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Preface to the second edition

No study of any complexity manages to collect all the intended data. Analysis of
the resulting partially collected data must therefore address the issues raised by the
missing data. Beyond simply estimating the proportion of missing values, the inter-
play between the substantive questions and the reasons for the missing data is crucial.
There is no simple, universal, solution.

Suppose, for a substantive question at hand, the consequences of missing data in
terms of bias and loss of precision are non-trivial. Then the analyst must make a set of
assumptions about the reasons, or mechanisms, causing data to be missing, and per-
form an inferentially valid analysis under these assumptions. In this regard, analysis
of a partially observed dataset is the same as any statistical analysis; the difference
is that when data are missing we cannot assess the validity of these assumptions in
the way we might do in a regression analysis, for example. Hence, sensitivity analy-
sis, where we explore the robustness of inference to different assumptions about the
reasons for missing data, is important.

Given a set of assumptions about the reasons data are missing, there are a
number of statistical methods for carrying out the analysis. These include the
expectation-maximization (EM) algorithm, inverse probability (of non-missingness)
weighting, a full Bayesian analysis and, depending on the setting, a direct application
of maximum likelihood. These methods, and those derived from them, each have
their own advantages in particular settings. We focus on multiple imputation for its
practical utility, broad applicability, and relatively straightforward application. Since
the first edition was published ten years ago, new applications of multiple imputation
have continued to emerge and we have had to be selective in what we cover. The
topics included are those we have found most relevant for our research and teaching.

Like the first edition, the book is divided into three parts. Part I lays the foun-
dations, with an introductory chapter outlining the issues raised by missing data,
followed by a chapter describing the theoretical foundations of multiple imputation.
Part II describes the application of multiple imputation for standard regression anal-
yses, explaining how MI can be used for continuous, categorical, and ordinal data.
Part III describes how to apply MI in a range of practical settings, specifically analysis
with non-linear relationships, analysis of survival data, development and validation
of prognostic models, analysis with multilevel data structures, sensitivity analysis,
handling measurement error, analysis involving weights, and causal inference. We
conclude with a chapter outlining some broad practical points on the application of
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xiv PREFACE TO THE SECOND EDITION

multiple imputation. While readers may wish to read only specific relevant chapters
in Part III, Chapter 14 is intended to be relevant to all readers. We illustrate ideas
with a range of examples from the medical and social sciences, reflecting the wide
application that MI has seen in recent years.

Each chapter concludes with a range of exercises, designed to consolidate
and deepen understanding of the material. The computer-based exercises have
been designed with R and Stata users in mind. The book’s home page at
https://missingdata.lshtm.ac.uk contains both (i) hints for the exercises (including
suggestions for R and Stata code) and (ii) full solutions where applicable.

We welcome feedback from readers. Please email james.carpenter@lshtm
.ac.uk in the first instance.

James R. Carpenter, Jonathan W. Bartlett, Tim P. Morris,
Angela M. Wood, Matteo Quartagno and Mike G. Kenward

September 2022

https://missingdata.lshtm.ac.uk
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Glossary

Indices and symbols

i indexes units, often individuals
j indexes variables in the dataset
n total number of units in the dataset
p depending on context, number of variables in the dataset or number

of parameters in a statistical model
W,X,Y ,Z random variables
Yi,j ith observation on jth variable, i = 1,… , n; j = 1,… , p
R response indicator, where Ri = 1 denotes observed data for unit i

and Ri = 0 indicates missing data
𝜃 generic parameter
𝜽 generic parameter column vector, typically p by 1
𝛼, 𝛽, 𝛾, 𝛿 regression coefficients
𝜷 column vector of regression coefficients, typically p by 1.
∗ a random draw, typically from a probability distribution but

sometimes data/a datum
U(.) a generic score statistic

Matrices

𝛀 Matrix, typically of dimension p × p
𝛀i, j i, jth element of 𝛀
𝛀T Transpose of 𝛀, so that 𝛀T

i,j = 𝛀i,j

Yj = (Y1,j,… ,Yn,j)T n by 1 column vector of observations on variable j
tr(𝛀) Sum of diagonal elements of 𝛀, i.e.

∑𝛀i,i known as the
trace of the matrix

Abbreviations

CAR censoring at random
CNAR censoring not at random
EM expectation maximisation
FCS full conditional specification
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xx GLOSSARY

FEV1 forced expiratory volume in one second (measured in litres)
FMI fraction of missing information
IPW inverse probability weighting
IV instrumental variable
MAR missing at random
MCAR missing completely at random
MI multiple imputation
MNAR missing not at random
PMM predictive mean matching

Probability distributions

f ( . ) Probability distribution function
F( . ) Cumulative distribution function
| to be verbalised ‘given’ or ‘conditional on’, as in f (Y|X) ‘the

probability distribution function of Y given [conditional on] X’

Miscellaneous

We use the terms complete records and incomplete records rather
than complete cases and incomplete cases, respectively.
For generic regression of Y on X, we use the terms outcome or
dependent variable for Y and covariates or independent variables
for X.
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1

Introduction

Collecting, analysing, and drawing inferences from data are central to research in
the medical and social sciences. Unfortunately, for any number of reasons, it is
rarely possible to collect all the intended data. The ubiquity of missing data, and
the problems this poses for both analysis and inference, has spawned a substantial
statistical literature dating from 1950s. At that time, when statistical computing was
in its infancy, many analyses were only feasible because of the carefully planned
balance in the dataset (for example the same number of observations on each unit).
Missing data meant the available data for analysis were unbalanced, thus complicat-
ing the planned analysis and in some instances rendering it infeasible. Early work on
the problem was therefore largely computational (e.g. Healy and Westmacott, 1956,
Afifi and Elashoff, 1966, Orchard and Woodbury, 1972, Dempster et al., 1977).

The wider question of the consequences of non-trivial proportions of missing
data for inference was neglected until the seminal paper by Rubin (1976). This set
out a typology for assumptions about the reasons for missing data and sketched their
implications for analysis and inference. It marked the beginning of a broad stream of
research about the analysis of partially observed data. The literature is now huge and
continues to grow, both as methods are developed for large and complex data struc-
tures, and as increasing computer power and suitable software enables researchers to
apply these methods.

For a broad overview of the literature, a good place to start for applied statisticians
is Little and Rubin (2019). They give a good overview of likelihood methods and an
introduction to multiple imputation. Allison (2002) presents a less technical overview.
Schafer (1997) is more algorithmic, focusing on the expectation maximisation (EM)
algorithm and imputation using the multivariate normal and general location model.
Molenberghs and Kenward (2007) focus on clinical studies, while Daniels and Hogan
(2008) focus on longitudinal studies with a Bayesian emphasis.

Multiple Imputation and its Application, Second Edition.
James R. Carpenter, Jonathan W. Bartlett, Tim P. Morris, Angela M. Wood, Matteo Quartagno and Michael G. Kenward.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
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The above books concentrate on the parametric approaches. However, there is also
a growing literature based around using inverse probability weighting, in the spirit of
Horvitz and Thompson (1952), and associated doubly robust methods. In particular,
we refer to the work of Robins and colleagues (e.g. Robins and Rotnitzky, 1995,
Scharfstein et al., 1999). Vansteelandt et al. (2009) give an accessible introduction
to these developments. A comparison with multiple imputation in a simple setting is
given by Carpenter et al. (2006). The pros and cons are debated in Kang and Schafer
(2007) and the theory is brought together by Tsiatis (2006).

This book is concerned with a particular statistical method for analysing and
drawing inferences from incomplete data called multiple imputation (MI). Initially
proposed by Rubin (1987) in the context of surveys, increasing awareness among
researchers about the possible effects of missing data (e.g. Klebanoff and Cole, 2008)
has led to an upsurge of interest (e.g. Sterne et al. (2009), Kenward and Carpen-
ter (2007), Schafer (1999a), Rubin (1996)), fuelled by the increasing availability of
software and computing power.

MI is attractive because it is both practical and widely applicable. Well-developed
statistical software (see, for example, issue 45 of the Journal of Statistical Software)
has placed MI within the reach of most researchers in the medical and social sciences,
whether or not they have undertaken advanced training in statistics. However, the
increasing use of MI in a range of settings beyond that originally envisaged has led
to a bewildering proliferation of algorithms and software. Further, the implications
of the underlying assumptions in the context of the data at hand are often unclear.

We are writing for researchers in the medical and social sciences with the aim of
clarifying the issues raised by missing data, outlining the rationale for MI, explain-
ing the motivation and relationship between the various imputation algorithms and
describing and illustrating its application in various settings and to some complex
data structures.

Throughout most of the book (with the partial exception of Chapter 8), we will
assume that a key aim of analysis with incomplete data is to recover the information
lost due to missing data. More specifically, we will take the ‘substantive model’ as
the model that would be used with complete data. We can then define certain desir-
able properties of our estimator with incomplete data. First, it should be unbiased
for the value of the parameter we would see with complete data. Second, it should
have low variance. Third, we should have a reliable variance formula and a means of
constructing confidence intervals with the advertised coverage.

In the context of multiple imputation, it is worth noting that these remain our
aims; the aim of multiple imputation is not to accurately predict the missing values.
Rubin (1996) describes it as follows:

‘Judging the quality of missing data procedures by their ability to recreate
the individual missing values [… ] does not lead to choosing procedures
that result in valid inference, which is our objective’.

An objection may be that the ability to perfectly predict missing values would
result in valid inference; however, in our view, this hypothetical scenario would be
one in which data are not really ‘missing’.
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Central to the analysis of partially observed data is an understanding of why the
data are missing and the implications of this for the analysis. This is the focus of
the remainder of this chapter. Introducing some of the examples that run through
the book, we show how Rubin’s typology (Rubin, 1976) provides the foundational
framework for understanding the implications of missing data.

1.1 Reasons for missing data

In this section, we consider possible reasons for missing data, illustrate these with
examples, and note some preliminary implications for inference. We use the word
‘possible’ advisedly, since we can rarely be sure of the mechanism giving rise to miss-
ing data. Instead, a range of possible mechanisms are consistent with the observed
data. In practice, we therefore wish to analyse the data under different mechanisms
to establish the robustness of our inference in the face of uncertainty about the miss-
ingness mechanism.

All datasets consist of a series of units each of which provides information on a
series of items. For example, in a cross-sectional questionnaire survey, the units would
be individuals, and the items their answers to the questions. In a household survey, the
units would be households, and the items information about the household and mem-
bers of the household. In longitudinal studies, units would typically be individuals,
while items would be longitudinal data from those individuals. In this book, units

Figure 1.1 Detail from a senior mandarin’s house front in New Territories,
Hong Kong.
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therefore correspond to the highest level in multi-level (i.e. hierarchical) data, and
unless stated otherwise, data from different units are statistically independent.

Within this framework, it is useful to distinguish between units where all the
information is missing, termed unit non-response and units who contribute partial
information, termed item non-response. The statistical issues are the same in both
cases and both can in principle be handled by MI. However, the main focus of this
book is the latter.

Example 1.1 Mandarin tableau

Figure 1.1, which is also shown on the book’s cover, shows part of the frontage of
a senior mandarin’s house in the New Territories, Hong Kong. We suppose interest
focuses on characteristics of the figurines, for example their number, height, facial
characteristics, and dress. Unit non-response then corresponds to missing figurines,
and item non-response to damaged – hence, partially observed – figurines. ◽

1.2 Examples

We now introduce two key examples, which we return to throughout the book.

Example 1.2 Youth Cohort Study (YCS)

The Youth Cohort Study of England and Wales (YCS) is an ongoing UK government-
funded representative survey of pupils in England and Wales at school-leaving age
(School year 11, age 16–17) (UK Data Archive, 2007). Each year that a new cohort
is surveyed, detailed information is collected on each young person’s experience of
education, and their qualifications, as well as information on employment and train-
ing. A limited amount of information is collected on their personal characteristics,
family, home circumstances, and aspirations.

Over the life cycle of the YCS, different organisations have had responsibility
for the structure and timings of data collection. Unfortunately, the documentation of
older cohorts is poor. Croxford et al. (2007) have deposited a harmonised dataset that
comprises YCS cohorts from 1984 to 2002 (UK Data Archive Study Number 5765
dataset). We consider data from pupils attending comprehensive schools from five
YCS cohorts; these pupils reached the end of Year 11 in 1990, 1993, 1995, 1997, and
1999.

We explore relationships between Year 11 educational attainment (the General
Certificate of Secondary Education) and key measures of social stratification. The
units are pupils, and the items are measurements on these pupils, and a non-trivial
number of items are partially observed. ◽
Example 1.3 Randomised controlled trial of patients with chronic asthma

We consider data from a five-arm asthma clinical trial to assess the efficacy and
safety of budesonide, a second-generation glucocorticosteroid, on patients with
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chronic asthma. Four hundred and seventy-three patients with chronic asthma were
enrolled in the 12-week randomised, double-blind, multi-centre parallel-group
trial, which compared the effect of a daily dose of 200, 400, 800, or 1600 mcg of
budesonide with placebo.

Key outcomes of clinical interest include patients’ peak expiratory flow rate (their
maximum speed of expiration in litres/minute) and their forced expiratory volume,
FEV1 (the volume of air, in litres, the patient with fully inflated lungs can breathe out
in one second). In summary, the trial found a statistically significant dose–response
effect for the mean change from baseline over the study for both morning peak expi-
ratory flow, evening peak expiratory flow, and FEV1 at the 5% level.

Budesonide-treated patients also showed reduced asthma symptoms and bron-
chodilator use compared with placebo, while there were no clinically significant
differences in treatment-related adverse experiences between the treatment groups.
Further details about the conduct of the trial, its conclusions, and the variables col-
lected can be found elsewhere (Busse et al., 1998). Here, we focus on FEV1 and
confine our attention to the placebo and lowest active dose arms. FEV1 was collected
at baseline, then 2, 4, 8, and 12 weeks after randomisation. The intention was to com-
pare FEV1 across treatment arms at 12 weeks. However (excluding three patients
whose participation in the study was intermittent), only 37 out of 90 patients in the
placebo arm, and 71 out of 90 patients in the lowest active dose arm, still remained
in the trial at 12 weeks. ◽

1.3 Patterns of missing data

It is very important to investigate the patterns of missing data before embarking
on a formal analysis. This can throw up vital information that might otherwise be
overlooked and may even allow the missing data to be traced. For example, when
analysing the new wave of a longitudinal survey, a colleague’s careful examination
of missing data patterns established that many of the missing questionnaires could
be traced to a set of cardboard boxes. These turned out to have been left behind in a
move. They were recovered, and the data entered.

Most statistical software now has tools for describing the pattern of missing
data. Key questions concern the extent and patterns of missing values, and whether
the pattern is monotone (as described in the next paragraph), as if it is, this can
considerably speed up and simplify the analysis.

Missing data in a set of p variables are said to follow a monotone missingness
pattern if the variables can be re-ordered such that, for every unit i and variable j,

1. if unit i is observed on variable j, where j = 2,… , p it is observed on all
variables j′ < j, and

2. if unit i is missing on variable j, where j = 2,… , p it is missing on all variables
j′ > j.
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A natural setting for the occurrence of monotone missing data is a longitudinal
study, where units are observed either until they are lost to follow up, or the study
concludes. A monotone pattern is thus inconsistent with patterns of interim missing
data, where some units are observed for a period, missing for the subsequent period,
but then observed. Questionnaires may also give rise to monotone missing data
patterns when individuals systematically answer each question in turn from the
beginning till they either stop or complete the questionnaire. In other settings, it may
be possible to re-order items to achieve a monotone pattern.

Example 1.2 Youth Cohort Study (ctd)

Table 1.1 shows the covariates we consider from the YCS. There are no missing data
in the variables cohort and boy. The missingness pattern for General Certificate of
Secondary Education (GCSE) score and the remaining two variables is shown in
Table 1.2. In this example, it is not possible to re-order the variables (items) to obtain
a monotone pattern due, for example to pattern 3 (N = 697). ◽

Example 1.3 Asthma study (ctd)

Table 1.3 shows the withdrawal pattern for the placebo and lowest active dose arms
(all the patients are receiving their randomised medication). We have removed three
patients with unusual interim missing data from Table 1.3 and all our analyses. The
remaining missingness pattern is monotone in both treatment arms. ◽

Table 1.1 YCS variables for exploring the relationship between Year 11
attainment and social stratification.

Variable name Description

Cohort Year of data collection: 1990, ’93, ’95, ’97, ’99
Boy Indicator variable for boys
Occupation Parental occupation, categorised as managerial,

intermediate, or working
Ethnicity Categorised as Bangladeshi, Black, Indian,

other Asian, Other, Pakistani, or White

Table 1.2 Pattern of missing values in the YCS data.

Pattern GCSE score Occupation Ethnicity No. % of total

1 ✓ ✓ ✓ 55145 87%
2 ✓ ⋅ ✓ 6821 11%
3 ⋅ ✓ ✓ 697 1%
4 ✓ ⋅ ⋅ 592 1%


