Her efforts are sincerely appreciated. Before concluding this preface, 
we sincerely thank the team from Springer Nature for their contributions in making 
this book an archived technical reference documents for the next-generation readers/ 
researchers. 

Guwahati, India Dr. Poonam Kumari 
Conference Secretary
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Fatigue Crack Growth 
in Fiber-Reinforced Polymer Composite 
Laminate Using Higher-Order XFEM 

Kishan Dwivedi and Himanshu Pathak 

Abstract Fiber-reinforced polymer composite laminate has a wide range of appli-
cations due to its high strength-to-weight ratio. Fatigue loading is the most common 
cause of failure for these materials. Fatigue life estimation in symmetric ply 
composite laminate under cyclic mechanical loading is performed in this work. The 
analysis is performed for various laminate schemes such as [0°/15°]s, [0°/30°]s, 
[0°/45°]s, and [0°/60°]s. For each laminate scheme, several discontinuities, such as 
edge cracks, multiple holes, and multiple minor cracks, are considered for detailed 
numerical analysis. Higher-order XFEM is used to analyze fracture behavior. Higher-
order XFEM employs a tenfold higher-order crack tip enrichment function instead of 
fourfold enrichment function for improving solution accuracy. The performance of 
higher-order XFEM is demonstrated in few numerical examples in which the fatigue 
life curve is compared for different symmetric ply composite laminates. 

Keywords Fiber-reinforced polymer composite laminate · SIFs · Fatigue ·
Higher-order XFEM 

1 Introduction 

Composite materials have appealing properties, such as high strength-to-weight ratio. 
Due to this property, composite materials exhibit a high level of resistance to the 
growth of unstable cracks when stretched in the direction of the fibers. Composite 
material is mainly used for lightweight applications. As a result, composite mate-
rials are widely used in aerospace, automotive, marine, and biomedical engineering, 
among others [1]. Many factors can cause cracks to form and grow in composite
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2 K. Dwivedi and H. Pathak

materials. Crack propagation reduces the material’s stiffness and may result in 
catastrophic failure. Numerous numerical crack analysis methods are available, but 
only extended finite element method (XFEM) [2–4] provides more accurate results. 
Several researchers [5–8] have tried XFEM to determine the fracture response of 
crack subjected to various loadings. Numerous studies on XFEM fracture models 
have been conducted recently. The following are a few of them: Refs. [9, 10] for  
three-dimensional cracks, Refs. [11, 12] for dynamic fracture, and Refs. [13–17] for  
computing fracture parameters and crack growth analysis. A great introduction to 
XFEM may be found in [18]. 

With the introduction of enrichment by higher-order terms, Liu et al. [19] esti-
mated SIFs with the XFEM framework for the first time in 2004. The findings 
demonstrate that high-order terms may reach outstanding accuracy after examining 
several benchmarks. The researcher studied the enrichment with higher-order func-
tions using h-p clouds [20, 21]. With this technique, Zamani et al. [22, 23] combined 
an overlapping domain decomposition scheme with acceptable enrichment scheme 
and obtained outstanding accuracy. Zamani et al. [24] utilize higher-order terms to 
enrich the displacement and temperature field in the thermo-elastic crack problems 
and achieve more accuracy in SIF. Xiao et al. [25] updated the original XFEM by 
substituting the four branch functions with a predetermined number of higher-order 
terms at the crack tip asymptotic field. Cheng et al. [26] used higher-order XFEM to 
solve issues with curved discontinuities. Saxby et al. [27] employed a higher-order 
XFEM approach to attain the best convergence rate for Poisson and linear elasticity 
problems with curved discontinuities. Mousavi et al. [28] studied the numerous inter-
secting and branching cracks in the elastic domain using a higher-order extended 
finite element approach. 

Mechanical fatigue is mainly blamed for laminated composites’ failure in practical 
applications. The fatigue behavior of laminated composite structures and their failure 
mechanisms under tension–compression [29] and impact [30] have been extensively 
studied in the literature. Putic et al. [31] performed high-frequency fatigue on carbon 
fibe0072-reinforced composites. In the experiment, he considered 0°/90° cross-ply 
and 45° angle ply laminates with and without notches. Spearing and Beaumont 
[32] created a novel method for post-fatigue modeling of the strength of composite 
laminates with notches. Spearing et al. [33] investigated a fatigue model to track 
the growth of notch tip damage in a carbon fiber epoxy laminate. Shokrieh and 
Lessard [34] developed progressive fatigue damage modeling for predicting fatigue 
behavior of composite laminates with and without stress concentration. Degriech and 
Paepegem [35] present an overview of the main fatigue models and methodologies 
for predicting the lifetime of laminates. 

The literature study shows that geometrical discontinuity simulation frequently 
uses the XFEM approach. Practically every structural material’s fracture behavior 
has been studied using this method. To increase the computational accuracy of the 
XFEM technique, higher-order terms are added at the crack tip asymptotic field. This 
study uses a higher-order XFEM for fatigue analysis of composite laminate material.
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2 Mathematical Formulation with XFEM Approach 

Figure 1 depicts that the laminate domain (Ω) with various discontinuities (lc/h) is  
subjected to displacement (lv) and traction (lt) boundary conditions. The problem’s 
equilibrium and boundary conditions are as follows [36]: 

∇ :  T + fb = 0 in  Ω, (1) 

T = D : γ 

T · n = T on | |t, (2) 

T · n = 0 on | |c, (3) 

In above equations, ∇ is represent to gradient operator, T is Cauchy stress tensor, 
D is a fourth-order material tensor, γ is a strain tensor, f b is body force per unit 
volume, and n is outward unit normal. 

Weak form of equilibrium equation can be expressed as below [37], 

{ 

Ω 

γ (u):D:γ (v) dΩ − 
{ 

Ω 

fb · v dΩ − 
{

| |t 

T · v dl = 0. (4)

Fig. 1 Laminate domain with multiple discontinuities 
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Displacement-based approximation [38] for modeling the crack with XFEM is 
written as, 

vh (x) = 
nE 

α=1 

Ψα(x)vα + 
nE 

β=1 

Ψβ (x)[o(x) − o(xβ )]lβ 

+ 
nE 

δ=1 

Ψδ(x)[ζ(x) − ζ(xδ)]mδ. (5) 

Here, Ψ(x) is the shape function. o(x) is Heaviside function defined for elements 
completely cut by the crack surface. ζ(x) is tip enrichment function defined for those 
elements that is partially cut by crack surface. The variables lβ and mδ represent an 
additional degree of freedom. 

Crack tip enrichment functions [36] for the orthotropic laminate material are given 
as, 

ζ(x) = 
[ √

d sin λ1 2
√

ω1(ϕ)
√
d cos λ2 2

√
ω2(ϕ)

√
d cos λ1 2

√
ω1(ϕ)

√
d sin λ2 2

√
ω2(ϕ) 

]
. 
(6) 

Furthermore, the higher-order terms can be added to the crack tip enrichment 
functions. 

ζ (x) 

= 

⎡ 

⎢⎣ 

√
d sin λ1 2

√
ω1(ϕ)

√
d cos λ2 2

√
ω2(ϕ)

√
d cos λ1 2

√
ω1(ϕ)

√
d sin λ2 2

√
ω2(ϕ) 

d2
√

ω1(ϕ) d2
√

ω2(ϕ) 
d2 cos 2λ1

√
ω1(ϕ) d2 sin 2λ1

√
ω1(ϕ) d2 cos 2λ2

√
ω2(ϕ) d2 sin 2λ2

√
ω2(ϕ) 

⎤ 

⎥⎦. 

(7) 

After the weak formulation, we obtained discrete equation for an element can be 
written as [37], 

[
K e 

i j  

]{
ve

} = 
{
Fe}. (8) 

The elemental contributions of stiffness matrix K e 
i j  for extrinsically enriched 

approximation are given as [38] 

K e 
i j  = 

⎡ 

⎢⎣ 
κvv 
i j κvl 

i j  κvm 
i j  

κ lv 
i j κ ll  

i j  κ lm 
i j  

κmv 
i j κml 

i j  κmm 
i j  

⎤ 

⎥⎦, (9) 

κrs  
i j  = 

{ 

Ωe 

(
Br 

i 

)T 
DBs 

j dΩ and r, s = v, l, m, (10)
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Fe = 
{ 
Fv 

i F
l 
i F

m 
i 

}
, (11) 

Ue = {Uv 
i U

l 
i U

m 
i 

}
. (12) 

Here, B is derivative matrix of shape function and D is two-dimensional fourth-
order material stiffness matrix. 

For composite laminate, material matrix [39] can be defined as 

D = 
NLE 

k=1 

k{ 

zk−1 

Qi j  (1zk)dz. (13) 

The domain-based interaction integral method [40, 41] was used to determine 
stress intensity factors. This method is accurate and effective in extracting individual 
SIFs under mixed mode loading conditions. 

3 Fatigue Crack Growth Analysis 

The crack propagation is tracked and modeled using the level set technique. This 
technique defines normal and tangential level set function values at each node to find 
the moving crack tip. In orthotropic laminate media, the maximum circumferential 
tensile stress hypothesis [42] is employed as failure criteria. The equivalent stress 
intensity factor and crack propagation angle are calculated using the equation below. 

θc = 2 arctan  
1 

4 

⎛ 

⎝ KI 

K I I  
+ 

/( 
KI 

K I I  

)2 

+ 8 

⎞ 

⎠, (14) 

Keq = 
1 

2 
cos 

( 
θc 

2 

) 
(KI(1 + cos(θc)) − 3KI I  sin(θc)). (15) 

Here, Keq is the equivalent stress intensity factor and θ c is the crack propagation 
angle. The formula below illustrates the Paris relationship between the SIF range 
and the crack growth rate. 

da 

dN 
=C(/\Keq)

m . (16) 

In the above expression, da represents crack growth, dN is the change in number 
of cycles, /\Keq is represented to change in the equivalent stress intensity factor, and 
C and m are material constants.



6 K. Dwivedi and H. Pathak

4 Results and Discussion 

4.1 Edge Crack Composite Laminate 

Figure 2a depicts the validation model of an edge crack composite laminate with 
dimensions of a = 9 mm, b = 101.6 mm, c = 18 mm, and d = 203.2 mm. The total 
thickness of the laminated plate is 1.235 mm. The lower surface of the laminate is 
limited to moving in the y-direction, while the upper surface is used for tensile traction 
load. Ф represents to laminar angle orientation of each lamina. For computation, the 
domain is discretized with 7500 nodes. Table 1 compares the SIF value for edge 
crack composite laminate obtained from both computational (XFEM, HO-XFEM) 
approaches with the literature.

For fatigue analysis purpose, we consider edge crack composite laminates plate 
with dimensions of a = 5 mm, b = 30 mm, c = 50 mm, and d = 60 mm, as shown in 
Fig. 2a. The laminate has a total thickness of 1.235 mm. The plate’s bottom surface 
is constrained to move in the y-direction, while the upper surface is subjected to 
cyclic mechanical loading with maximum stress (1 MPa) and zero stress ratio. The 
Paris constants [43] C = 2.29 × 10–13, and m = 4.867 is used to estimate fatigue 
life in composite laminate. A total of 6096 DOF are employed for computing from 
higher-order XFEM approach. A linear crack section used a 1 mm crack  increment  
in each step of the simulation. Figure 2c shows that [0°/15°]s laminate has the highest 
fatigue life and [0°/60°]s laminate has the lowest fatigue life then compared to another 
symmetric ply composite laminate. 

4.2 Edge Crack with Multiple Holes’/Cracks’ Composite 
Laminate 

The dimensions of edge crack composite laminate are a = 5 mm, b = 15 mm, c = 
50 mm, d = 60 mm, e = 15 mm, f = 15 mm, g = 15 mm, h = 12.5 mm, i = 11.5 mm, 
j = 13.5 mm as shown in Fig. 3a. Multiple holes of radius 4 mm and multiple small 
crack of 2 mm length are spread over the surface of composite laminate plate. The 
total thickness of the composite laminate plate is 1.235 mm. The plate’s bottom 
surface is constrained to move in the y-direction, while the upper surface is subjected 
to cyclic mechanical loading with maximum stress (1 MPa) and zero stress ratio. 
The Paris parameter [43] C = 2.29 × 10–13, m = 4.867 estimates fatigue life in 
composite laminate. A total of 6624 DOF are used to discretize the domain. A linear 
crack  section used a 1 mm crack  increment  in  each step of the simulation. Figure 3c 
shows that [0°/15°]s laminate has the highest fatigue life and [0°/60°]s laminate has 
the lowest fatigue life when compared to other symmetric ply composite laminate.
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Fig. 2 a Composite laminate plate with edge crack, b ply sequence in symmetric ply composite 
laminate (0°/Ф°/Ф°/0°), c comparison of fatigue life curve for edge crack symmetric ply composite 
laminate at zero stress ratio, simulated from higher-order XFEM method
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Table 1 SIF obtained from different computational approaches for single-edge crack symmetric 
ply composite laminate under uniform tensile traction load was compared to the literature 

Lamination 
schemes 

Stress 
(MPa) 
[44] 

SIF (K ic) 
[44] 
MPa

√
mm 

SIF (K1) 
MPa

√
mm 

(XFEM) 

SIF (K1) 
MPa

√
mm 

(HO-XFEM) 

Error (%) 
with 
XFEM 

Error (%) 
with 
HO-XFEM 

0°/15°/15°/ 
0° 

293.077 4404.62 3971.7 4171.7 9.83 5.3 

0°/30°/30°/ 
0° 

231.48 3478.88 3096.1 3264.8 11 6.15 

0°/45°/45°/ 
0° 

212.442 3192.76 3053.8 3089.6 4.35 3.23 

0°/60°/60°/ 
0° 

235.224 3535.14 3235 3377.9 8.5 4.44

5 Conclusions 

This paper used higher-order extended finite element method for estimation the 
fatigue life of different symmetric ply composite laminates under cyclic mechanical 
load environment. Few numerical examples are introduced for demonstrating the 
performance of the proposed computational approach. From the numerical results, 
we obtained the following observation, illustrated below. 

• Use of higher-order enrichment function at the crack tip improves the accuracy 
of solution. 

• The fatigue life of symmetric ply composite laminate decreases as we increase 
the ply angle from 15° to 60° for symmetric ply composite laminate. 

• As we increase the discontinuity in the domain of laminate, then fatigue life is 
also decreasing.
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Fig. 3 a Composite laminate plate with multiple holes and cracks, b ply sequence in symmetric 
ply composite laminate, c comparison of fatigue life curve for multiple holes and cracks symmetric 
ply composite laminate at zero stress ratio, simulated from higher-order XFEM method
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Abstract A mean-field micromechanics model based on the Eshelby–Mori–Tanaka 
approach is used to investigate the effect of spatial orientation of reinforcements on 
the effective elastic, dielectric, and piezoelectric properties of a polymer composite, 
with an orthotropic matrix and a transversely isotropic reinforcement. The anal-
ysis is also performed for composites with random orientation of the piezoelectric 
reinforcements and with different shapes of spheroidal reinforcements ranging from 
aspect ratios of 2–1000. The effect of orientation on the effective axial and transverse 
Young’s moduli is not prominent at a low aspect ratio of 2, while the effective proper-
ties do not change significantly as functions of volume fraction for aspect ratios of 100 
and above. The results also confirm that the random composites show significantly 
poorer properties than their perfectly-aligned counterparts. The results also allow 
us to obtain the specific orientation angles that would provide the highest elastic, 
piezoelectric, and dielectric properties for a given reinforcement volume fraction. 
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1 Introduction 

Piezoelectric ceramics have high electromechanical coupling constants and have 
been routinely used as the major functional component in a large variety of sensors 
and actuators [1, 2]. However, since ceramics are stiff and brittle, they cannot be used 
in applications demanding high flexibility and conformability to curved surfaces. 
These drawbacks can be overcome by using the piezoelectric ceramic as reinforce-
ment in a piezoelectric polymer matrix. These piezoelectric polymer composites 
combine the properties of polymers, such as being lightweight and flexible, with stiff-
ness and high electromechanical coupling of piezoelectric ceramics. Hence, these 
piezoelectric polymer composites are excellent candidates for applications in flexible 
electronics and microelectromechanical systems (MEMSs) [3]. Judicious selection 
of such piezoelectric composites for the design and development of novel microde-
vices can be hastened if experimental efforts are aided by computational prediction of 
the effective properties of these piezoelectric composites. In most of Eshelby–Mori– 
Tanaka-based approaches extended to linear piezoelectric domain [4], the primary 
assumption is that the local coordinate axes of the reinforcements coincide with 
the global coordinate axes of the matrix. However, it is extremely difficult to get 
unidirectionally-oriented reinforcements in practice, and most real cases of particle-
reinforced composites involve randomly-oriented particles. In addition, it is desirable 
to give a certain spatial orientation to piezoelectric fibers for a specific application 
in some cases. Hence, a detailed analysis of piezoelectric composites with spatially-
oriented fibers is necessary, especially for cases when the matrix and reinforcement 
are both anisotropic. In terms of computation of effective properties of compos-
ites with randomly-oriented reinforcements, Odegard et al. [5] have established a 
protocol for evaluating the effective elastic properties of composites with randomly-
oriented reinforcements. However, micromechanical model(s) to study the effect of 
spatially-oriented as well as randomly-oriented transversely isotropic piezoelectric 
particles and fibers (such as PZT) in an orthotropic piezoelectric matrix (such as 
PVDF) have not been explored fully. Therefore, in this work, we have attempted to 
address the issue of micromechanics-based computational estimation of overall prop-
erties of piezoelectric composites for two cases, viz. (i) composites having spatially-
oriented reinforcements and (ii) composites with randomly-oriented reinforcements. 
The composites considered in this work have transversely isotropic piezoelectric 
spheroidal lead zirconate titanate (PZT-7A) inclusions in orthotropic piezoelectric 
polyvinylidene fluoride (PVDF) polymer matrix.
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2 Constituent Material Properties and Reinforcement 
Geometry 

In this section, the constituent material properties and the reinforcement geometry 
types are discussed. The composite considered here has PVDF as the matrix and 
PZT-7A as the reinforcement. The electro-elastic properties such as the stiffness, 
piezoelectric stress constants, and relative dielectric constant of both the materials are 
available in literature [6]. PVDF is a piezoelectrically active polymer, and PZT, on the 
other hand, is a ferroelectric ceramic having a perovskite structure and is composed 
of Lead Zirconate (PZ) and Lead Titanate (PT) having a very high electromechanical 
coupling constant. The constituent materials considered here are assumed to be poled 
in the three direction. 

In this work, the reinforcement geometry is considered to be spheroid. The shape 
of the reinforcement is changed by changing the spheroid aspect ratio. And finally, 
composites with four different aspect ratios: 2, 10, 100, and 1000 are considered in 
this work. 

3 Constitutive Equations of a Linear Piezoelectric Material 

The stress-charge form of the constitutive equations of a linear piezoelectric mate-
rial relates the independent variables elastic strain εmn and electric potential Ei to 
dependent variables stress σi j  and electric displacement Di given by Eq. (1) as:  

σi j  = C E i jmnεmn − eni j  En, 
Di = eimnεmn + κε 

in  En, 
(1) 

where Ci jmn, κin , and eni j  are the components of the stiffness tensor, components of 
the permittivity tensor, and components of the piezoelectric stress coefficient tensor, 
respectively. The above equations can be expressed in Barnett and Lothe notation 
[7], where the lower case subscripts take integral values in the range of 1–3, while 
uppercase subscripts take integral values in the range of 1–4. 

ZMn = 
{ 

εmn for M(= m) = 1, 2, 3 
−En for M = 4 

, (2) 

Σi J  = 
{

σi j  for J (= j ) = 1, 2, 3 
Di for J = 4 

, (3) 

Fi J  Mn  = 

⎧⎪⎪⎨ 

⎪⎪⎩ 

Ci jmn  for J, M = 1, 2, 3 
eni j for J = 1, 2, 3; M = 4 
eni j for J = 4; M = 1, 2, 3 
−κin  for J = M = 4 

, (4)



16 N. Mishra and K. Das

where ZMn, Σi J  , and Fi J  Mn  are the strain-electric field, stress-electric displacement, 
and piezoelectric or electro-elastic moduli, respectively. The constitutive equation in 
matrix form for an orthotropic material is given as 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

σ11 

σ22 

σ33 

σ23 

σ13 

σ12 

D1 

D2 

D3 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

= 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

C11 C12 C13 0 0 0 0 0 e31 
C12 C22 C23 0 0 0 0 0 e32 
C13 C23 C33 0 0 0 0 0 e33 
0 0 0  C44 0 0 0 e24 0 
0 0 0 0  C55 0 e15 0 0  
0 0 0 0 0  C66 0 0 0  
0 0 0 0  e15 0 −κ11 0 0  
0 0 0  e24 0 0 0  −κ22 0 
e31 e32 e33 0 0 0 0 0  −κ33 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

ε11 

ε22 

ε33 

2ε23 
2ε13 
2ε12 
−E1 

−E2 

−E3 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

. (5) 

Here, the subscripts are written in Voigt notation. 

3.1 Piezoelectric Reinforcement Problem 

Consider a general two-phase piezoelectric inclusion problem of a spheroidal piezo-
electric reinforcement which is transversely isotropic, embedded in a piezoelectric 
orthotropic matrix. The system is subjected to homogeneous electro-elastic boundary 
conditions Z0 such that 

ui (Ω) = ε0 i j  x j and φi (Ω) = E0 
i xi . (6) 

Here Ω is the surface of the composite. The effective electro-elastic moduli F is 
calculated by evaluation of the volume-averaged piezoelectric fields as 

Σeff = Feff Z eff , (7) 

where F is the overall electro-elastic modulus of the homogenous composite system. 
Feff is given by [4] 

Feff = Fm + v f 
(
Ff − Fm 

)
T piezo , (8) 

where T piezo is the concentration tensor (strain-electric displacement) that relates 
the average strain and potential gradient in the reinforcement phase to that in the 
composite. Estimating the strain-electric displacement concentration tensor is one of 
the key steps in evaluating the electro-elastic properties of piezoelectric composites. 
The strain-potential gradient concentration tensor derived using the modified EMT 
model is given as [8]
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T piezo EMT = T piezo dil [vmI + vfT piezo dil ]−1 , (9) 

where 

T piezo dil = [I + Spiezo F−1 
m (Fr − Fm)]−1 . (10) 

Here, Spiezo is the piezoelectric Eshelby tensor and I is the identity tensor. vm 

and vf are the volume fraction of matrix and reinforcement, respectively. Finally, the 
effective electro-elastic modulus of a binary composite [9] is given by 

Feff 
EMT = Fm + vr(Fr − Fm)T piezo EMT . (11) 

3.2 The Piezoelectric Eshelby Tensor 

The geometry of the reinforcement is considered as an ellipsoid that satisfies the 
equation 

x2 

a2 
+ 

y2 

b2 
+ 

z2 

c2 
= 1, (12) 

where a, b, and c are the semi-axes of the reinforcement. The ellipsoidal reinforce-
ment can be considered as spheroidal inclusion when a = b and its shape can be 
changed from particle-like short fibers to very long fibers by changing the aspect 
ratio c a . 

The estimation of the overall properties of a piezoelectric composite depends on 
the determination of the strain-potential concentration tensor. The determination of 
the strain-potential concentration tensor, in turn, depends on the determination of the 
piezoelectric Eshelby tensor. The piezoelectric Eshelby tensor is a function of the 
reinforcement geometry and the electro-elastic properties of the matrix as given by 
[9]. 

SMn Ab  = 
{ 1 

8π Fi J  Ab(Iinm  J  + Iimn  J  ) for M = 1, 2, 3 
1 
4π Fi J  Ab  Iin4J for M = 4 

. (13) 

Here, Fi J  Ab  is the component of the electro-elastic matrix of the polymer (matrix), 
and for 0–3 composites, the nonzero components of IinM  J  are given as


