ECORESTORATION SUSTAINABILITY

EDITED BY Arnab Banerjee Manoj Kumar Jhariya Surendra Singh Bargali Debnath Palit

WILEY

Ecorestoration for Sustainability

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Ecorestoration for Sustainability

Edited by Arnab Banerjee Manoj Kumar Jhariya Surendra Singh Bargali and Debnath Palit

This edition first published 2023 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2023 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 9781119879718

Cover image: Pixabay.com Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Lis	t of C	Contibu	utors	XV
Pre	eface			xix
1	Econ Intr Arna and	restora oducto ab Ban Debna	tion for Environmental Sustainability—An ory Framework erjee, Manoj Kumar Jhariya, Surendra Singh Bargali oth Palit	1
	1.1	Introd	luction	2
	1.2	Globa 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8	Il Scenario of Ecosystem Types and Their Degradation Agroecosystem Forests Freshwater Grasslands, Shrub Lands, and Savannahs Mountains Oceans and Coasts Peat Lands Around Urban Areas	4 5 6 7 7 8 8 9
	1.3	Need 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6 1.3.7 1.3.8 1.3.9	of Ecorestoration The Economy Food Security Clean Water Health and Well-Being Climate Change Mitigation Climate Change Adaptation Security Biodiversity Synergies and Trade-Offs	10 11 12 12 13 13 14 14 15 16
	1.4	Ecolo 1.4.1	gical Restoration and Forestry Forested Wetland Restoration	16 16
	1.5	Ecolo 1.5.1	gical Restoration and Societal Development Ecological Restoration in Social Context	17 17

vi Contents

	1.6	Polici	es and Strategy Formulation for Ecological Restoration				
		Towa	rd Environmental Sustainability	17			
		1.6.1	Novel Ecosystems and Adapting to Rapid				
			Global Change	18			
		1.6.2	Climate-Smart Agriculture and Enhancing				
			Socioecological Resilience	19			
		1.6.3	Increasing the Multifunctionality and Productivity				
			of Agricultural Landscapes	20			
		1.6.4	Green Infrastructure and Nature-Based Solutions	20			
		1.6.5	Ecorestoration of Agroecosystem	21			
		1.6.6	Urbanization and Development	22			
		1.6.7	Biodiversity Offset Mitigation Through Ecological				
			Restoration	23			
		1.6.8	Ecological Restoration as an Integral Component				
			of Production Landscapes	24			
	1.7	Evide	nce of Success and Benefits of Ecological Restoration	25			
	1.8	Conc	lusion	26			
		Refer	ences	27			
2	Agricultural Soil Management and Ecorestoration Under						
_	Clir	nate C	hange: Practices for Sustainable Soil Resource	49			
	Zied	l Hai-A	Amor, Tesfav Arava, Tapos Kumar Achariee,				
	Sale	m Bou	ri and Ruediger Anlauf				
	2.1	Intro	duction	50			
	2.2	Impa	cts of Climate Change on Agricultural Soil	51			
		2.2.1	Soil Erosion	51			
		2.2.2	Soil Salinization	52			
		2.2.3	Drought	53			
	2.3	Poten	tial for Soil and Ecorestoration to Mitigate				
		Clima	ate Change	54			
		2.3.1	Soil Carbon Sequestration	54			
		2.3.2	Soil Management Practices for Increasing				
			Carbon Storage in Soil	55			
		2.3.3	Ecorestoration of Agricultural Soil	57			
		2.3.4	Potential for Ecorestoration of Soil to Mitigate				
			and Adapt Climate Change	58			
				50			
	2.4	Soil V	Vater Management Under Climate Change/Variability	39			
	2.4	Soil V 2.4.1	Experiences from Europe	59 59			

			2.4.1.2	Shifts in Land Use to Adapt	
				to Climate Change	61
		2.4.2	Experien	ices from Bangladesh	61
		2.4.3	Experien	ces from Tunisia	66
	2.5	Recor	nmendatio	ons for Sustainable Soil Management	
		and E	nvironme	ntal Sustainability	66
	2.6	Policy	⁷ Framewo	ork for Ecorestoration and Management	
		of Ag	ricultural	Soil	67
	2.7	Futur	e Roadma	p for Ecorestoration Toward Sustainable	
		Soil R	esource		68
	2.8	Conc	usion		69
		Fundi	ng		70
		Refer	ences		70
3	Inte	grated	River He	alth Assessment System (IRHAS):	
-	A P	romisi	ng Tool fo	r Ecorestoration of Tropical Indian Rivers	77
	Par	ul Guri	ar. Kulde	ep Lakhera, Vipin Vvas	
	and	Rume	et Kour Ra	aina	
	3.1	Intro	luction		78
		3.1.1	River Eco	ology—An Introductory Remark	78
		3.1.2	Status/Sc	cenario of Tropical Rivers in India	78
		3.1.3	Concept	of Ecorestoration of Riverine Ecosystem	
			in India		79
		3.1.4	Role of B	Biodiversity in Riverine Conservation	80
	3.2	Integr	ated River	r Health Assessment System (IRHAS)—A	
		Prom	ising Tool	·	80
		3.2.1	Physical	Analysis	81
			3.2.1.1	Physical Habitat	81
			3.2.1.2	Riparian Zone	83
			3.2.1.3	Biological Analysis	89
			3.2.1.4	Chemical Analysis	93
	3.3	Legal	and Policy	y Framework for Effective Implementation	
		of Int	egrated Ri	ver Health Assessment System	96
	3.4	Futur	e Roadma	p of Integrated River Health	
		Asses	sment Syst	tem	97
	3.5	Conc	uding Rer	narks for the Implementation of IRHAS	
		in Inc	lian River	Systems to Achieve Environmental	
		Sustai	nability		98
		Refer	ences		98

viii Contents

4	Wetland Restoration Policies and the Sustainability					
	of A	of Agricultural Productions, Lessons Learnt from Zrebar				
	Lake, Iran			113		
	She	rvin Ja	nshidi and	Anahita Naderi		
	4.1	Intro	luction		114	
		4.1.1	What is Eu	itrophication?	114	
		4.1.2	Clarity Ree	duction	114	
		4.1.3	Clogging H	Filters	115	
		4.1.4	Increasing	Health Risks	115	
		4.1.5	Increasing	Ecological Risks	116	
		4.1.6	pH Variati	on	117	
		4.1.7	Human Ec	cosystem	117	
	4.2	What	is the Cause	e?	118	
	4.3	Integr	ated Sustain	nable Management	120	
		4.3.1	Trends and	d Approaches	120	
		4.3.2	Best Mana	gement Practices (BMPs)	123	
		4.3.3	Accountin	g Sustainability by Water Footprint	125	
	4.4	Zreba	r Lake		128	
		4.4.1	Basin Cha	racteristics	128	
		4.4.2	Basin Ecol	ogy	132	
		4.4.3	Pollution S	Sources	141	
		4.4.4	Water Qua	ality	144	
		4.4.5	Lessons Le	earnt	149	
			4.4.5.1 Z	rebar Lake in Studies	149	
			4.4.5.2 B	MPs Impact	151	
			4.4.5.3 F	uture Trends and Directives	155	
			4.4.5.4 L	egal and Policy Framework	158	
	4.5	Conc	usion	0 /	159	
		Refer	ences		160	
5	Stra	tegies	for Ecosyste	em Biomass Conservation:		
	Rev	view, A1	alysis, and	Evaluation	167	
	Sil	vina M.	Manrique			
	5.1	Intro	luction		168	
		5.1.1	Sustainable	e Development: Bases and Principles	168	
		5.1.2	Planetary	Limits and Natural Capital	169	
	5.2	Loss o	of Biospheri	c Integrity	171	
		5.2.1	Ecosystem	s, Biodiversity, and Climate	171	
		5.2.2	The Globa	l State of Natural Capital	172	
		5.2.3	Loss of Bio	omass Integrity of Ecosystems	175	

5.3	Strate	gies for the Conservation/Restoration		
	of Eco	osystem Biomass	176	
	5.3.1	Ecorestoration	177	
	5.3.2	Payment for Environmental Services (PES)	178	
	5.3.3	Nature-Based Solutions	178	
	5.3.4	Ecosystem-Based Adaptation	178	
	5.3.5	Protected Areas (PAs)	178	
5.4	Case S	Study: Native Forests, Biomass,		
	and E	cosystem Services	180	
	5.4.1	Lower Yungas Forest (LYF) Context	180	
	5.4.2	Characterization and Analysis	181	
	5.4.3	Physiognomy, Floristic Composition, and Richness	184	
	5.4.4	Stock and Distribution of Carbon in Ecosystem		
		Reservoirs	188	
	5.4.5	Protected Areas Value and Management Strategies	191	
5.5	Effect	iveness of Conservation Measures	193	
	5.5.1	Protected Areas: Are They Meeting Their Goal?	193	
	5.5.2	Effectiveness of Protected Areas	194	
5.6	Concl	usions	195	
5.7	7 Policy and Legal Framework for Ecosystem Biomass			
	Conse	ervation	196	
5.8	Forest	Ecosystem Biomass Conservation Toward		
	Envir	onmental Sustainability	198	
	5.8.1	Forest Biomass: A Complex and Multidiverse		
		Source of Benefits	198	
5.9	Futur	e Roadmap of Forest Biomass Conservation	199	
5.10	Final	Thoughts	201	
	Refere	ences	202	
Recl	amatic	on of Mined Soil in RCF Region_A		
Phyl	oreme	ediation Approach	211	
Doh	alina k	Car and Debuath Palit	211	
61	Introd	huction	212	
6.2	Impa	the form	212	
6.3	Biorei	mediation and Phytoremediation	212	
6.7	Mater	ial and Methods	213	
0.4	6 / 1	Study Sites	214	
	642	Ecological Survey or Phytosociological Study	214	
	J. 1.4	for Identifying Pioneering Species of Trees	214	
65	Result	ts and Discussion	214	
0.0	- Coul		410	

6

x Contents

	6.6	Conclusion	240
		References	240
7	Ecol	ogical Restoration of Various Ecosystems: Implications	
	for I	Biodiversity Conservation and Natural Resource	
	Man	agement	245
	C.B.	Ethis-Eriakha and S.E. Akemu	
	7.1	Introduction	246
	7.2	Ecosystem as a Natural Support System	
		for Biodiversity	247
	7.3	Pollution of the Natural Ecosystem	248
	7.4	Deforestation	249
	7.5	Consequences of Pollution of the Natural Ecosystem	250
	7.6	Ecorestoration for Conservation of Biodiversity	
		and Natural Resources	253
	7.7	Various Approaches to Ecological Restoration—Natural	
		Regeneration and Active Ecorestoration	255
	7.8	Tools for Ecological Restoration of Various Ecosystems	256
	7.9	Ecorestoration of Biodiversity in Terrestrial, Aquatic	
		Ecosystems, Wetlands, Tropical Forests, Grasslands	257
	7.10	Research and Development Activities in Ecorestoration	
		for Conservation of Biodiversity and Natural Resources	258
	7.11	Policy and Legal Framework for Ecorestoration,	
		Conservation of Biodiversity and Natural Resources	259
	7.12	Future Roadmap	260
	7.13	Conclusion	261
		Reterences	261
8	Man	aging Forests for Offsetting Carbon Footprints	267
	Abh	ishek Raj, Manoj Kumar Jhariya, Arnab Banerjee,	
	Bha	rat Lal, Taher Mechergui, Annpurna Devi	
	and	Ghanshyam	
	8.1	Introduction	268
	8.2	Global Forests Scenario	269
	8.3	Carbon Footprint: A Conceptual Framework	272
	8.4	Carbon Footprint Calculator	276
	8.5	Technology for Forest Cover and Carbon Assessment	277
	8.6	Measuring Carbon Emissions from Deforestation	280
	8.7	Carbon Sinks in Forests	282
	8.8	Forest Management for Carbon Mitigation	283

	8.9	Emerging Challenges and Constraint				
	8.10	Resea	rch and Development Toward Footprints	285		
	8.11	Policy	and Legal Framework	285		
		Refere	ences	286		
9	Ecos	system	Management of Polluted Forest and Its Implication			
	on B	iodive	rsity Conservation in the Niger Delta	295		
	Arol	oye O.	Numbere and Eberechukwu M. Maduike			
	9.1	Intro	luction	296		
	9.2	Profil	es of Mangrove Biodiversity in the Niger Delta	298		
		9.2.1	Vegetation	298		
		9.2.2	Wildlife	299		
		9.2.3	Impact of Hydrocarbon Pollution on Mangrove			
			Flora and Fauna	300		
		9.2.4	Impact of Pesticide (Herbicide) Application			
			on Mangrove Vegetation	302		
	9.3	Envir	onmental Management and Restoration Ecology			
		as Sol	utions	303		
	9.4 The Human Factor and the Practice of a Win-Win Ecology					
	in Biodiversity Conservation		304			
	9.5	Regio	nal Versus Local Site Management	308		
	9.6 Policy and Legal Framework and Eco-Restoration					
		of Pol	luted Sites and Biodiversity Conservation			
		of Nig	ger Delta	309		
	9.7	Futur	e Research and Development of Conservation			
		of Ma	ngrove Ecosystem in the Niger Delta	310		
	9.8	Conc	lusion	311		
		Refere	ences	312		
10	For	ot Bio	diversity Conservation and Destaration.			
10	Poli	st Dio	and Approaches	317		
	1010	ahah T	an, and Approaches	517		
	AUN	isnek k Nabba	uj, Manoj Kumar Inariya, Arnao Danerjee, Honnappa Vittur, Surondra Singh Bargali			
	Dilli Viva	nuppu n Bari	nonnuppu Kutut, Sutenutu Singn Dutguu, xali and Sharad Noma			
	NII 10.1	In Durg	duction	210		
	10.1	10.1	1 Forest Resources and Riadiversity	320		
		10.1.	2 Found Diversity in Tropical Forest	320		
		10.1.	 2 Forest Degradation and Fragmentation 	321		
	10.2	10.1. Noci	for Forest Destantion Drogram	323 376		
	10.2	Val-	a of Destoring Forests	320 220		
	10.3	valu	e of Restoring Porests	329		

xii Contents

	10.4	Forest Landscape Restoration Vis-A-Vis Conservation	
		Strategies	329
	10.5	Forest Landscape Restoration for Ecological Integrity	330
	10.6	Restoration of Degraded Tropical Forest	331
	10.7	Ecosystem Approaches to Forest Restoration:	
		Learning from the Past	332
	10.8	Forest Restoration for Enhancing Biodiversity	
		and Ecosystem Services	332
	10.9	Forest Landscape Restoration: Indian Perspective	334
	10.10	Forest Landscape Restoration for C Footprint	
		and Climate Change Mitigation	336
	10.11	Forest Landscape Restoration for Livelihood	
		and Well-Being	338
	10.12	Constraints and Challenges	338
	10.13	Existing Policy and Its Reformation	339
	10.14	Advances in Restoration: Plan and Execution	340
	10.15	Recommendation and Future Research	340
	10.16	Conclusion	341
		References	341
11	Geos	patial Techniques in Sustainable Forest Management	
	for Ec	corestoration and Different Environmental	
	Prote	ction Issues	351
	Shibo	ram Baneriee and Debnath Palit	
	11.1	Introduction	352
	11.2	The Assessment of Forest Resources	
		and Its Sustainable Use	355
	11.3	Aerial Mode of Remote Sensing	356
	11.4	Satellite Mode of Remote Sensing	357
	11.5	Assessment of Wildlife Habitat	359
	11.6	Assessment of Biodiversity Networks	359
	11.7	Productivity and Biomass Assessment in Terrestrial Regime	360
	11.8	Land Cover and Land Use Analysis	360
	11.9	Characterization of Wetland at Landscape Level	361
	11.10	Assessment of Grassland Habitat	362
	11.11	Evaluation of Carbon Sequestration	362
	11.12	Detection of Air Pollution Intensities	363
	11.13	Ecorestoration for Sustainable Development	364
	11.14	Conclusions	366
		Acknowledgments	366
		References	367

12	2 Climate-Induced Conflicts Between Rural Farmers and Cattle					
	Herders: Implications on Sustainable Agriculture and Food					
	Secur	rity in N	igeria	373		
	Angel	la Oyilie	eze Akanwa, Arnab Banerjee ,			
	Mano	oj Kuma	r Jhariya, L.N. Muoghalu, A.U. Okonkwo,			
	F.I. Ik	kegbuna	m, I.C. Ezeomedo, S.O. Okeke, P.U. Igwe,			
	<i>V.C. A</i>	Arah, C.	C. Anukwonke, M.C. Obidiegwu			
	and E	E.I. Mad	ukasi			
	12.1	Introdu	action	374		
	12.2	Agroec	cological Zones and Climate Change			
		in Nige	ria—Drought Crisis in Sahel	377		
	12.3	Ethnic	Conflicts, Origin, and Intensification			
		of Viole	ence and Impacts	383		
		12.3.1	Pre-Colonial Era	383		
		12.3.2	Colonial and Post-Colonial Periods	385		
		12.3.3	Impacts of Conflict: Human Costs	392		
		12.3.4	Loss of Revenue	395		
		12.3.5	Growing Food Insecurity in Nigeria	395		
12.4 Environmental Injustice and Herder/Farmer Conflict						
		in Nige	eria	398		
	12.5	Confro	nting the Challenges of Farmer/Herder Conflict			
		in Nige	eria	399		
		12.5.1	Intensified Agricultural Activities in Nigeria	399		
		12.5.2	Community Participation	402		
		12.5.3	Intervention of Science and Technology	403		
		12.5.4	Policy and Legal Perspective	405		
	12.6	Conclu	ision	406		
		Referer	nces	407		
13	Susta	inable N	Janagement of Natural Resources			
15	for E	nvironm	vental Sustainability	<i>4</i> 17		
	Acmi	da Iema	il Faezah Dardi Khairul Adafa Dadaun	11/		
	Citi K	uu Ismu Tairiyal	n, Fuezun Furui, Khun in Auzju Kuuzun, h Mohd Hatta-Mohd Nazio Suratman			
	Muru	nun iyu 1 Aida K	a Mona Matu, Mona Nazip Salaiman, Tamal Ikhsan and Faciza Ruyong			
	1 1 2 1	Introdu	amui Iknsun unu Fueizu Duyong	110		
	12.1	The Inc	sight on Management and Sustainable	410		
	13.2	Lie ms	Natural Decources	410		
	122	Use of	al Distribution of Natural Descurres	419		
	12.3	Success	at Distribution of Natural Resources	420		
	13.4	Mana	ement	421		
		12 / 1	Cormony	421		
		13.4.1	Germany	421		

	13.4.2	China		422
	13.4.3	Malaysia		423
13.5	Policy a	and Legal I	Framework for Sustainable Management	
	of Natu	iral Resour	rces: A Review on United Nation (UN)	
	50 Year	s of Sustai	nable Development Policy	425
13.6	Future	Outlook o	f Sustainable Management	
	of Natu	iral Resour	rces	430
	13.6.1	The Futu	re of Sustainable Management	431
		13.6.1.1	Political Commitment	431
		13.6.1.2	Sustainable Development Policy	431
		13.6.1.3	Mathematical Model	432
		13.6.1.4	Advanced Technology	432
	13.6.2	Compreh	nensive Approach	433
	Referen	nces		433
About th	e Editor	s		439
Index				441

List of Contributors

Arnab Banerjee Department of Environmental Science, Sant Gahira Guru Vishwavidyalaya, Sarguja, Ambikapur, Chhattisgarh, India Manoj Kumar Jhariya Department of Farm Forestry, Sant Gahira Guru Vishwavidyalaya, Sarguja, Ambikapur, Chhattisgarh, India Surendra Singh Bargali Department of Botany, Kumayun University, Nainital, Uttarakhand, India Debnath Palit Principal, Durgapur Government College, J.N. Avenue, Durgapur, West Bengal, India Zied Haj-Amor Department of Agronomy, University of Fort Hare, Private Bag X134, Alice 5700, South Africa **Tesfay Araya** Department of Soil, Crop and Climate Sciences, University of the Free State, Bloemfontein, South Africa Tapos Kumar Acharjee Department of Irrigation and Water Management, Bangladesh Agricultural University, Bangladesh Salem Bouri Water, Energy, and Environment Laboratory, National Engineering School of Sfax, Sfax, Tunisia Ruediger Enlouf Osnabrück University of Applied Sciences, Faculty of Agricultural Sciences and Landscape Architecture, Osnabrück, Germany **Parul Gurjar** Department of Environmental Science and Limnology, Barkatullah University, Bhopal, India Kuldeep Lakhera Department of Environmental Science and Limnology, Barkatullah University, Bhopal, India **Vipin Vyas** Department of Bioscience, Barkatullah University, Bhopal, India Rumeet Kour Raina Department of Zoology and Applied Aquaculture, Barkatullah University, Bhopal (M.P.), India Shervin Jamshidi Department of Civil Engineering, University of Isfahan, Iran Anahita Naderi Department of Civil Engineering, University of Isfahan, Iran Silvina M. Manrique Instituto de Investigaciones en Energía No Convencional, Universidad Nacional de Salta y Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Bolivia, Salta, Argentina

Debalina Kar State Aided College Teacher, Durgapur Women's College, Durgapur, West Bengal, India

C.B. Ethis-Eriakha Department of Microbiology, Faculty of Science, Edo State University Uzairue, Edo State, Nigeria

S.E. Akemu Department of Microbiology, Faculty of Science, Edo State University Uzairue, Edo State, Nigeria

Abhishek Raj School of Agriculture, Lovely Professional University, Phagwara, Punjab, India

Bharat Lal College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi (U.P.), India

Taher Mechergui Facultédes Sciences de Bizerte, Laboratoiredes Ressources Sylvo-Pastorales de Tabarka, Tabarka, Tunisie

Annpurna Devi Department of Farm Forestry, Sant Gahira Guru Vishwavidyalaya, Sarguja, Ambikapur, Chhattisgarh, India

Ghanshyam Department of Farm Forestry, Sant Gahira Guru Vishwavidyalaya, Sarguja, Ambikapur, Chhattisgarh, India

Aroloye O. Numbere Department of Animal and Environmental Biology, University of Port Harcourt, Nigeria

Eberechukwu M. Maduike Department of Animal and Environmental Biology, University of Port Harcourt, Nigeria

Bhimappa Honnappa Kittur Indian Institute of Forest Management (IIFM), Bhopal (M.P.), India

Kiran Bargali Department of Botany, Kumayun University, Nainital, Uttarakhand, India

Sharad Nema SoS, Forestry & Wildlife, Bastar Vishwavidyalaya, Jagdalpur, Chhattisgarh, India

Shiboram Banerjee PG Department of Conservation Biology, Durgapur Govt. College, Durgapur, West Bengal, India

Akanwa Angela Oyilieze Department of Environmental Management, Faculty of Environmental Sciences, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra, Nigeria

L.N. Muoghalu Department of Environmental Management, Chukwuemeka Odumegwu Ojukwu, University, (COOU), Uli Campus, Anambra State, Nigeria

A.U. Okonkwo Department of Environmental Management, Chukwuemeka Odumegwu Ojukwu, University, (COOU), Uli Campus, Anambra State, Nigeria

F.I. Ikegbunam Department of Environmental Management, Chukwuemeka Odumegwu Ojukwu, University, (COOU), Uli Campus, , Anambra State, Nigeria **I.C. Ezeomedo** Department of Environmental Management, Chukwuemeka Odumegwu Ojukwu, University, (COOU), Uli Campus, Anambra State, Nigeria

S.O. Okeke Department of Environmental Management, Chukwuemeka Odumegwu Ojukwu, University, (COOU), Uli Campus, Anambra State, Nigeria

P.U. Igwe Department of Environmental Management, Chukwuemeka Odumegwu Ojukwu, University, (COOU), Uli Campus, Anambra State, Nigeria

V.C. Arah Department of Environmental Management, Chukwuemeka, Odumegwu Ojukwu, University, (COOU), Uli Campus, Anambra State, Nigeria

C.C. Anukwonke Department of Environmental Management, Chukwuemeka, Odumegwu Ojukwu, University, (COOU), Uli Campus, Anambra State, Nigeria

M.C. Obidiegwu Department of Environmental Management, Chukwuemeka, Odumegwu Ojukwu, University, (COOU), Uli Campus, Anambra State, Nigeria

E.I. Madukasi Department of Environmental Management, Chukwuemeka, Odumegwu Ojukwu, University, (COOU), Uli Campus, Anambra State, Nigeria

Asmida Ismail Faculty of Applied Sciences, Universiti Teknologi MARA, Selangor, Malaysia; Institute for Biodiversity and Sustainable Development, Universiti Teknologi MARA, Selangor, Malaysia

Faezah Pardi Faculty of Applied Sciences, Universiti Teknologi MARA, Selangor, Malaysia; Institute for Biodiversity and Sustainable, Development, Universiti Teknologi MARA, Selangor, Malaysia, Siti Khairiyah Mohd Hatta, Nurul Aida Kamal Ikhsan & Faeiza Buyong

Khairul Adzfa Radzun Faculty of Applied Sciences, Universiti Teknologi MARA, Selangor, Malaysia

Siti Khairiyah Mohd Hatta Faculty of Applied Sciences, Universiti Teknologi MARA, Selangor, Malaysia

Nurul Aida Kamal Ikhsan Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, Selangor, Malaysia

Faeiza Buyong Faculty of Applied Sciences, Universiti Teknologi MARA, Selangor, Malaysia

Preface

Environmental degradation is causing a severe impact to the Earth's ecosystems. Unsustainable development and anthropogenic pressure has altered the natural balance. From this perspective, sustainability has become a major goal, namely, to frame a greener and cleaner earth for future generations. The worst hit of unsustainable development is habitat degradation. Therefore, ecorestoration and other ecological practices are extremely important for ecological sustainability. This exciting new book covers all the aspects of ecorestoration and sustainability issues, as well as an insight for future directives.

In the context of the modern world, environmental degradation is increasing at an unprecedented rate. Degradation is taking place in various spheres of the environment, including air, water, soil, and other natural resources, resulting into depletion of natural resources all over the globe. Therefore, it is the need of the hour to restore the ecosystem. In this context, ecorestoration approaches in the form of eco-friendly technologies need to be formulated to promote protection and conservation of the various ecosystems. Ecorestoration approaches has wide dimension in the form of ecorestoration of freshwater bodies, soil and mined out wasteland, degraded forest, biodiversity, and other degraded ecosystems. In the present attempt, current trends and issues surrounding the various forms of degradation processes of the environment along with new innovative technology to restore or rehabilitate the various ecosystem of the Earth would be of prime focus to develop the importance of ecorestoration. Further, this would have a multidisciplinary approach that would address the various issues of the sustainability through ecorestoration and livelihood development. It includes research findings, review, new technology briefings, case studies, opinion and views, policy and legal frameworks, and others.

XX PREFACE

Arnab Banerjee Ambikapur, Chhattisgarh, India Manoj Kumar Jhariya Ambikapur, Chhattisgarh, India Surendra Singh Bargali Nanital, Uttarakhand, India Debnath Palit Durgapur, West Bengal, India

Ecorestoration for Environmental Sustainability—An Introductory Framework

Arnab Banerjee^{1*}, Manoj Kumar Jhariya², Surendra Singh Bargali³ and Debnath Palit⁴

¹Department of Environmental Science, Sant Gahira Guru Vishwavidyalaya, Sarguja, Ambikapur (C.G.), India
²Department of Farm Forestry, Sant Gahira Guru Vishwavidyalaya, Sarguja, Ambikapur (C.G.), India
³Department of Botany, Kumayun University, Nainital, Uttarakhand, India
⁴Durgapur Government College, J.N. Avenue, Durgapur, West Bengal, India

Abstract

Managing forests is a key strategy for offsetting C (carbon) footprints in the globe. Deforestation and other unsustainable land use practices promote C emissions into the atmosphere. Anthropogenic environment of the entire global earth ecosystem is showing an abrupt change. Such changes are evident from various forms of natural calamities and hazards that is leading toward an unsustainable environment for the mankind to live in the upcoming times. Ecorestoration is an approach that integrates various principles from diverse disciplines and applies them on diverse habitat types of the earth surface. Ecorestoration has become a key element and issue to address diverse and major environmental issues, such as food security, biodiversity conservation, regulation of the economic growth, water quality, health and safety issues, climate change mitigation, and adaptation. Therefore, ecorestoration should work for societal upliftment leading to overall environmental sustainability. Ecological restoration too some extent leads to generation of employment opportunities. In this connection, one report briefs that ecological restoration process in United States has generated more than one lakh twenty five thousand jobs directly along with creation of 95,000 jobs indirectly. Proper policy and planning is required for successful implementation of

^{*}Corresponding author: arnabenvsc@yahoo.co.in

Arnab Banerjee, Manoj Kumar Jhariya, Surendra Singh Bargali and Debnath Palit (eds.) Ecorestoration for Sustainability, (1–48) © 2023 Scrivener Publishing LLC

2 Ecorestoration for Sustainability

the ecorestoration approaches. Further, strategies such as developing climate resiliency of the novel ecosystems and agroecosystem, developing green infrastructure and nature-oriented solution practices needs to be focused for overall environmental sustainability.

Keywords: Ecorestoration, sustainability, environmental degradation

1.1 Introduction

Land degradation is a major environmental issue on global basis. It is estimated that the total cost associated with land degradation process includes up to 17% of the gross domestic product (GDP). Thus, ecorestoration approaches have become the need of the hour in order to avoid such economic loss across the globe. The term ecological restoration simply implies the ecosystem recovery process from a degraded situation [1]. The process is very much important when self-regeneration ability of the ecosystem gets impaired. Therefore, the focus of ecological restoration includes restoration of ecosystem services, functions, and processes. Some of the land uses, such as agricultural land use, undergo intensive modification due to higher production of food. Therefore, extensive modification of the land surface usually takes place through altered land use practices. According to one estimate, globally, the land degradation consists of more than 900 million hectare of degraded croplands, and overall up to 6 billion hectare land has degraded due to variable reasons, which are more than half of land surface at the global level [2, 3]. Significant amount of economic loss is associated with altered land use along with various forms of land use change [4]. Ecological restoration is an important process that helps to improve the quality of degraded land to promote crop yields and various other forms of benefits in the form of ecosystem services [4, 5].

Globally, various ecosystems are undergoing several process of ecosystem degeneration due to practices of modernized agricultural systems. Considering the fact of maximizing the yield minimum attention is being given to environmental aspects. Altered land use in the form of conversion forest land for agricultural production and animal husbandry practices has taken place due to benefits in terms of more economic gain. Further, no proper attention has been given to the soil and land resources for their contribution toward agricultural production. No proper sustainable approaches are available toward proper land management and conservation of stock of capital resources that is required for agricultural production. Therefore, various nations across has taken initiatives at global level to frame policies and regulatory framework to reduce the hazards over land surface. Overall, the process of degradation of land is considered to have huge social and economic costs, which can be mitigated through various ecological restoration processes. Restoration of degenerated lands is a key element toward the various approaches to inhibit the spreading of agricultural land use in place of forested land use. Subsequently, it would also help to fulfill growing energy demands and address the issue of food crisis [6, 7].

Ecorestoration approaches would also bring benefits in terms of improving various forms of ecosystem services along with natural resource conservation [8]. Overall they will bring various forms of tangible and non-tangible benefits (Figure 1.1). It includes conservation of natural resources, biodiversity conservation along with sociocultural and economic benefits to the people [8–10]. According to one research report, ecological restoration of grasslands reflects benefit-cost ratio of 35:1 along with addition benefits [11]. Ecological restoration, to some extent, leads to generation of employment opportunities. In this connection, one report briefs that ecological restoration process in United States has generated more than one lakh twenty five thousand jobs directly along with creation of 95,000 jobs indirectly [12]. Such type of benefits has lead to the promotion of ecorestoration process up to a hundredfold increase [9]. Globally, in various conventions, treaties have been organized as well as UN-Sustainable Development Goals (SDGs) emphasized the importance of ecorestoration for achieving sustainable development [13]. The target of LDN till 2030 can be achieved through massive ecorestoration processes [14]. As per the Paris agreement in 2015, UNFCCC has mentioned the importance of increasing forest cover and stock of soil carbon to combat changing climate. Various policy frameworks have been already implemented worldwide to promote the ecological restoration process [15]. Further promotion of ecorestoration process requires extensive activities, research and extension [15]. The present chapter would address the issue

Figure 1.1 Fundamental issues addressed through ecorestoration process.

of ecological restoration on global basis along with recent approaches and advances across various ecosystem services.

1.2 Global Scenario of Ecosystem Types and Their Degradation

Under the changing environmental condition the various ecosystem and habitat types is undergoing severe changes and is under the forefront of rapid degeneration (Table 1.1).

S. no.	Ecosystem type	Nature of degradation and associated problems	References
1.	Agroecosystem	Unsustainable agricultural practice is causing an economic loss of USD 270 Million on annual basis in Kenya.	[16]
		12 million hectares of agriculture land undergo severe erosion leading to loss of EUR1.25 billion on annual basis.	[17]
		In People's Republic of China only 14% land area is available for cultivation purpose.	[18]
2.	Forest	Across the globe approximately 420 million ha of forest land has been transformed into other forms of land uses since last three or four decades.	[19]
3.	Fresh water	Shrinkage of Aral Sea in Central Asia has taken place at an alarming rate so that its area has been reduced to one tenth of its original area.	[20]

Table 1.1 Global scenario of ecosystem degradation and necessityof ecorestoration approaches.

(Continued)

Table 1.1	Global scenario of ecosystem degradation and necessity of	•
ecorestora	tion approaches. (Continued)	

S. no.	Ecosystem type	Nature of degradation and associated Problems	References
4.	Grassland habitat	29 million hectares of grassland In western Canada has been converted into agricultural unit causing 25% soil C loss and gradual degeneration of soil quality.	[21]
5.	Mountain ecosystem	Glacier volume of Hindukus Himalaya range has declined by 90% in the 21st century altering the hydrological regime of the South Asian Region.	[22]
6.	Coastal and marine ecosystems	Great barrier reef of Australia has undergone 50% of loss of its coral population due to ocean bleaching.	[23]
7.	Peatlands	Globally 50% of the peatlands has been degenerated due to altered hydrological regime.	[24]
		In Germany 98% of peatland, 95% in Netherland, in Ireland 82%, in Denmark 93% has been drained.	[25]

1.2.1 Agroecosystem

Agroecosystem is the essence of life as it is the main production unit that supports the human consumption as well as provides various forms of tangible and non-tangible benefits [26]. Globally, approximately 2 billion people are directly dependent on the agriculture sector for maintenance of daily livelihood [27] as well as ninety percent of energy and protein input comes from the land surface [27, 28]. Degradation of the agroecosystem not only reduces the crop and livestock yield.

It was observed that degradation of agricultural land reduces the crop and livestock yield. The major impact of such degradation is reflected over the soil [29]; however, the impact spreads in the form of wild species extinction that has gotten its inherent advantage to provide various forms of ecological services [30]. Various forms of soil problems tend to cause three-fourth of the land problems across the globe. Within a span of 11 years, soil tends to affect 1/5 of the agriculture land over the earth surface and hence shows an increment of 2.5% of the erosion event. The major reason behind such event includes altered land use practices in the form of loss of forest cover and an increase in the agriculture area [31]. According to one estimate the productivity of land ecosystem would show more than 10% decline leading to hike in food prices more than 30% till 2040 [32]. Economic loss associated with such farmland degradation in European Union reflects EUR 1.25 billion associated with loss of 12 million hectares of eroded cropland [17]. Loss of fertility status in USA results in half a billion dollars economic burden on annual basis over the farmers community. The condition is very much worst in case of China reflecting only meagre 14% of land area available for cultivation practice and half of the farmland has already being degraded [18]. In Kenya, under African continent there is significant decline in the crop productivity, livelihoods, and well-being of the local community stakeholders. The loss of soil fertility, known as mining of soil nutrients is reducing the yield and economic loss up to USD 270 million dollars on annual basis. Further, it has got severe impact across various habitat and biodiversity [16].

1.2.2 Forests

Forest ecosystem has an inherent capability of regulating the climate [19] along with carbon absorption from the atmosphere [33] and provide habitat for diverse group of organisms [34]. Further, forest contributes regulating various processes under hydrological cycle [35], and therefore provides water for drinking purpose of 33% of the global cities [36]. Further, forest also helps to create job or employment opportunities in various forms [37, 38].

Within a span of 5 years (2015–2020) deforestation has lead to loss of 10 million hectares of forest [19]. If the current trends of the forest continue then there would be a global loss of 223 million hectares of land area till 2050 [39]. On annual basis 122 million hectares of forest land would be affected by several natural disaster events [40]. Depletion of forest may lead to affect the 1.75 billion people who have been directly and indirectly affected by deforestation. Degradation leads to high incidence of natural hazards, as well as increase human-wildlife conflict [36, 40] as well as epidemic diseases [41], such as animal borne diseases, Ebola virus and COVID-19 virus infection [42, 43]. Further, the combination of such processes within a span of 18 years has lead to emission of 8.1±2.5 GtCO2 e per year basis [33].

1.2.3 Freshwater

In the aquatic environment, it was reported that there is occurrence of 33% vertebrate species and one tenth of global species that occurs on the earth surface [44]. The species diversity tends to be higher in the areas of world's wetlands. Further, inland fisheries are the potential source of food in the form of freshwater ecosystems, as well as sources of water for various other economic activities [45]. Inland fisheries ecosystem also tend maintain the water quality and undergoes climatic regulation along with protection from natural hazards. The nexus between forest and water acts as two-third of global water source from the area of forested watershed [35].

On global basis, 1.4 billion people are dependent upon the various forms of water resources and associated industrial activities [46]. However, such ecosystem services are under severe threat at present times. Such incidences has taken place due to overuse of water in last century [47] and according to one estimate this demand would rise further till 2050 [48]. Freshwater utilization for energy production and irrigation activity leads to negative consequences and socio-economic alterations [49]. The most important fact is that more than 90 percent of freshwater footprint accounts from agricultural activity and more than 25% of water resource is used in animal husbandry practices [50]. The scenario of wetland loss was alarming since 19th century onward. Although the developed world has arrested the rate of wetland loss quite a bit but in Asian subcontinent the rate has shown an unprecedented rise due to altered land use practices. Such degradation of freshwater resource has caused half a billion people to face the acute problem of water scarcity per annum globally [51]. The gradual shrinkage of Aral Sea of freshwater habitat is a clear cut example of depletion of freshwater resource worldwide [20]. The main reason behind such shrinkage of water resource includes the diversion of water for crop production and thus leaving the area dry, polluted and gradually salty. The problems such as food crisis, security, loss of employment opportunities become severe on this aspect [20, 52].

1.2.4 Grasslands, Shrub Lands, and Savannahs

Diverse habitats of grasslands and associated biomes are more prevalent in the Asia and African subcontinent [53] and are mostly dry land habitats. It also includes the hyper arid desert areas with low productive nature but still support a significant amount of global population [54, 55]. According to one report, 250 million people are very much dependent upon on this dry land ecosystem in East African region for maintaining their daily livelihood [56]. Such activities in dry land areas help in carbon sequestration process that helps to combat the changing climate [57]. Such dry land farming system also provides various forms of resource to mankind as well as they act as biodiversity hotspots [19]. Besides performing such valuable ecosystem services such ecosystems are under severe threat of degradation due to agricultural activity globally [58]. In Europe the condition of such grassland habitat is very much worse [59]. Such impacts also cause severe negative consequences over the local community population [60].

1.2.5 Mountains

Mountain ecosystems approximates 50% of the hotspot are in terms of species diversity across the globe [61]. Such ecosystems are pivotal in terms of maintaining daily livelihood of the local people as well as provide various forms of ecosystem services. Mountain ecosystem is also known as "water towers of the world," and hence fulfills 50% of the fresh water demand of global population [62]. Mountain ecosystem tends to act as food source of 20 plant species that fulfill the food requirements of 80% of the world population [61]. Therefore, degradation of such important ecosystem reduces the productivity in terms of agricultural crop and animal husbandry production. At present times, 50% of people residing in the mountainous region is under the severe threat of land degradation. Also, the problem of food security and crisis has reflected an alarming threat [63].

Natural disturbances have caused several negative consequences over the earth surface and human life. For instance, in last two centuries, incidence of floods due to outbursts of glacial lake has caused several death consequences in Asia, South America, and European countries. This has caused alteration of the hydrological regime impacting the agricultural production and water resources [64].

1.2.6 Oceans and Coasts

Marine ecosystem is the major component of global earth ecosystem, which supports 90% of global life [65], as well as contributes up to 80% of oxygen of the atmosphere [66]. Apart from this ocean ecosystem also plays key role in regulating the climate of the global earth ecosystem as well as