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Preface 

Optimization problems in practice depend mostly on several model parameters, noise 
factors, uncontrollable parameters, etc., which are not given fixed quantities at the 
planning stage. Due to several types of stochastic uncertainties (physical uncertainty, 
economic uncertainty, statistical uncertainty, model uncertainty), these parameters 
must be modeled by random variables having a certain probability distribution. In 
most cases at least certain moments of this distribution are known. 

In order to cope with these uncertainties, a basic procedure in the behavior of 
the structure/system from the prescribed performance (output, behavior), i.e., the 
tracking error, is compensated by (online) input corrections. However, the online 
correction of a system/structure is often time consuming and causes mostly increasing 
expenses (correction, repair, or recourse costs). Very large recourse costs may arise in 
case of damages or failures of the plant. This can be omitted to a large extent by taking 
into account already at the planning stage the possible consequences of the tracking 
errors and the known prior and sample information about the random data of the 
problem. Hence, instead of relying on ordinary deterministic parameter optimization 
methods—based on some nominal parameter values—and applying then just some 
correction actions, stochastic optimization methods should be applied: Incorporating 
the consequences of stochastic parameter variations into the optimization process, 
large and increasing recourse, repair, recovery costs can be omitted or at least reduced 
to a large extent. 

Consequently, for the computation of robust optimal decisions/designs, i.e., 
optimal decisions which are insensitive with respect to random parameter varia-
tions, appropriate deterministic substitute problems must be formulated first. Based 
on decision theoretical principles, these substitute problems depend on probabilities 
of failure/success and/or on more general expected cost/loss terms. Since proba-
bilities and expectations are defined by multiple integrals in general, the resulting 
often nonlinear and also non-convex deterministic substitute problems can be solved 
by approximate methods only. Two basic types of deterministic substitute problems 
occur mostly in practice:
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• Minimization of the expected primary costs subject to expected recourse cost 
constraints (reliability constraints) and remaining deterministic constraints, e.g., 
box constraints. 

• Expected Total Cost Minimization Problems subject to deterministic constraints. 

In case of piecewise constant cost functions, probabilistic objective functions and/or 
probabilistic constraints occur. 

Main analytical properties of the substitute problems have been examined in the 
first three editions of the book, where also appropriate deterministic and stochastic 
approximation and solution procedures can be found. 

The aim of the present fourth edition is the presentation of updated methods 
for the transformation of actual technical and economic optimization problems 
with random parameters into appropriate deterministic substitute problems. Hence, 
updated analytical and numerical tools are provided for the approximate computa-
tion of robust optimal decisions/designs/control, as needed in concrete engineering/ 
economic applications. 

Last but not least I would like to thank Dipl. Math. Ina Stein, Munich, for her excel-
lent support in the LaTeX-typesetting as well as in the final proofreading. Moreover, I 
am indebted to Springer Nature for inviting a new edition of the monograph Stochastic 
Optimization Methods. I would like to thank especially the Senior Editor for Business/ 
Economics/Operations Research of Springer-Verlag Heidelberg, Germany, Christian 
Rauscher and the Springer Editors Yvonne Schwark-Reiber, Books Editorial Projects 
Management, and Jialin Yan, Book Editor Operations Research and Management, 
Information Systems and Applied Statistics, for their advice during the preparation 
of this new edition. 

Munich, Germany 
March 2024 

Kurt Marti
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Chapter 1 
Stochastic Optimization Methods 

Abstract Basic methods for treating stochastic optimization problems (SOP), 
hence, optimization problems with random data are presented: Optimization prob-
lems in practice depend mostly on several model parameters, noise factors, uncon-
trollable parameters, etc., which are not given fixed quantities at the planning stage. 
Typical examples from engineering and economics/operations research are: Material 
parameters (e.g., elasticity moduli, yield stresses, allowable stresses, moment capac-
ities, specific gravity), external loadings, friction coefficients, moments of inertia, 
length of links, mass of links, location of the center of gravity of links, manufactur-
ing errors, tolerances, noise terms, demand parameters, technological coefficients in 
input-output functions, cost factors, interest rates, exchange rates, etc. Due to sev-
eral types of stochastic uncertainties (physical uncertainty, economic uncertainty, 
statistical uncertainty, model uncertainty) these parameters must be modeled by ran-
dom variables having a certain probability distribution. In most cases at least certain 
moments of this distribution are known.n order to cope with these uncertainties, a 
basic procedure in the engineering/economic practice is to replace first the unknown 
parameters by some chosen nominal values, e.g., estimates, guesses, of the parame-
ters. Then, the resulting and mostly increasing deviation of the performance (output, 
behavior) of the structure/system from the prescribed performance (output, behavior), 
i.e., the tracking error, is compensated by (online) input corrections. However, the 
online correction of a system/structure is often time consuming and causes mostly 
increasing expenses (correction or recourse costs). Very large recourse costs may 
arise in case of damages or failures of the plant. This can be omitted to a large extent 
by taking into account already at the planning stage the possible consequences of the 
tracking errors and the known prior and sample information about the random data 
of the problem. Hence, instead of relying on ordinary deterministic parameter opti-
mization methods - based on some nominal parameter values—and applying then 
just some correction actions, stochastic optimization methods should be applied: 
Incorporating stochastic parameter variations into the optimization process, expen-
sive and increasing online correction expenses can be omitted or at least reduced to a 
large extent. Consequently, for the computation of robust optimal decisions/designs, 
i.e., optimal decisions which are insensitive with respect to random parameter varia-
tions, appropriate deterministic substitute problems must be formulated first. Based 
on decision theoretical principles, these substitute problems depend on probabilities 
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2 1 Stochastic Optimization Methods

of failure/success and/or on more general expected cost/loss terms. Two basic types 
of deterministic substitute problems occur mostly in practice: 

• Reliability-Based Optimization Problems: primary cost minimization subject to 
expected recourse (correction) cost constraints: Minimization of the expected pri-
mary costs subject to expected recourse cost constraints (reliability constraints) 
and remaining deterministic constraints, e.g., box constraints. In case of piece-
wise constant cost functions, probabilistic objective functions and/or probabilistic 
constraints occur; 

• Expected Total Cost Minimization Problems: Minimization of the expected total 
costs (costs of construction, design, recourse/correction, repair costs, etc.) subject 
to the remaining deterministic constraints. 

Since probabilities and expectations are defined by multiple integrals in general, the 
resulting often nonlinear and also non-convex deterministic substitute problems can 
be solved by approximate methods only. 

1.1 Introduction 

Many concrete problems from engineering, economics, operations research, etc., can 
be formulated by an optimization problem of the type 

.min f0(a, x) (1.1a) 

. s.t.

fi (a, x) ≤ 0, i = 1, . . . ,m f (1.1b) 

.gi (a, x) = 0, i = 1, . . . ,mg (1.1c) 

.x ∈ D0. (1.1d) 

Here, the objective (goal) function . f0 = f0(a, x) and the constraint functions 
. fi = fi (a, x), i = 1, . . . ,m f and .gi = gi (a, x), i = 1, . . . ,mg, defined on a joint 
subset of .Rν × R

r , depend on a decision, design, control orinput vector . x =
(x1, x2, . . . , xr )T and a vector .a = (a1, a2, . . . , aν)

T ofmodel parameters. Typical 
model parameters in technical applications, operations research, and economics are 
material parameters, external load parameters, cost factors, technological parameters 
in input-output operators, demand factors. Furthermore, manufacturing and model-
ing errors, disturbances or noise factors, etc., may occur. Frequent decision, control, 
or input variables are material, topological, geometrical and cross-sectional design 
variables in structural optimization [ 23], forces and moments in optimal control of 
dynamic systems and factors of production in operations research and economic 
design. 

The objective function (1.1a) to be optimized describes the aim, the goal of the 
modeled optimal decision/design problem or the performance of a technical, eco-
nomic system or process to be controlled optimally. Furthermore, the constraints
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(1.1b)–(1.1d) represent the operating conditions guaranteeing a safe structure, a cor-
rect functioning of the underlying system, process, etc. Note that the constraint (1.1d) 
with a given, fixed convex subset.D0 ⊂ R

r summarizes all (deterministic) constraints 
being independent of unknown model parameters . a, as, e.g., box constraints: 

.x L ≤ x ≤ xU (1.1e) 

with given bounds .x L , xU . 
Important concrete optimization problems, which may be formulated, at least 

approximate, this way, are problems from optimal design of mechanical structures 
and structural systems [ 1, 23, 43, 48], adaptive trajectory planning for robots [ 2, 
3, 14, 30, 37, 45], adaptive control of dynamic system [ 46, 47], optimal design of 
economic systems [ 22], production planning, manufacturing [ 26, 38] and sequential 
decision processes [ 34], etc. 

In optimal control, cf. Chap. 3, the input vector .x := u(·) is interpreted as a 
function, a control or input function .u = u(t), t0 ≤ t ≤ t f , on a certain given time 
interval .[t0, t f ]. Moreover, see Chap. 3, the objective function . f0 = f0(a, u(·)) is 
defined by a certain integral over the time interval .[t0, t f ]. In addition, the constraint 
functions. f j = f j (a, u(·)) are defined by integrals over.[t0, t f ], or. f j = f j (t, a, u(t))
may be functions of time . t and the control input .u(t) at time . t . 

A basic problem in practice is that the vector of model parameters . a = (a1, . . . ,
aν)

T is not a given, fixed quantity. Model parameters are often unknown, only partly 
known and/or may vary randomly to some extent. 

Several techniques have been developed in the recent years in order to cope with 
uncertainty with respect to model parameters . a. A well-known basic method, often 
used in engineering practice, is the following two-step procedure [ 3, 14, 37, 45, 46]: 

(I) Parameter Estimation and Approximation: 
First, replace first the .ν-vector . a of the unknown or stochastic varying model 
parameters .a1, . . . , aν by some estimated/chosen fixed vector .a0 of so-called 
nominal values .a0l , l = 1, . . . , ν. 
Then, apply an optimal decision (control).x∗ = x∗(a0)with respect to the result-
ing approximate optimization problem 

.min f0(a0, x) (1.2a) 

. s.t.

fi (a0, x) ≤ 0, i = 1, . . . ,m f (1.2b) 

.gi (a0, x) = 0, i = 1, . . . ,mg (1.2c) 

.x ∈ D0. (1.2d) 

Due to the deviation of the actual parameter vector . a from the nominal vector 
.a0 of model parameters, deviations of the actual state, trajectory or performance 
of the system from the prescribed state, trajectory, goal values occur.
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(II) Compensation or correction: 
Then, the deviation of the actual state, trajectory or performance of the system 
from the prescribed values/functions is compensated by online measurement and 
correction actions (decisions or controls). Consequently, in general, increasing 
measurement and correction expenses result in course of time. 

Considerable improvements of this standard procedure can be obtained by taking 
into account already at the planning stage, i.e., offline, the mostly available a priori 
(e.g., the type of random variability) and sample information about the parameter 
vector. a. Indeed, based, e.g., on some structural insight, or by parameter identification 
methods, regression techniques, calibration methods, etc., in most cases information 
about the vector. a of model parameters can be extracted. Repeating this information 
gathering procedure at some later time points .t j > t0 (= initial time point), . j =
1, 2, . . . , adaptive decision/control procedures occur [ 34]. 

Based on the inherent random nature of the parameter vector . a, the observation 
or measurement mechanism, resp., or adopting a Bayesian approach concerning 
unknown parameter values [ 6], here we make the following basic assumption: 

Stochastic (Probabilistic) Uncertainty : The unknown parameter vector . a is a 
realization 

.a = a(ω)ω ∈ Ω, (1.3) 

of a random .ν-vector .a(ω) on a certain probability space .(Ω,A0, P), where the 
probability distribution .Pa(·) of .a(ω) is known, or it is known that .Pa(·) lies within 
a given range .W of probability measures on .Rν . Using a Bayesian approach, the 
probability distribution .Pa(·) of .a(ω) may also describe the subjective or personal 
probability of the decision maker, the designer. 

Hence, in order to take into account the stochastic variations of the parameter 
vector . a, to incorporate the a priori and/or sample information about the unknown 
vector . a, resp., the standard approach “insert a certain nominal parameter vector 
. a0, and correct then the resulting error”, must be replaced by a more appropriate 
deterministic substitute problem for the basic optimization problem (1.1a)–(1.1d) 
under stochastic uncertainty. 

1.2 Deterministic Substitute Problems: Basic Formulation 

The proper selection of a deterministic substitute problem is a decision theoretical 
task, see [ 27]. Hence, for (1.1a)–(1.1d) we have first to consider the outcome map 

. e = e(a, x)

:=
(
f0(a, x), f1(a, x), . . . , fm f (a, x), g1(a, x), . . . , gmg (a, x)

)T
, (1.4a) 

a ∈ Rν , x ∈ Rr , (x ∈ D0),
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and to evaluate then the outcomes .e ∈ E ⊂ R
1+m0 ,m0 := m f + mg, by means of 

certain loss or cost functions 

.γi : E → R, i = 0, 1, . . . ,m (1.4b) 

with an integer.m ≥ 0. For the processing of the numerical outcomes. γi
(
e(a, x)

)
, i =

0, 1, . . . ,m, there are two basic concepts: 

1.2.1 Minimum or Bounded Expected Costs 

Consider the vector of (conditional) expected losses or costs 

.F(x) =

⎛
⎜⎜⎜⎝

F0(x)
F1(x)

...

Fm(x)

⎞
⎟⎟⎟⎠ :=

⎛
⎜⎜⎜⎝

Eγ0(e(a(ω), x))
Eγ1(e(a(ω), x))

...

Eγm(e(a(ω), x))

⎞
⎟⎟⎟⎠ , x ∈ R

r , (1.5) 

where the (conditional) expectation “. E” is taken with respect to the time history 
.A = At , (A j ) ⊂ A0 up to a certain time point . t or stage . j . A short definition of 
expectations is given in Sect. 1.3, for more details, see, e.g., [ 5, 18, 40]. 

Having different expected cost or performance functions .F0, F1, . . . , Fm to be 
minimized or bounded, as a basic deterministic substitute problem for (1.1a)–(1.1d) 
with a random parameter vector .a = a(ω) we may consider the multi-objective 
expected cost minimization problem 

.“min” F(x) (1.6a) 

.s.t. x ∈ D0. (1.6b) 

Obviously, a good compromise solution .x∗ of this vector optimization problem 
should have at least one of the following properties [ 13, 41]: 

Definition 1.1 

(a) A vector .x0 ∈ D0 is called a functional-efficient or Pareto optimal solution of 
the vector optimization problem (1.6a), (1.6b) if there is no .x ∈ D0 such that 

.Fi (x) ≤ Fi (x
0), i = 0, 1, . . . ,m (1.7a) 

and 

.Fi0(x) < Fi0(x
0) for at least one i0, 0 ≤ i0 ≤ m. (1.7b)
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(b) A vector.x0 ∈ D0 is called a weak functional-efficient or weak Pareto optimal 
solution of (1.6a)–(1.6b) if there is no .x ∈ D0 such that 

.Fi (x) < Fi (x
0), i = 0, 1, . . . ,m (1.8) 

(Weak) Pareto optimal solutions of (1.6a)–(1.6b) may be obtained now by means 
of scalarizations of the vector optimization problem (1.6a)–(1.6b). Three main ver-
sions are stated in the following: 

(I) Minimization of primary expected cost/loss under expected cost constraints 

.min F0(x) (1.9a) 

. s.t.

Fi (x) ≤ Fmax
i , i = 1, . . . ,m (1.9b) 

.x ∈ D0. (1.9c) 

Here,.F0 = F0(x) is assumed to describe the primary goal of the design/decision-
making problem, while .Fi = Fi (x), i = 1, . . . ,m, describe secondary goals. 
Moreover, .Fmax

i , i = 1, . . . ,m, denote given upper cost/loss bounds. 

Remark 1.1 An optimal solution.x∗ of (1.9a)–(1.9c) is a weak Pareto optimal solu-
tion of (1.6a)–(1.6b). 

(II) Minimization of the total weighted expected costs 
Selecting certain positive weight factors .c0, c1, . . . , cm , the expected weighted 
total costs are defined by 

.F̃(x) :=
m∑
i=0

ci Fi (x) = E f
(
a(ω), x

)
, (1.10a) 

where 

. f (a, x) :=
m∑
i=0

ciγi
(
e(a, x)

)
. (1.10b) 

Consequently, minimizing the expected weighted total costs.F̃ = F̃(x) subject 
to the remaining deterministic constraint (1.1d), the following deterministic 
substitute problem for (1.1a)–(1.1d) occurs 

.min
m∑
i=0

ci Fi (x) (1.11a) 

.s.t. x ∈ D0. (1.11b)
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Remark 1.2 Let .ci > 0, i = 1, 1, . . . ,m, be any positive weight factors. Then, an 
optimal solution.x∗ of (1.11a)–(1.11b) is a Pareto optimal solution of (1.6a)–(1.6b). 

(III) Minimization of the maximum weighted expected costs 
Instead of adding weighted expected costs, we may consider the maximum of 
the weighted expected costs: 

.F̃(x) := max
0≤i≤m

ci Fi (x) = max
0≤i≤m

ci Eγi

(
e
(
a(ω), x

))
. (1.12) 

Here again, .c0, c1, . . . , cm , are positive weight factors. 
Thus, minimizing .F̃ = F̃(x) we have the deterministic substitute problem 

.min max
0≤i≤m

ci Fi (x) (1.13a) 

.s.t. x ∈ D0. (1.13b) 

Remark 1.3 Let .ci , i = 0, 1, . . . ,m, be any positive weight factors. An optimal 
solution of.x∗ of (1.13a)–(1.13b) is a weak Pareto optimal solution of (1.6a)–(1.6b). 

1.2.2 Minimum or Bounded Maximum Costs (Worst Case) 

Instead of taking expectations, we may consider the worst case with respect to the 
cost variations caused by the random parameter vector.a = a(ω). Hence, the random 
cost function 

.ω → γi

(
e
(
a(ω), x

))
(1.14a) 

is evaluated by means of 

.F sup
i (x) := ess sup γi

(
e
(
a(ω), x

))
, i = 0, 1, . . . ,m. (1.14b) 

Here, ess sup.(. . .) denotes the (conditional) essential supremum with respect to the 
random vector.a = a(ω), given information. A, i.e., the infimum of the supremum of 
(1.14a) on sets .A ∈ A0 of (conditional) probability one, see, e.g., [ 40]. 

Consequently, the vector function .F = Fsup(x) is then defined by 

.Fsup(x) =

⎛
⎜⎜⎜⎝

F0(x)
F1(x)

...

Fm(x)

⎞
⎟⎟⎟⎠ :=

⎛
⎜⎜⎜⎜⎜⎜⎝

ess sup γ0

(
e
(
a(ω), x

))

ess sup γ1

(
e
(
a(ω), x

))

...

ess sup γm

(
e
(
a(ω), x

))

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1.15)
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Working with the vector function.F = Fsup(x), we have then the vector minimization 
problem 

.“min” Fsup(x) (1.16a) 

.s.t. x ∈ D0. (1.16b) 

By scalarization of (1.16a)–(1.16b) we then obtain deterministic substitute prob-
lems for (1.1a)–(1.1d) related to the substitute problem (1.6a)–(1.6b) introduced in 
Sect. 1.2.1. 

More details on the selection and solution of appropriate deterministic substitute 
problems for (1.1a)–(1.1d) are given in the next sections. Deterministic substitute 
problems for optimal control problems under stochastic uncertainty are considered 
in Chap. 3. 

1.3 Optimal Decision/Design Problems with Random 
Parameters 

In the optimal design of technical or economic structures/systems, in optimal decision 
problems arising in technical or economic systems, resp., two basic classes of criteria 
appear. 

First there is a primary cost function 

.G0 = G0(a, x). (1.17a) 

Important examples are the total weight or volume of a mechanical structure, the 
costs of construction, design of a certain technical or economic structure/system, 
or the negative utility or reward in a general decision situation. Basic examples in 
optimal control, cf. Chap. 3, are the total run time, the total energy consumption of 
the process or a weighted mean of these two cost functions. 

For the representation of the structural/system safety or failure, for the represen-
tation of the admissibility of the state, or for the formulation of the basic operating 
conditions of the , certain state, performance or response functions 

.yi = yi (a, x), i = 1, . . . ,my (1.17b) 

are chosen. In structural design these functions are also called “limit state func-
tions” or “safety margins”. Frequent examples are some displacement, stress, load 
(force and moment) components in structural design, or more general system output 
functions in engineering design. Furthermore, production functions and several cost 
functions are possible performance functions in production planning problems, opti-
mal mix problems, transportation problems, allocation problems and other problems 
of economic decision.
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In (1.17a,b), the design or input vector . x denotes the .r -vector of design or input 
variables, .x1, x2, . . . , xr , as, e.g., structural dimensions, sizing variables, such as 
cross-sectional areas, thickness in structural design, or factors of production, actions 
in economic decision problems. For the decision, design or input vector . x one has 
mostly some basic deterministic constraints, e.g., nonnegativity constraints, box con-
straints, represented by 

.x ∈ D, (1.17c) 

where .D is a given convex subset of .Rr . Moreover, . a is the .ν-vector of model 
parameters. In optimal structural/engineering design 

.a =
(
p
R

)
(1.17d) 

is composed of the following two subvectors:. R is the.m-vector of the acting external 
loads or structural/system inputs, e.g., wave, wind loads, payload, etc. Moreover, 
.p denotes the .(ν − m)-vector of the further model parameters, as, e.g., material 
parameters, like strength parameters, yield/allowable stresses, elastic moduli, plastic 
capacities, etc., of the members of a mechanical structure, parameters of an electric 
circuit, such as resistances, inductances, capacitances, the manufacturing tolerances 
and weight or more general cost coefficients. 

In linear programming, as, e.g., in production planning problems, 

.a = (A, b, c) (1.17e) 

is composed of the .m × r matrix .A of technological coefficients, the demand .m-
vector . b and the .r -vector . c of unit costs. 

Based on the .my-vector of state functions 

.y(a, x) :=
(
y1(a, x), y2(a, x), . . . , ymy (a, x)

)T
, (1.17f) 

the admissible or safe states of the structure/system can be characterized by the 
condition 

.y(a, x) ∈ B, (1.17g) 

where .B is a certain subset of .Rmy ; B = B(a) may depend also on some model 
parameters. 

In production planning problems, typical operating conditions are given, cf. 
(1.17e), by 

.y(a, x) := Ax − b ≥ 0 or y(a, x) = 0, x ≥ 0. (1.18a) 

In mechanical structures/structural systems, the safety (survival) of the struc-
ture/system is described by the operating conditions
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.yi (a, x) > 0 for all i = 1, . . . ,my (1.18b) 

with state functions .yi = yi (a, x), i = 1, . . . ,my , depending on certain response 
components of the structure/system, such as displacement, stress, force, moment 
components. 

Hence, a failure occurs if and only if the structure/system is in the .i-th failure 
mode (failure domain) 

.yi (a, x) ≤ 0 (1.18c) 

for at least one index .i, 1 ≤ i ≤ my . 

Note 1.1 The number.my of safety margins or limit state functions. yi = yi (a, x), i =
1, . . . ,my , may be very large. For example, in optimal plastic design the limit state 
functions are determined by the extreme points of the admissible domain of the dual 
pair of static/kinematic LPs related to the equilibrium and linearized convex yield 
condition, see [ 32, 33]. 

Basic problems in optimal decision/design are 

(I) Primary (construction, planning, investment, etc.) cost minimization under oper-
ating or safety conditions 

.min G0(a, x) (1.19a) 

. s.t.

y(a, x) ∈ B (1.19b) 

.x ∈ D. (1.19c) 

Obviously we have .B = (0,+∞)my in (1.18b) and .B = [0,+∞)my or .B = {0} in 
(1.18a). 

(II) Failure or recourse cost minimization under primary cost constraints 

.“min” γ
(
y(a, x)

)
(1.20a) 

. s.t.

G0(a, x) ≤ Gmax (1.20b) 

.x ∈ D. (1.20c) 

In (1.20a) .γ = γ (y) is a scalar or vector valued cost/loss function evaluating viola-
tions of the operating conditions (1.19b). Depending on the application, these costs 
are called “failure” or “recourse” costs [ 20, 21, 31, 39, 43, 44]. As already discussed 
in Sect. 1.1, solving problems of the above type, a basic difficulty is the uncertainty 
about the true value of the vector . a of model parameters or the (random) variability 
of . a. In practice, due to several types of uncertainties such as, see [ 49],
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• physical uncertainty (variability of physical quantities, like material, loads, dimen-
sions, etc.) 

• economic uncertainty (trade, demand, costs, etc.) 
• statistical uncertainty (e.g., estimation errors of parameters due to limited sample 
data) 

• model uncertainty (model errors). 

The .ν-vector . a of model parameters must be modeled by a random vector 

.a = a(ω), ω ∈ Ω, (1.21a) 

on a certain probability space .(Ω,A0, P) with sample space .Ω having elements . ω, 
see (1.3). For the mathematical representation of the corresponding (conditional) 
probability distribution .Pa(·) = PA

a(·) of the random vector .a = a(ω) (given the time 
history or information.A ⊂ A0), two main distribution models are taken into account 
in practice: 

(i) Discrete probability distributions, 
(ii) Continuous probability distributions. 

In the first case there is a finite or countably infinite number .l0 ∈ N ∪ {∞} of 
realizations or scenarios . al ∈ R

ν, l = 1, . . . , l0,

.P
(
a(ω) = al

)
= αl, l = 1, . . . , l0, (1.21b) 

taken with probabilities .αl, l = 1, . . . , l0. 
In the second case, the probability that the realization .a(ω) = a lies in a certain 

(measurable) subset .B ⊂ R
ν is described by the multiple integral 

.P
(
a(ω) ∈ B

)
=

{

B

ϕ(a) da (1.21c) 

with a certain probability density function .ϕ = ϕ(a) ≥ 0, a ∈ R
ν,

{
ϕ(a)da = 1. 

The properties of the probability distribution .Pa(·) may be described—fully or in 
part—by certain numerical characteristics, called parameters of .Pa(·). These distri-
bution parameters .θ = θh are obtained by considering expectations 

.θh := Eh
(
a(ω)

)
(1.22a) 

of some (measurable) functions 

.(h ◦ a)(ω) := h
(
a(ω)

)
(1.22b)
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composed of the random vector .a = a(ω) with certain (measurable) mappings 

.h : Rν −→ R
sh , sh ≥ 1. (1.22c) 

According to the type of the probability distribution.Pa(·) of.a = a(ω), the expec-

tation .Eh
(
a(ω)

)
is defined, cf. [ 4, 5], by 

.Eh
(
a(ω)

)
=

⎧
⎪⎨
⎪⎩

l0∑
l=1

h
(
al
)

αl, in the discrete case (1.21b)
{
Rν

h(a)ϕ(a) da, in the continuous case (1.21c).
(1.22d) 

Further distribution parameters . θ are functions 

.θ = ψ(θh1 , . . . , θhs ) (1.23) 

of certain “.h-moments” .θh1 , . . . , θhs of the type (1.22a). Important examples of the 
type (1.22a), (1.23), resp., are the expectation 

.a = Ea(ω) (for h1(a) := a, a ∈ R
ν) (1.24a) 

and the covariance matrix 

.Q := E
(
a(ω) − a

)(
a(ω) − a

)T = Ea(ω)a(ω)T − a aT (1.24b) 

of the random vector .a = a(ω). 
Due to the stochastic variability of the random vector .a(·) of model parameters, 

and since the realization.a(ω) = a is not available at the decision-making stage, the 
optimal design problem (1.19a)–(1.19c) or  (1.20a)–(1.20c) under stochastic uncer-
tainty cannot be solved directly. 

Hence, appropriate deterministic substitute problems must be chosen taking into 
account the randomness of .a = a(ω), cf. Sect. 1.2. 

1.4 Deterministic Substitute Problems in Optimal 
Decision/Design 

According to Sect. 1.2, a basic deterministic substitute problem in optimal design 
under stochastic uncertainty is the minimization of the total expected costs including 
the expected costs of failure
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.min cG · EG0

(
a(ω), x

)
+ c f · p f (x) (1.25a) 

.s.t. x ∈ D. (1.25b) 

Here, 

.p f =p f (x) := P
(
y
(
a(ω), x

)
/∈ B

)
(1.25c) 

is the probability of failure or the probability that a safe function of the structure, 
the system is not guaranteed. Furthermore, .cG is a certain weight factor, and. c f > 0
describes the failure or recourse costs. In the present definition of expected failure 
costs, constant costs for each realization .a = a(ω) of .a(·) are assumed. Obviously, 
it is 

.p f (x) = 1 − ps(x) (1.25d) 

with the probability of safety or survival 

.ps(x) := P
(
y
(
a(ω), x

)
∈ B

)
. (1.25e) 

In case (1.18b) we have  

.p f (x) = P
(
yi
(
a(ω), x

)
≤ 0 for at least one index i, 1 ≤ i ≤ my

)
. (1.25f) 

The objective function (1.25a) may be interpreted as the Lagrangian (with given 
cost multiplier . c f ) of the following reliability-based optimization (RBO) problem, 
cf. [ 1, 29, 39, 43, 49]: 

.min EG0

(
a(ω), x

)
(1.26a) 

. s.t.

p f (x) ≤ αmax (1.26b) 

.x ∈ D, (1.26c) 

where.αmax > 0 is a prescribed maximum failure probability, e.g., .αmax = 0.001, cf.  
(1.19a)–(1.19c). 

The “dual” version of (1.26a)–(1.26c) reads 

.min p f (x) (1.27a) 

. s.t.

EG0

(
a(ω), x

)
≤ Gmax (1.27b) 

.x ∈ D (1.27c) 

with a maximal (upper) cost bound .Gmax, see  (1.20a)–(1.20c).
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1.4.1 Expected Cost or Loss Functions 

Further substitute problems are obtained by considering more general expected fail-
ure or recourse cost functions 

.⎡(x) = Eγ
(
y
(
a(ω), x

))
(1.28a) 

arising from structural systems weakness or failure, or because of false operation. 
Here, 

.y
(
a(ω), x

)
:=

(
y1
(
a(ω), x

)
, . . . , ymy

(
a(ω), x

))T
(1.28b) 

is again the random vector of state or performance functions, and 

.γ : Rmy → R
mγ (1.28c) 

is a scalar or vector valued cost or loss function. In case .B = (0,+∞)my or . B =
[0,+∞)my it is often assumed that .γ = γ (y) is a non-increasing function, hence, 

.γ (y) ≥ γ (z), if y ≤ z, (1.28d) 

where inequalities between vectors are defined component-by-component. 

Example 1.1 If .γ (y) = 1 for .y ∈ Bc (complement of . B) and .γ (y) = 0 for .y ∈ B, 
then .⎡(x) = p f (x). 

Example 1.2 Suppose that .γ = γ (y) is a nonnegative measurable scalar function 
on .R

my such that 
.γ (y) ≥ γ0 > 0 for all y /∈ B (1.29a) 

with a constant .γ0 > 0. Then for the probability of failure we find the following 
upper bound 

.p f (x) = P
(
y
(
a(ω), x

)
/∈ B

)
≤ 1

γ0
Eγ

(
y
(
a(ω), x

))
, (1.29b) 

where the right-hand side of (1.29b) is obviously an expected cost function of type 
(1.28a)–(1.28c). Hence, the condition (1.26b) can be guaranteed by the expected cost 
constraint 

.Eγ
(
y
(
a(ω), x

)) ≤ γ0α
max. (1.29c) 

Example 1.3 If the loss function .γ (y) is defined by a vector of individual loss 
functions .γi for each state function .yi = yi (a, x), i = 1, . . . ,my , hence, 

.γ (y) =
(
γ1(y1), . . . , γmy (ymy )

)T
, (1.30a)
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then 

. ⎡(x) = (
⎡1(x), . . . , ⎡my (x)

)T
, ⎡i (x) := Eγi

(
yi
(
a(ω), x

))
, 1 ≤ i ≤ my,

(1.30b) 
i.e., the .my state functions .yi , i = 1, . . . ,my, will be treated separately. 

Working with the more general expected failure or recourse cost functions . ⎡ =
⎡(x), instead of (1.25a)–(1.25c), (1.26a)–(1.26c) and (1.27a)–(1.27c) we have the  
related substitute problems: 

(I) Expected total cost minimization 

.min cG EG0

(
a(ω), x

)
+ cTf ⎡(x), (1.31a) 

.s.t. x ∈ D. (1.31b) 

(II) Expected primary cost minimization under expected failure or recourse cost 
constraints 

.min EG0

(
a(ω), x

)
(1.32a) 

. s.t.

⎡(x) ≤ ⎡max (1.32b) 

.x ∈ D, (1.32c) 

(III) Expected failure or recourse cost minimization under expected primary cost 
constraints 

.min ⎡(x) (1.33a) 

. s.t.

EG0

(
a(ω), x

)
≤ Gmax (1.33b) 

.x ∈ D. (1.33c) 

Here, .cG, c f are (vectorial) weight coefficients, .⎡max is the vector of upper loss 
bounds, and “min” indicates again that .⎡(x) may be a vector valued function. 

1.5 Basic Properties of Deterministic Substitute Problems 

As can be seen from the conversion of an optimization problem with random param-
eters into a deterministic substitute problem, cf. Sect. 1.4.1, a central role is played 
by expectation or mean value functions of the type
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.⎡(x) = Eγ
(
y
(
a(ω), x

))
, x ∈ D0, (1.34a) 

or more general 

.⎡(x) = Eg
(
a(ω), x

)
, x ∈ D0. (1.34b) 

Here, .a = a(ω) is a random .ν-vector, .y = y(a, x) is an .my-vector valued function 
on a certain subset of .Rν × R

r , and .γ = γ (z) is a real-valued function on a certain 
subset of .Rmy . 

Furthermore, .g = g(a, x) denotes a real-valued function on a certain subset of 
.R

ν × R
r . In the following we suppose that the expectation in (1.34a)–(1.34b) exists  

and is finite for all input vectors . x lying in an appropriate set .D0 ⊂ R
r , cf.  [  7]. 

The following basic properties of the mean value functions . ⎡ are needed in the 
following again and again. 

Lemma 1.1 (Convexity) Suppose that .x → g
(
a(ω), x

)
is convex a.s. (almost sure) 

on a fixed convex domain .D0 ⊂ R
r . If  .Eg

(
a(ω), x

)
exists and is finite for each 

.x ∈ D0, then .⎡ = ⎡(x) is convex on .D0. 

Proof This property follows [ 20, 21, 27] directly from the linearity of the expectation 
operator. ⬜ 

If .g = g(a, x) is defined by .g(a, x) := γ
(
y(a, x)

)
, see  (1.34a), then the above 

theorem yields the following result: 

Corollary 1.1 Suppose that . γ is convex and .Eγ
(
y
(
a(ω), x

))
exists and is finite 

for each .x ∈ D0. 

(a) If .x → y
(
a(ω), x

)
is linear a.s., then .⎡ = ⎡(x) is convex. 

(b) If.x → y
(
a(ω), x

)
is convex a.s., and. γ is a convex, monotoneous nondecreasing 

function, then .⎡ = ⎡(x) is convex. 

It is well known [ 25] that a convex function is continuous on each open subset of 
its domain. A general sufficient condition for the continuity of . ⎡ is given next. 

Lemma 1.2 (Continuity) Suppose that .Eg
(
a(ω), x

)
exists and is finite for each 

.x ∈ D0, and assume that .x → g
(
a(ω), x

)
is continuous at .x0 ∈ D0 a.s.. If there is 

a function .ψ = ψ
(
a(ω)

)
having finite expectation such that 

.

|||g
(
a(ω), x

)||| ≤ ψ
(
a(ω)

)
a.s. for all x ∈ U (x0) ∩ D0, (1.35) 

where .U (x0) is a neighborhood of . x0, then .⎡ = ⎡(x) is continuous at . x0.



1.6 Approximations of Deterministic Substitute Problems in Optimal Design/Decision 17

Proof The assertion can be shown by using Lebesgue’s dominated convergence 
theorem, see, e.g., [ 27]. ⬜ 

For the consideration of the differentiability of .⎡ = ⎡(x), let  .D denote an open 
subset of the domain .D0 of . ⎡. 

Lemma 1.3 (Differentiability) Suppose that 

(i) .Eg
(
a(ω), x

)
exists and is finite for each .x ∈ D0, 

(ii) .x → g
(
a(ω), x

)
is differentiable on the open subset .D of .D0 a.s. and 

(iii) 

.

||||||∇x g
(
a(ω), x

)|||||| ≤ ψ
(
a(ω)

)
, x ∈ D, a.s., (1.36a) 

where .ψ = ψ
(
a(ω)

)
is a function having finite expectation. Then the expectation of 

.∇x g
(
a(ω), x

)
exists and is finite, .⎡ = ⎡(x) is differentiable on .D and 

.∇⎡(x) = ∇x Eg
(
a(ω), x

)
= E∇x g

(
a(ω), x

)
, x ∈ D. (1.36b) 

Proof Considering the difference quotients.
Δ⎡

Δxk
, k = 1, . . . , r , of. ⎡ at a fixed point 

.x0 ∈ D, the assertion follows by means of the mean value theorem, inequality (1.36a) 
and Lebesgue’s dominated convergence theorem, cf. [ 20, 21, 27]. ⬜ 

Example 1.4 In case (1.34a), under obvious differentiability assumptions con-

cerning . γ and . y we have .∇x g(a, x) = ∇x y(a, x)T∇γ
(
y(a, x)

)
, where . ∇x y(a, x)

denotes the Jacobian of .y = y(a, x) with respect to . a. Hence, if (1.36b) holds, then 

.∇⎡(x) = E∇x y
(
a(ω), x

)T∇γ
(
y
(
a(ω), x

))
. (1.36c) 

1.6 Approximations of Deterministic Substitute Problems 
in Optimal Design/Decision 

The main problem in solving the deterministic substitute problems defined above is 
that the arising probability and expected cost functions. p f = p f (x), ⎡ = ⎡(x), x ∈
R

r , are defined by means of multiple integrals over a .ν-dimensional space. 
Thus, the substitute problems may be solved, in practice, only by some approx-

imative analytical and numerical methods [ 16, 20, 27, 33]. In the following we 
consider possible approximations for substitute problems based on general expected 
recourse cost functions .⎡ = ⎡(x) according to (1.34a) having a real-valued convex 
loss function.γ (z). Note that the probability of failure function.p f = p f (x) may be
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approximated from above, see (1.29a)–(1.29b), by expected cost functions. ⎡ = ⎡(x)
having a nonnegative function .γ = γ (z) being bounded from below on the failure 
domain .Bc. In the following several basic approximation methods are presented. 

1.6.1 Approximation of the Loss Function 

Suppose here that .γ = γ (y) is a continuously differentiable, convex loss function 
on .R

my . Let then denote 

.y(x) := Ey
(
a(ω), x

)
=

(
Ey1

(
a(ω), x

)
, . . . , Eymy

(
a(ω), x

))T
(1.37) 

the expectation of the vector .y = y
(
a(ω), x

)
of state functions . yi = yi

(
a(ω), x

)
,

.i = 1, . . . ,my . 
For an arbitrary continuously differentiable, convex loss function . γ we have 

.γ
(
y
(
a(ω), x

))
≥ γ

(
y(x)

)
+ ∇γ

(
y(x)

)T (
y
(
a(ω), x

)
− y(x)

)
. (1.38a) 

Thus, taking expectations in (1.38a), we find Jensen’s inequality 

.⎡(x) = Eγ
(
y
(
a(ω), x

))
≥ γ

(
y(x)

)
(1.38b) 

which holds for any convex function . γ . Using the mean value theorem, we have 

.γ (y) = γ (y) + ∇γ (ŷ)T (y − y), (1.38c) 

where . ŷ is a point on the line segment .yy between . y and . y. By means of (1.38b), 
(1.38c) we get 

.0 ≤ ⎡(x) − γ
(
y(x)

)
≤ E

||||||∇γ
(
ŷ
(
a(ω), x

))|||||| ·
||||||y

(
a(ω), x

)
− y(x)

|||||| . (1.38d) 

(a) Bounded gradient 

If the gradient .∇γ is bounded on convex hull .Rconv(y(·, ·)) of the range of 

.y = y
(
a(ω), x

)
, ω ∈ Ω, x ∈ D, i.e., if 

. ||∇γ (y)|| ≤ ϑmax for each y ∈ Rconv(y(·, ·)), (1.39a) 

with a constant .ϑmax > 0, then


