
CIM Series in Mathematical Sciences 

New Trends 
in Lyapunov 
Exponents

João Lopes Dias · Pedro Duarte
José Pedro Gaivão · Silvius Klein
Telmo Peixe · Jaqueline Siqueira
Maria Joana Torres Editors

NTLE, Lisbon, Portugal, 
February 7–11, 2022



CIM Series in Mathematical Sciences 

Series Editors 

Irene Fonseca, Department of Mathematical Sciences, Carnegie Mellon University, 
Center for Nonlinear Analysis, Pittsburgh, PA, USA 

Isabel Maria Narra Figueiredo , Dept of Math, University of Coimbra, 
COIMBRA, Portugal

https://orcid.org/0000-0002-0215-8851


The CIM Series in Mathematical Sciences is proudly published on behalf of and in 
collaboration with the International Center for Mathematics/Centro Internacional de 
Matemática (CIM). Proceedings, lecture course material from summer schools, and 
research monographs are welcome in the CIM Series. 

Based in Portugal, this non-for-profit, privately-run association aims at devel-
oping and promoting research in mathematics. CIM is a member of ERCOM– 
European Research Centres on Mathematics and of IMSI–International Mathemat-
ics Sciences Institutes.



João Lopes Dias • Pedro Duarte •
José Pedro Gaivão • Silvius Klein • Telmo Peixe •
Jaqueline Siqueira • Maria Joana Torres 
Editors 

New Trends in Lyapunov 
Exponents 
NTLE, Lisbon, Portugal, February 7–11, 2022



Editors 
João Lopes Dias 
Department of Mathematics, 
CEMAPRE/REM/ISEG 
University of Lisbon 
Lisbon, Portugal 

José Pedro Gaivão 
Department of Mathematics, 
CEMAPRE/REM/ISEG 
University of Lisbon 
Lisbon, Portugal 

Telmo Peixe 
Department of Mathematics, 
CEMAPRE/REM/ISEG 
University of Lisbon 
Lisbon, Portugal 

Maria Joana Torres 
CMAT and Department of Mathematics 
University of Minho 
Braga, Portugal 

Pedro Duarte 
Department of Mathematics and CMAFcIO, 
Faculty of Sciences 
University of Lisbon 
Lisbon, Portugal 

Silvius Klein 
Department of Mathematics 
Pontifical Catholic University of Rio de 
Janeiro 
Rio de Janeiro, Brazil 

Jaqueline Siqueira 
Institute of Mathematics 
Federal University of Rio de Janeiro 
Rio de Janeiro, Brazil 

ISSN 2364-950X ISSN 2364-9518 (electronic) 
CIM Series in Mathematical Sciences 
ISBN 978-3-031-41315-5 ISBN 978-3-031-41316-2 (eBook) 
https://doi.org/10.1007/978-3-031-41316-2 

Mathematics Subject Classification: 37D25, 37D35, 37H15, 34F05 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland 
AG 2023 
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-41316-2
https://doi.org/10.1007/978-3-031-41316-2
https://doi.org/10.1007/978-3-031-41316-2
https://doi.org/10.1007/978-3-031-41316-2
https://doi.org/10.1007/978-3-031-41316-2
https://doi.org/10.1007/978-3-031-41316-2
https://doi.org/10.1007/978-3-031-41316-2
https://doi.org/10.1007/978-3-031-41316-2
https://doi.org/10.1007/978-3-031-41316-2
https://doi.org/10.1007/978-3-031-41316-2


Preface 

The concept of characteristic exponent along an orbit of a dynamical system 
was introduced by Aleksandr Mikhailovich Lyapunov (1857–1918), who made 
fundamental contributions to the theory of differential equations and of dynamical 
systems. Known nowadays as Lyapunov exponent, this concept measures the 
sensitivity of an orbit to its initial condition. Roughly speaking, a negative Lyapunov 
exponent corresponds to stable orbit behavior, the kind characterized by Aleksandr 
Lyapunov, while positive Lyapunov exponents are associated with irregular or 
chaotic orbit behavior. 

A systematic study of Lyapunov exponents followed the classical Multiplicative 
Ergodic Theorem of Valery Oseledets in 1965, where the concept is defined in the 
context of linear cocycles. A linear cocycle is a skew-product dynamical system 
acting on a vector bundle, which preserves the linear bundle structure and induces 
a measure preserving dynamical system on the base. Lyapunov exponents quantify 
the average exponential growth of the iterates of the cocycle along fiber-invariant 
subspaces, which are called Oseledets subspaces. 

An important class of examples of linear cocycles are the ones associated with 
discrete, one-dimensional ergodic Schrödinger operators. Such an operator is the 
discretized version of a quantum Hamiltonian. Its potential is given by a time series, 
that is, the potential is obtained by evaluating an observable along the orbit of an 
ergodic transformation. 

The iterates of a linear cocycle can be thought of as a multiplicative (noncom-
mutative) stochastic process. A relevant and difficult problem is to understand the 
statistical properties of such processes, under appropriate assumptions. 

Some of the main topics of study in the theory of Lyapunov exponents are 
concerned with their positivity and simplicity; dichotomy between uniform hyper-
bolicity and zero Lyapunov exponents; regularity properties such as continuity, 
modulus of continuity or even smoothness; the structure of their level sets; their 
behavior on non-typical sets; generalizations of Oseledets’ theorem to other settings 
and applications to fields such as Mathematical Physics, Differential Equations and 
Geometry.

v



vi Preface

This monograph contains a collection of survey articles describing recent 
research trends in these and related topics. The articles are authored by participants 
of the workshop “New trends in Lyapunov exponents” that took place between 
February 7 and 11, 2022, at ISEG-ULisboa (Lisbon School of Economics & 
Management of the Universidade de Lisboa) in Lisbon, Portugal. The workshop was 
part of the scientific activities organized within the research project PTDC/MAT-
PUR/29126/2017 funded by FCT (Fundação para a Ciência e Tecnologia), Portugal. 
It also received partial support from ISEG and the following research centers: 
CMAT, CEMAPRE and CMAFcIO. For many participants, this gathering marked 
their first in-person international event after two years of travel restrictions resulting 
from the Covid-19 pandemic. 

The editors are grateful to CIM (Centro Internacional de Matemática) for 
supporting the publication of this volume in the “CIM Series in Mathematical 
Sciences”. 

Lisbon, Portugal João Lopes Dias 
Lisbon, Portugal Pedro Duarte 
Lisbon, Portugal José Pedro Gaivão 
Rio de Janeiro, Brazil Silvius Klein 
Lisbon, Portugal Telmo Peixe 
Rio de Janeiro, Brazil Jaqueline Siqueira 
Braga, Portugal Maria Joana Torres
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Lyapunov Exponents for Linear 
Homogeneous Differential Equations 

Mário Bessa 

Abstract We consider linear continuous-time cocycles . Ф : R × M → GL(2,R)

induced by second order linear homogeneous differential equations . ẍ+α(ϕt (ω))ẋ+
β(ϕt (ω))x = 0, where the coefficients .α, β evolve along the orbit of a flow . ϕt :
M → M defined on a closed manifold M and .ω ∈ M . We are mainly interested in 
the Lyapunov exponents associated to most of the cocycles chosen when one allows 
variation of the parameters . α and . β. The topology used to compare perturbations 
turn to be crucial to the conclusions. 

Keywords Differential equations · Linear cocycles · Linear differential 
systems · Multiplicative ergodic theorem · Lyapunov exponents 

2010 Mathematics Subject Classification Primary: 34D08, 37H15; Secondary: 
34A30, 37A20 

1 Introduction 

1.1 Linear Differential Systems 

Let .Фt
A be a matricial solution of the autonomous differential equation . U̇ (t) =

A · U(t) where A is a .n × n matrix of the same order as .U(t). Given  .v ∈ Rn, 
obtaining the asymptotic growth of the number 

.
1

t
log ║Фt

A · v║ (1) 

is an exercise of finite dimensional spectral analysis. The Lyapunov spectrum is 
characterized by the Lyapunov exponents (the limit of (1) when .t → ∞) and 
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2 M. Bessa

its eigendirections. When a perturbation B of A is allowed, say by considering B 
uniformly near A, the perturbed system .U̇ (t) = B · U(t) originates the solution . Фt

B

exhibiting a well-understood behaviour [36]. The problem starts to gain enormous 
complexity when we consider the non-autonomous case .U̇ (t) = A(t) · U(t), where 
.A(t) depends on the parameter t . The calculation of Lyapunov exponents, as well 
as their stability, turns out to be a substantially more difficult issue. A classical 
way of looking at non-autonomous linear differential equations is to consider linear 
differential systems i.e. linear continuous-time cocycles. 

1.2 Kinetic Cocycles 

It has been known by Liouville theory (see e.g. [45]), established almost two 
centuries ago, that there are huge constraints when we try to apply analytical 
methods to integrate most functions. As we cannot always have explicit solutions 
a qualitative approach to understand the asymptotic behaviour of solutions of 
differential equations proved to be an efficient approach to deal with this difficulty. 
We intend to analyse the asymptotic behaviour of solutions of second order linear 
homogeneous differential equations of the form 

.ẍ(t) + α(ϕt (ω))ẋ(t) + β(ϕt (ω))x(t) = 0, (2) 

with coefficients . α and . β displaying a certain regularity (. Lp or . Cr with .r ≥ 0), 
varying along the orbits of a flow . ϕt and admitting a small perturbation on the 
parameters . α and . β. This flow  . ϕt is usually consider to be aperiodic and so for 
each orbit we obtain a particular differential equation which results in dealing with 
infinitely many differential equations at the same time. We will try to describe the 
Lyapunov spectrum of a linear cocycle associated with (2) when some perturbation 
on its coefficients is made. The details about these type of cocycles will be presented 
later on Sect. 2.2 but the idea is very simple. We consider a flow . ϕt : M → M

preserving a measure defined in M and a linear variational equation . U̇ (ω, t) =
A(ϕt (ω)) · U(ω, t) with generator 

.

A : M −→ R2×2

ω �−→
⎛

0 1
−β(ω) −α(ω)

⎠
.

(3) 

Hence, the infinitesimal generator A is of a particular type after all. The flow . ϕt will 
label a certain differential equation where A captures its coefficients.
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1.3 The Harmonic Oscillator 

Equation (2) represents the simple damped harmonic oscillator free from external 
forces where . α (frictional force) and . β (frequency of the oscillator) are functions 
depending on .ω ∈ M described by the flow .ϕt : M → M for .t ∈ R. When the 
frictional force and the frequency of the oscillator are constant or, more generally, 
when . α and . β are first integrals with respect to . ϕt , then (2) can be easily solved. 
When this is not the case, explicit solutions could be difficult to obtain. When 
.α �= 0 (damped case) we have the solution .Фt

A ∈ GL(2,R) and when . α = 0
(the frictionless case) we have .Фt

A ∈ SL(2,R). Clearly, a perturbation theory for 
the frictionless case deserves some kind of care because perturbations will have to 
maintain .α = 0. 

1.4 The Main Goal 

Given (3) and fixing the position and velocity .(x(0), ẋ(0)) we are interested in 
describing the Lyapunov spectrum of .Фt

A when .t → ∞ of the pair .(x(t), ẋ(t)). 
More particularly, we intend to address the following problem: 

• Fixing a certain regularity of the parameters . α and . β (. Lp, . L∞, . C0, . C1, ...) and 
• providing the parameter space with a conforming topology we ask: 
• For the ‘majority’ of parameters considered (dense/residual/open. +dense) what 

kind of Lyapunov spectrum do we expect to have? 

In Sect. 3 we discuss the case when parameters evolve on . Lp, in Sect. 4 we consider 
parameters on . C0 and finally, in Sect. 5 we consider the parameters evolving 
on . Cr . The only case where there is already results in literature is the . Lp one. 
Hence, considering the . C0 and the . Cr cases we will only address some open 
questions. Finally, in Sect. 6 we consider a particular model of a third order linear 
homogeneous differential equation and follow [18] to show how to remove zero 
Lyapunov exponents on a partial hyperbolic cocycle by a small . C0 perturbation. 

2 Kinetic Linear Cocycles 

2.1 Linear Cocycles 

Let .(M,M, μ) be a probability space and let .ϕ : R × M → M be a measurable 
flow in the sense that it is a measurable map and 

(1) .ϕt : M → M given by .ϕt (ω) = ϕ(t, ω) preserves the measure . μ for all .t ∈ R; 
(2) .ϕ0 = IdM and .ϕt+s = ϕt ◦ ϕs for all .t, s ∈ R.
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Unless stated otherwise we will consider that the flow is ergodic in the usual sense 
that there exist no invariant sets except zero measure sets and their complements. Let 
.B(X) be the Borel .σ -algebra of a topological space X. A continuous-time linear 
random dynamical system on .(R2,B(R2)), or a continuous-time linear cocycle, 
over . ϕ is a .(B(R) ⊗M/B(GL(2,R))-measurable map 

. Ф : R × M → GL(2,R)

such that the mappings .Ф(t, ω) form a cocycle over . ϕ, that is: 

(1) .Ф0(ω) = Id for all .ω ∈ M; 
(2) .Фt+s(ω) = Фt(ϕs(ω)) ◦ Фs(ω), for all .s, t ∈ R and .ω ∈ M , 

and .t �→ Фt(ω) is continuous for all .ω ∈ M . We recall that having . ω �→ Фt(ω)

measurable for each .t ∈ R and .t �→ Фt(ω) continuous for all .ω ∈ M implies that 
. Ф is measurable in the product measure space. We also call these objects linear 
differential systems. 

2.2 Kinetic Linear Cocycles 

As we already said, in Sect. 1.3, the cocycles we consider are motivated by 
the non-autonomous linear homogeneous differential equation which describes a 
motion of the damped harmonic oscillator as the ‘simple pendulum’ along the path 
.(ϕt (ω))t∈R, with .ω ∈ M described by the flow . ϕ. Let .K ⊂ R2×2 be the set of . 2× 2
matrices written in the form of 

.A =
⎛
0 1
b a

⎠
(4) 

for real numbers . a, b, and denote by . G the set of measurable applications . A :
M → R2×2. Denote also by .K ⊂ G the set of kinetic measurable applications 
.A : M → K . We also identify two applications on . G that coincide on .μ-a.e. in 
M . Take measurable maps .α : M → R and .β : M → R. Consider the differential 
equation given in (2). Let  .y(t) = ẋ(t) and rewrite (2) as the following vectorial 
linear system 

.Ẋ = A(ϕt (ω)) · X, (5) 

where .X = X(t) = (x(t), y(t))T = (x(t), ẋ(t))T and .A ∈ K is given by (3). 
It follows from [5, Thm. 2.2.2] (see also Lemma 2.2.5 and Example 2.2.8 in this 
reference) that if .A ∈ G1 =: G ∩ L1(μ), i.e. .

∫
M

║A║ dμ < ∞, then it generates a 
unique linear differential system . ФA satisfying
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.Фt
A(ω) = Id +

∫ t

0
A(ϕs(ω)) · Фs

A(ω) ds. (6) 

The solution .Фt
A(ω) defined in (6) is called mild solution or Carathéodory 

solution. Given an initial condition .X(0) = v ∈ R2, we say that . t �→ Фt
A(ω)v

solves or is a solution of (5), or that (5) generates .Фt
A(ω). Note that . Ф0

A(ω)v = v

for all .ω ∈ M and .v ∈ R2. If the solution (6) is differentiable in time (i.e. with 
respect to t) and satisfies for all t 

.
d

dt
Фt

A(ω)v = A(ϕt (ω)) · Фt
A(ω)v and Ф0

A(ω)v = v, (7) 

then it is called a classical solution of (5). Classical solutions arise when we 
consider .A : M → K continuous. Of course that .t �→ Фt

A(ω)v is continuous for 
all . ω and v. Due  to  (7) we call .A : M → K a kinetic infinitesimal generator of . ФA. 
Sometimes, due to the relation between A and . ФA, we refer to both A and . ФA as a 
kinetic linear cocycle or kinetic linear differential system. If (5) has initial condition 
.X(0) = v then .Ф0

A(ω)v = v and .X(t) = Фt
A(ω)v. Let  .K0 ⊂ K stand for the 

traceless kinetic cocycles induced from matrices as in (4) imposing the constraint 
.a = 0. Let .K1 = K ∩ L1(μ) ⊂ G1 and let .K1

0 = K0 ∩ L1(μ) ⊂ K1. 

2.3 Topologies 

Now we will define the topologies we are going to consider in the sequel. 

2.3.1 The Lp Topology 

We now define an .Lp-like topology generated by a metric that compares the 
infinitesimal generators on . G. For .1 ≤ p < ∞ and .A,B ∈ G we set 

. σ̂p(A,B) :=

⎧⎪⎨
⎪⎩

⎛∫
M

║A(ω) − B(ω)║p dμ(ω)

⎠ 1
p

,

∞ if the above integral does not exists,

and define 

. σp(A,B) :=
{

σ̂p(A,B)

1+σ̂p(A,B)
, if σ̂p(A,B) < ∞

1, if σ̂p(A,B) = ∞ .

Clearly, . σp is a distance in . G. The following topological results were proved in [2].
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Proposition 2.1 Consider .1 ≤ p < ∞. Then: 

(i) .σp(A,B) ≤ σq(A,B) for all .q ≥ p and all .A,B ∈ G. 
(ii) If .A ∈ G1 then for any .B ∈ G satisfying .σp(A,B) < 1 we have .B ∈ G1. 

Therefore, . sup
0≤t≤1

log+ ║Фt
B(ω)±1║ ∈ L1(μ). 

(iii) The sets .(K1, σp) and .(K1
0, σp) are closed, for all .1 ≤ p < ∞. 

(iv) For all .1 ≤ p < ∞, .(K1, σp) and .(K1
0, σp) are complete metric spaces and, 

therefore Baire spaces. 

Next result is elementary in measure theory and captures the crucial idea which 
allows making huge perturbations on the uniform norm but small perturbations in 
the .Lp-norm as long the support is small in measure. For the proof see [3]. 

Lemma 2.2 Given .A ∈ G1 and .∈ > 0 there exists .δ > 0 such that if .F ∈ M and 
.μ(F) < δ, then .

∫
F ║A(ω)║ dμ(ω) < ∈. 

2.3.2 Uniform Topologies 

Now we consider that the kinetic infinitesimal generators .A : M → R2×2 are in 
.L∞ or are in . C0. The first is denoted by .L∞(M,K) and the second by .C0(M,K). 
Clearly, .C0(M,K) ⊂ L∞(M,K) ⊂ K1. We also consider traceless infinitesimal 
generators .C0

0(M,K) ⊂ L∞
0 (M,K) ⊂ K1

0. 
We endow .L∞(M,R2×2) with the .L∞ metric defined by 

. ║A − B║∞ = ess sup
ω∈M

║A(ω) − B(ω)║

where .A,B ∈ L∞(M,R2×2). We also endow .C0(M,R2×2) with the . C0 metric 
defined by 

. ║A − B║0 = max
ω∈M

║A(ω) − B(ω)║

where .A,B ∈ C0(M,R2×2). We also make use of the uniform operators norm to compare 
solutions given a fixed .t > 0 like 

. ║Фt
A−Фt

B║0 = max
ω∈M

║Фt
A(ω)−Фt

B(ω)║ or ║Фt
A−Фt

B║∞ = ess sup
ω∈M

║Фt
A(ω)−Фt

B(ω)║.

Both .(C0(M,R2×2), ║ · ║0) and .(L∞(M,R2×2), ║ · ║∞) are complete metric 
spaces and, therefore, Baire spaces. The set .L∞(M,K) is .L∞-closed and the set 
.C0(M,K) is .C0-closed. Moreover, the set .L∞(M,K0) is .L∞-closed and the set 
.C0(M,K0) is .C0-closed.
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2.3.3 The Cr Topology 

Finally, we consider that the kinetic infinitesimal generators .A : M → R2×2 are 
.Cr,ν (i.e. are in .Cr+ν) a set we denote by .Cr,ν(M,K), where .r ∈ N ∪ {0} and 
.ν ∈ [0, 1]. We endow .Cr,ν(M,R2×2) with the .Cr,ν-topology defined using the 
norm 

.║A║r,ν = sup
0≤j≤r

sup
x∈M

║DjA(x)║ + sup
x �=y

║A(x) − A(y)║
║x − y║ν

, (8) 

where .A ∈ Cr,ν(M,R2×2) and .x, y ∈ M . Let us also mention that it is enough 
to consider the case when .ν = 1 (i.e. A is Lipschitz). In fact, if A is .ν-Hölder 
continuous with respect to the metric .d(·, ·) then it is Lipschitz with respect to the 
metric .d(·, ·)ν . Hence, up to a change of metric we may assume that A is Lipschitz 
and we will do so throughout the presentation. 

2.4 Lyapunov Exponents 

Notice that if .A ∈ K1 then the cocycle .ФA satisfies the following integrability 
condition 

. sup
0≤t≤1

log+ ║Фt
A(ω)±1║ ∈ L1(μ), (9) 

where .log+ = max{0, log}. In fact, take . ω in the full measure .ϕt -invariant subset of 
M where .t �→ A(ϕt (ω)) is locally integrable. By (6) and by Grönwall’s inequality 
(see [5]) we get 

. sup
0≤t≤T

log+ ║ФA(t, ω)±1║ ≤
∫ T

0
║A(ϕs(ω))║ ds =: ψ(ω, T ). (10) 

By Arnold [5, Lemma 2.2.5] we have .ψ(·, T ) ∈ L1(μ), hence (9) holds. Fubini’s 
theorem allow us also to obtain from (10) that: 

. 

∫
M

log+ ║ФA(t, ω)±1║ dμ(ω) ≤
∫

M

∫ t

0
║A(ϕs(ω))║ ds dμ(ω)

=
∫ t

0

∫
M

║A(ϕs(ω))║ dμ(ω) ds = t║A║1.

If .A ∈ G1 then the integrability condition (9) holds and Oseledets theorem (see 
e.g. [5, 44]) gives that for .μ-a.e. .ω ∈ M , there exists a .ФA-invariant splitting called
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Oseledets splitting of the fiber .R2
ω = E1

ω ⊕ E2
ω and real numbers called Lyapunov 

exponents .λ1(A, ω) ≥ λ2(A, ω), such that: 

.λi(A, ω) = lim
t→±∞

1

t
log ║Фt

A(ω)vi║, (11) 

for any .vi ∈ Ei
ω \ {�0} and .i = 1, 2. Furthermore, given subspaces . E1

ω and . E2
ω, the  

angle between them along the orbit has subexponential growth, meaning that 

. lim
t→±∞

1

t
log sin�(E1

ϕt (ω), E
2
ϕt (ω)) = 0. (12) 

If the flow . ϕt is ergodic, then the real numbers (11) and the dimensions of the 
associated subbundles are constant . μ almost everywhere and we will denote them 
by .λ1(A) and .λ2(A). We say that A has trivial Lyapunov spectrum or one-point 
Lyapunov spectrum (respectively simple Lyapunov spectrum) if for  . μ a.e. .ω ∈ M , 
.λ1(A, ω) = λ2(A, ω) (respectively .λ1(A, ω) > λ2(A, ω)). 

2.5 The Search for Positive Lyapunov Exponents 

A positive Lyapunov exponent gives us the average exponential rate of divergence 
of two neighboring orbits whereas a negative Lyapunov exponent gives us the 
average exponential rate of convergence of two neighboring orbits. Zero Lyapunov 
exponents gives us the lack of any kind of asymptotic exponential behaviour. The 
nonuniform hyperbolic theory [13] guarantees a invariant manifold theory in the 
presence of non-zero Lyapunov exponents. These geometric considerations are the 
basis of most of the central results in today’s dynamical systems. Hence, there can 
be no doubt that pursuing non-zero Lyapunov exponents is an important feature 
in dynamics over the last 60 years (see e.g. [40]). Some criteria for the positivity 
of the Lyapunov exponents were obtained by Cornelis and Wojtkowski [26], and 
Ledrappier [35] and later Knill [42] and Nerurkar [41] showed that for a .C0-dense 
set of certain cocycles we have non-zero Lyapunov exponents. Arnold and Cong 
[8] proved the .Lp-denseness of positive Lyapunov exponents and their technique 
was generalized in [20]. The use of a classical method developed by Moser and 
linked to the concept of rotation number allowed Fabbri and Johnson to obtain 
abundance of positive Lyapunov exponents for linear differential systems evolving 
on .SL(2,R) on the fiber and displaying a translation on the torus on the base 
(see [29, 31, 32] and also the work with Zampogni [33]). Due to area-preserving 
invariance, obtaining a positive Lyapunov exponent .λ > 0 in .SL(2,R) allows us to 
obtain a negative Lyapunov exponent .−λ < 0 and thus all Lyapunov exponents are 
different. A variety of results guaranteeing the positivity of Lyapunov exponents 
for strong topologies established recently bring out different new approaches 
[21, 24, 28, 47, 48]. As an example, in [11], Avila obtained prevalence of simple
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spectrum in a rather wide range of topologies and on the two dimensional case. The 
topology used to compare perturbations turn to be crucial to the conclusions. 

3 The Lp Case 

3.1 Towards Zero Lyapunov Exponents 

The .Lp-generic description of the Lyapunov spectrum for general linear differential 
systems was first studied in [20] by the author and Vilarinho following the 
pioneering approaches by Arnold-Cong and Arbieto-Bochi [4, 7]. In [20] was  
proved that the class of accessible (twisting) linear differential systems, a wider 
class that includes cocycles that evolve in .GL(n,R),SL(n,R) and .Sp(2n,R), have  
a trivial Lyapunov spectrum .Lp-generically. If we consider the stronger .C0-norm, 
then Millionshchikov’s work [40] in the late sixties shows that the generic behaviour 
changes. We will consider this . C0 case in Sect. 4. For the time being we now 
describe the recent results by the author, Amaro and Vilarinho. In rough terms in 
[2] was obtained that for an .Lp-generic choice of a kinetic linear differential system 
(as in (2)) and for almost every driving realization, no matter what position and 
momentum .(x(0), ẋ(0)) we chose as initial conditions, the asymptotic exponential 
behaviour of the solutions will be the same. 

In [2] was proved the following result which is the kinetic version of [20, 
Theorem 1]. 

Theorem 1 ([2]) For all .1 ≤ p < ∞ there exists a .σp-residual subset . R ∈ K1

such that any .A ∈ R has one-point spectrum. 

The two main components to prove Theorem 1 are Propositions 3.1 and 3.2. 
Once we establish these two results the proof of Theorem 1 is easily obtained. To 
prove Proposition 3.1 we used Lemma 2.2 and through a perturbation we caused a 
rotational effect of Oseledets directions. Unfortunately, rotating in . K1 is much more 
difficult and the way to overcome this problem is to induce rotations via translations 
in the projective plane. In summary we perform (fake) rotations but remain in the 
kinetic class. Once we know how to ‘rotate’, a classical Mañé argument (see e.g. 
[14, 15, 22, 23]) allows us to get: 

Proposition 3.1 Given .A ∈ K1 and .ε, δ > 0, there exists .B ∈ K1 such that 
.σ1(A,B) < ε and 

.λ1(B) ≤ λ1(A) + λ2(A)

2
+ δ. (13) 

Inequality (13) is used to decrease the upper Lyapunov exponent of a perturbation 
of the original linear differential system.
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Finally, in Proposition 3.2 we obtain the upper semi-continuity of the top 
Lyapunov exponent function with respect to the . Lp topology. We define the function 

.
L : (G1, σp) −→ R

A �−→ ∫
M

λ1(A, ω) dμ(ω).
(14) 

Clearly, if . μ is ergodic for the flow . ϕt we have .L (A) = λ1(A). 

Proposition 3.2 For all .1 ≤ p < ∞, the function . L is upper semicontinuous when 
we endow . G1 with the .σp-topology, that is, for all .A ∈ G1 and .ε > 0 there is . δ > 0
such that .σp(A,B) < δ implies .L (B) < L (A) + ε. 

In order to prove that . L is upper semi-continuous when . G1 is endowed with 
the . σp metric defined in Sect. 2.3.1 we must deal with the two main continuity-like 
problems: 

Step 1 The first had already appeared [4, 20]. Indeed, it was the main step in 
[4] in order to improve from .Lp-dense (cf. [7]) to .Lp-residual. We are talking 
about the way it is used a simple measure-theoretical result (in brief terms that 
. L1 functions are .L∞ in a large part of the domain) to still guarantee continuity 
properties even under .Lp-regularity. 

Step 2 The second one is also a problem on continuity but a bit more difficult. 
This time on continuous dependence of solutions of differential equations. Notice 
that the function . L in (14) is defined using the Lyapunov exponent which in 
turn is defined using the solution .Фt

A and not the infinitesimal generator which 
is precisely the input on the .σp-topology. So we need to get that solutions . Фt

A

and .Фt
B are .σp-near if its corresponding infinitesimal generators A and B are 

.σp-near. 

3.2 Towards Non-zero Lyapunov Exponents 

The .Lp-dense characterization of the Lyapunov spectrum for general linear dif-
ferential systems was also considered in [20] generalizing this time the work 
by Arnold-Cong [8]. In [20] was proved that the class of accessible (a twisting 
type of property) and saddle-conservative (a pinching type of property) linear 
differential systems, a wider class that includes again cocycles that evolve in 
.GL(n,R),SL(n,R) and .Sp(2n,R), have simple Lyapunov spectrum .Lp-densely. 
Recently, in [3], was proved a corresponding result for kinetic linear differential 
systems. Hence, we get in particular that the residual of Theorem 1 cannot contain 
.Lp-open sets. We state now this result which establishes the existence of a .σp-dense 
subset of . K1 displaying simple spectrum: 

Theorem 2 Let .ϕt : M → M be ergodic. For any .A ∈ K1, .1 ≤ p < ∞ and .∈ > 0, 
there exists .B ∈ K1 exhibiting simple Lyapunov spectrum satisfying .σp(A,B) < ∈.


