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Supervisor’s Foreword 

It is a pleasure to introduce the work of my former student, Nicolò Foppiani, who 
was co-advised by Professor Roxanne Guenette and myself. This thesis is unique 
as it runs along two parallel paths, joined by their aim to resolve one of the most 
significant mysteries in neutrino physics. 

The observation of non-zero neutrino masses implies that the Standard Model 
(SM) of particle physics is incomplete. How to include neutrino masses within 
the SM has a variety of solutions. The “simplest” would be to add a new, sterile 
particle—known for technical reasons as a right-handed neutrino—to the model and 
follow the same recipe as the other particles in the SM. Though this solution seems 
dull, it is, in fact, quite striking: a new particle must exist in nature, and its mass 
and other properties are unknown and unmeasured. On the other hand, this solution 
is unsatisfactory to many neutrino physicists as it does not explain why neutrino 
masses are so small compared to the other particles. The heaviest of neutrinos’ 
mass is no larger than one in a millionth of the electron mass, leaving a gap of 
many orders of magnitude in the mass spectrum between the other particles and 
the neutrinos. This observation strongly suggests that another distinct mechanism 
is responsible for generating the masses of neutrinos. Paraphrasing Borges from 
La Muerte y la Brújula: Nature has no obligation to be interesting, but hypotheses 
must be. Dr. Foppiani’s thesis follows this path and explores new models that imply 
neutrino masses are generated by several additional sterile neutrinos coupled with 
secret interactions. 

The existence of more complex neutrino-mass generating scenarios is not only 
motivated by theoretical reasons. As Dr. Foppiani reminds us in Part I, a series 
of anomalies have been observed in experiments searching for flavor conversion 
of muon-neutrino to electron-neutrino. The most significant of these observations 
are the LSND and MiniBooNE experiments, which observed an excess of electro-
antineutrino and electron-like events, respectively. These excesses are statistically 
beyond doubt, and when interpreted in a neutrino oscillation model that adds an 
additional light, sterile neutrino, they have a significance above five sigma (a p-value 
smaller than three in ten billion). Unfortunately, this interpretation is under severe 
tension with experiments searching for correlated signatures in muon-neutrino
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disappearance and electron-neutrino disappearance. Seeking to resolve this tension 
has led to the introduction of alternative explanations of the MiniBooNE anomaly 
that involve heavy sterile neutrinos, which Dr. Foppiani reviews in Part II. 

Two results are presented in this thesis. The first one, discussed in Part II, reports 
new constraints on heavy neutrinos obtained by recasting searches performed in the 
T2K near detector, ND280. The relevant heavy neutrino models can be organized 
into two categories, the minimal and non-minimal scenarios. These two categories 
differ because, in the latter case, an additional “dark” force is added to the heavy 
neutrino model. The latter model is phenomenologically more interesting and 
also avoids strong constraints from cosmology. However, it also involves a larger 
parameter space, with six free parameters. Prior attempts to study this model have 
used simplified assumptions to obtain constraints or preferred regions by fixing one 
or more model parameters. This thesis introduces a new method that allows the 
exploration of the model parameter space in a continuous fashion, as discussed in 
Sect. 6.4. Both constraints for the minimal and non-minimal scenarios are world-
leading, and the technique used to probe the multi-dimensional space has broad 
applicability. 

The second result is a search for electron-neutrino appearance in the Micro-
BooNE experiment, discussed in detail in Part III. The MicroBooNE experiment 
operated on the same neutrino beamline as MiniBooNE, allowing for a close check 
of the MiniBooNE anomaly. One of the main disadvantages of MiniBooNE was that 
it could not differentiate between electrons and photons. Though the MiniBooNE 
Collaboration has auxiliary measurements to control their backgrounds, an inde-
pendent analysis with a different technology is of crucial importance. MicroBooNE 
was built for this task: its Liquid-Argon Time Projection Chamber can reconstruct 
and identify the individual particles produced in a neutrino interaction. Importantly 
for this discussion, MicroBooNE can distinguish between electrons and photons. 
The analysis reported in this thesis did not find an excess of events analogous to 
that of MiniBooNE. Still, it did not entirely rule out the anomaly, leaving space for 
further exploration, which Dr. Foppiani discusses in his conclusions. 

In summary, Dr. Foppiani’s thesis constitutes a significant piece of work in 
resolving the MiniBooNE anomaly. The results and techniques introduced here will 
have a long-lasting impact on our field. 

Assistant Professor of Physics Carlos A. Argüelles-Delgado 
Harvard University 
Cambridge, MA, USA
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Chapter 1 
Prologue 

Abstract It is astonishing that all the complex structures we observe in nature, 
from stars and galaxies to living organisms and molecules, emerge from the same 
underlying elementary pieces: the quarks up and down and the electron. It is through 
their fundamental interactions that these three particles can combine together, 
giving rise to an exponentially large amount of combinations and possibilities. This 
is what particle physics is about: understanding nature at its fundamental level. 
Particle physics is often referred to as high-energy physics because large energies 
correspond to small scales, which, in turn, require experiments at high energy to 
be investigated. Among the elementary particles, there is one more type: the elusive 
neutrino. Since neutrinos undergo only weak interaction, neutrinos cannot bind with 
other particles, and their probability of interacting with matter is very small for the 
typical energies of neutrinos around the Earth. In turn, this fact made neutrinos 
challenging to discover and makes them both hard to study and unknown to most 
people. 

1.1 Surprising Neutrinos 

However, neutrinos have brought many surprises over the past few decades. 
For example, we know they come in three distinct types, or flavors, and their 
interaction violates symmetries under parity and charge conjugations, which are 
instead respected by other forces. More importantly, neutrinos were first theorized 
as massless particles because of the lack of experimental evidence. We now know 
neutrinos are massive because the three flavors mix with each other. This discovery 
represents a crack into the standard model of particle physics, which requires 
the existence of new physics and other particles to be explained. Moreover, in a 
moment where most measurements performed in the lab agree with the theoretical 
predictions, several neutrino experiments report disagreements. These discrepant 
experimental results are often referred to as short baseline anomalies and form a 
genuinely unclear puzzle, which might hide new physics discoveries. 
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2 1 Prologue

Such motivations pushed me to pursue research in neutrino physics as a Ph.D. 
student. This thesis represents the summary and the completion of my work between 
2017 and 2022. All the original work in this thesis has been published in peer-
reviewed journals. The work is not organized in chronological order but rather in 
a logical order, hoping that the reader would agree with the rationale behind this 
scheme. 

1.2 A Tale in Three Parts 

Part I sets the background for the thesis work, introducing the current understanding 
of neutrinos and the theoretical and experimental motivations that justify the search 
for new particles. While it does not contain any original work, I explained the 
physics in my preferred way and included all the insights I find effective in 
understanding neutrinos. Although I started working on short baseline anomalies 
five years ago, I described the theoretical and experimental status at the time 
of writing the thesis. I want to acknowledge, however, that several things have 
changed, and new insights were brought in by both the experimental and theoretical 
communities. 

Part II contains some more phenomenological work I performed, considering 
possible solutions to the short baseline anomalies in terms of heavy sterile neutrino 
models and looking for datasets and experiments that could test them. Chapter 5 is 
adapted from [1], which was published in Physical Review D. Chapter 6 is adapted 
from [2], also published in Physical Review D. Both works have been performed 
with Matheus Hostert and Carlos Argüelles-Delgado. Together with testing physical 
models, we also developed a new statistical approach to test models in ample 
parameter spaces. Although it started a year before the first paper, the second was 
made public only recently. 

Part III summarizes most of my contribution in the MicroBooNE collaboration. 
I joined MicroBooNE in 2018 and have been an active member until the electron 
neutrino search was finalized and published. Chapter 7 introduces the MicroBooNE 
experiment, describing the most important features relevant to this thesis. Chapter 8 
describes how particles are measured and identified in MicroBooNE. A large chunk 
of the chapter is adapted from [3], published in the Journal of High Energy Physics, 
which describes a new method to improve the identification of track-like particles 
in MicroBooNE substantially. This new methodology was not only essential for the 
electron neutrino searches I was directly involved in, but it is also the basis of many 
detailed cross-section measurements published by MicroBooNE. The rest of the 
chapter complements the paper and describes other unpublished work. Chapters 9 
and 10 are adapted from and expand the electron neutrino search published in [4, 5], 
in Physical Review Letters and Physical Review D, respectively.
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