
High-Throughput Mass Spectrometry in Drug Discovery

Edited By Chang Liu and Hui Zhang

High-Throughput Mass Spectrometry in Drug Discovery

High-Throughput Mass Spectrometry in Drug Discovery

Edited by

Chang Liu SCIEX Concord, Canada

Hui Zhang Entos Inc. La Jolla USA

This edition first published 2023 © 2023 John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Chang Liu and Hui Zhang to be identified as the authors of the editorial material in this work has been asserted in accordance with law.

Registered Office John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office 111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty

In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data applied for Hardback ISBN: 9781119678434

Cover Design: Wiley Cover Images: Back cover image courtesy of Thomas R. Covey and Ella Potyrala Cover Image: Courtesy of Thomas R. Covey Cover Design Concept: Courtesy of Ella Potyrala

Set in 9.5/12.5pt STIXTwoText by Straive, Pondicherry, India

Contents

List of Contributors xv Preface xix List of Abbreviations xxi

Section 1 Introduction 1

1 Forty-Year Evolution of High-Throughput Mass Spectrometry: A Perspective *3*

Thomas R. Covey

- 1.1 Introduction 3
- 1.2 Ionization Foundations of High-Throughput Mass Spectrometry 5
- 1.2.1 Historical Context of the Development of LC/ MS. Ionization in Vacuum or at Atmospheric Pressure? 7
- 1.2.2 Ambient Sample Introduction Methods (Ambient Ionization) into an API Ion Source Without LC and Their HT-MS Potential 13
- 1.2.3 Direct and Indirect Affinity Measurements with ESI/MS for HTS 16
- 1.3 High-Speed Serial Chromatographic Sample Introduction 18
- 1.3.1 High Flow Rate Ion Sources 19
- 1.3.2 Fast Serial Scheduled, Staggered Chromatographic Separations with Fast Autosamplers 22
- 1.3.3 High-Speed Column Stationary Phases 24
- 1.4 Parallel Chromatographic Sample Introduction 26
- 1.4.1 Overview of Multichannel Indexed Ion Sources 26
- 1.4.2 Fluid Indexing 27
- 1.4.3 Spray Aerosol Indexing 28
- 1.4.4 Ion Beam Indexing 28
- 1.4.5 Ionization Indexing 29
- 1.4.6 Multichannel Autosampler and Pumps 30

٧

- vi Contents
 - 1.5 High Repetition Rate Lasers 32
 - 1.6 Ion Mobility for High-Speed Gas-Phase Separations 35
 - 1.6.1 Motivation and Commercial Options 35
 - 1.6.2 Origins of DMS 36
 - 1.6.3 Chemically Based Selectivity with DMS to Mimic Chromatography *37*
 - 1.7 Mass Spectrometer Sensitivity 40
 - 1.7.1 Historical Gains and Motivation for Sensitivity Improvements 40
 - 1.8 High-Speed Sub-Microliter Volume Sampling 42
 - 1.8.1 Small Sample Size and Low Volume Dispensing HT-MS Technologies 42
 - 1.8.2 Shoot N' Dilute Nanoliter Droplets 44
 - 1.9 Conclusions and Future Prospects 53 References 56

Section 2 LC-MS 75

2 The LeadSampler (LS-1) Sample Delivery System: Integrated Design and Features for High-Efficiency Bioanalysis 77

Brendon Kapinos and John Janiszewski

- 2.1 Introduction 77
- 2.2 Hardware and System Design 80
- 2.3 Software Integration 84
- 2.4 Enabling Emerging Techniques 90
- 2.5 Concluding Remarks 96 References 97

3 Evolution of Multiplexing Technology for High-Throughput LC/MS Analyses 103

Adam Latawiec

- 3.1 Introduction and Historical Developments 103
- 3.2 Developments Toward Fully Integrated Multiplexing Systems 105
- 3.3 Broadening Customer Options 108
- 3.4 Workflow and End-User Considerations 113
- 3.5 Conclusion 115 References 116

Section 3 ESI-MS Without Chromatographic Separation 121

4 Direct Online SPE-MS for High-Throughput Analysis in Drug Discovery 123

Andrew D. Wagner and Wilson Z. Shou

- 4.1 Introduction 123
- 4.2 History of the Development of Direct Online SPE-MS 124
- 4.3 Hardware Details and Data Processing 126
- 4.4 Instrument Performance Highlights 132
- 4.5 Applications 133
- 4.6 Others 134
- 4.7 Future Perspectives 135 References 135
- 5 Acoustic Sampling for Mass Spectrometry: Fundamentals and Applications in High-Throughput Drug Discovery 143 Chang Liu, Lucien Ghislain, Jonathan Wingfield, Sammy Datwani, and Hui Zhang
- 5.1 Introduction 143
- 5.2 Technology Overview 145
- 5.2.1 AMI-MS 145
- 5.2.2 ADE-OPI-MS 151
- 5.2.2.1 System Description 151
- 5.2.2.2 System Tuning and Assay Development 152
- 5.2.2.3 ADE-OPI-MS Automated Data Processing and Automation Integration 154
- 5.3 System Performance 154
- 5.3.1 AMI-MS Performance 154
- 5.3.2 ADE-OPI-MS Performance 160
- 5.4 Applications 162
- 5.4.1 High-Throughput Screening 162
- 5.4.1.1 AMI-MS for HTS 162
- 5.4.1.2 ADE-OPI-MS for HTS 166
- 5.4.2 High-Throughput ADME 168
- 5.4.3 In Situ Reaction Kinetics Monitoring 168
- 5.4.4 Bioanalysis 170

viii Contents

- 5.4.5 Compound QC 171
- 5.4.6 Parallel Medicinal Chemistry 172
- 5.4.7 High-Content Screening 173
- 5.5 Challenges and Limitations 175
- 5.6 Conclusion 176 References 177
- 6 Ion Mobility Spectrometry-Mass Spectrometry for High-Throughput Analysis 183
 - Dylan H. Ross, Aivett Bilbao, Richard D. Smith, and Xueyun Zheng
- 6.1 Introduction of Ion Mobility Spectrometry 183
- 6.2 IMS Fundamental and Experiment 184
- 6.2.1 Ion Mobility Theory 184
- 6.2.2 Collision Cross Section Measurement 186
- 6.2.3 A Typical IMS Experiment 186
- 6.3 IMS Analysis and Applications 187
- 6.3.1 Separation of Isomeric and Isobaric Species by IMS 187
- 6.3.2 High-Throughput IMS Measurements and Building a CCS Library 188
- 6.3.2.1 CCS Measurement of Small Molecules Using DTIMS 190
- 6.3.2.2 CCS Measurements of Drug Compounds Using TWIMS 193
- 6.3.2.3 Large-Scale CCS Databases From Prediction Approaches 195
- 6.3.3 LC-IMS-MS Analysis 195
- 6.3.4 High-Throughput Analysis Using Rapidfire SPE-IMS-MS 196
- 6.3.5 Software Tools for IMS Data Analysis 199
- 6.4 High-Resolution SLIM-IMS Developments 200
- 6.5 Conclusions 204 References 205
- 7 Differential Mobility Spectrometry and Its Application to High-Throughput Analysis 215

Bradley B. Schneider, Leigh Bedford, Chang Liu, Eva Duchoslav, Yang Kang, Subhasish Purkayastha, Aaron Stella, and Thomas R. Covey

- 7.1 Introduction 215
- 7.2 Separation Speed 216
- 7.2.1 Classical Low Field Ion Mobility 216
- 7.2.2 Differential Mobility Spectrometry 217
- 7.2.2.1 FAIMS 218
- 7.2.2.2 DMS 219
- 7.3 Separation Selectivity 220
- 7.3.1 Classical Low Field Ion Mobility 220

- 7.3.2 Differential Mobility Spectrometry 220
- 7.3.2.1 FAIMS 220
- 7.3.2.2 DMS 221
- 7.4 Ultrahigh-Throughput System with DMS 226
- 7.4.1 AEMS Data 231
- 7.4.2 DMS Sensitivity (Ion Transmission) 237
- 7.4.3 Examples of AEMS Analyses with DMS 240
- 7.4.3.1 Example 1. DMS to Eliminate Interferences from Isobaric Species 240
- 7.4.3.2 Example 2. DMS to Eliminate Interferences for Species that are Not Nominally Isobaric 244
- 7.4.3.3 Example 3. DMS to Eliminate Unknown Interferences from Species Endogenous to the Solvent Matrix 250
- 7.4.4 DMS Tuning as a Component of the High-Throughput Workflow 252
- 7.4.5 Automation of the Tuning Process 253
- 7.5 Conclusions 258
- 7.A Chemical Structures 259 References 262

Section 4 Special Sample Arrangement 267

8 Off-Line Affinity Selection Mass Spectrometry and Its Application in Lead Discovery 269 Christopher F. Stratton, Lawrence M. Szewczuk, and Juncai Meng 8.1 Introduction to Off-Line Affinity Selection Mass Spectrometry 269 8.2 Selected Off-Line Affinity Selection Technologies and Its Application in Lead Discovery 270 Membrane Ultrafiltration-Based Affinity Selection 270 8.2.1 8.2.1.1 Introduction of Membrane Ultrafiltration-Based ASMS 270 8.2.1.2 Application of Membrane Ultrafiltration-Based ASMS in Lead Discovery 271 8.2.1.3 Pulse Ultrafiltration-Based ASMS Technology 273 8.2.1.4 Affinity Rank-Ordering Using Pulse Ultrafiltration-Based ASMS 273 8.2.1.5 Advantages and Disadvantages of Membrane Ultrafiltration-Based ASMS 275 8.2.2 Plate-Based Size Exclusion Chromatography 275 Introduction of SpeedScreen: A Plate-Based SEC ASMS 8.2.2.1 Technology 275

x Contents

- 8.2.2.2 Application of SpeedScreen in Lead Discovery 277
- 8.2.2.3 Advantages and Considerations of SpeedScreen 278
- 8.2.3 Bead-Based Affinity Selection 281
- 8.2.3.1 Introduction to Bead-Based Affinity Selection 281
- 8.2.3.2 Application and Discussion of Bead-Based Affinity Selection in Lead Discovery 282
- 8.2.4 Self-Assembled Monolayers and Matrix-Assisted Laser Desorption Ionization (SAMDI) 283
- 8.2.4.1 Introduction to SAMDI Technology 283
- 8.2.4.2 Discussion and Proof-of-Concept of SAMDI Technology for Off-Line ASMS 286
- 8.2.5 Ultracentrifugation Affinity Selection 286
- 8.2.5.1 Introduction to Ultracentrifugation Affinity Selection 286
- 8.2.5.2 Discussion and Proof-of-Concept of Ultracentrifugation Affinity Selection for Off-line ASMS 288
- 8.3 Future Perspectives 291 References 292

9 Online Affinity Selection Mass Spectrometry 297

Hui Zhang and Juncai Meng

- 9.1 Introduction of Online Affinity Selection-Mass Spectrometry 297
- 9.2 Online ASMS Fundamental 299
- 9.3 Instrument Hardware and Software Consideration 300
- 9.3.1 SEC Selection, Fast Separation, and Temperature 300
- 9.3.2 MS: Low Resolution and High Resolution 302
- 9.3.3 Software: Key Features, False Positives, and False Negatives 303
- 9.3.4 Compound Libraries and Compression Level 305
- 9.4 Type of Assays Using ASMS 306
- 9.4.1 Target Identification and Validation 306
- 9.4.2 Hits ID from Combinatorial Libraries or Compound Collections 308
- 9.4.3 Hits Characterization and Leads Optimization 308
- 9.5 Applications Examples and New Modalities of ASMS for Drug Discovery *311*
- 9.6 Future Perspectives 312 References 313

10 Native Mass Spectrometry in Drug Discovery and Development 317 Menavuan lia lianzhona Wen Olivier Mazzicona

Mengxuan Jia, Jianzhong Wen, Olivier Mozziconacci, and Elizabeth Pierson

- 10.1 Introduction 317
- 10.1.1 The Significance of Non-Covalent Protein Complexes in Biology 317

Contents xi

- 10.1.2 Advantages and Disadvantages of Conventional Structural Analytical Techniques *318*
- 10.2 Fundamentals of Native MS *320*
- 10.2.1 Principles of Native Electrospray Ionization 320
- 10.2.2 Specific Sample Preparation to Preserve Non-Covalent Interactions and Be Compatible with ESI-MS Analysis 321
- 10.3 Instrumentation 323
- 10.3.1 Nano-ESI and ESI 323
- 10.3.2 Inline Desalting and Separations Coupled to Native Mass Spectrometry 323
- 10.3.2.1 Inline SEC and Desalting 324
- 10.3.2.2 Inline IEX 325
- 10.3.2.3 Inline HIC 325
- 10.3.2.4 Inline 2D LC 326
- 10.3.2.5 Compatibility with nESI 326
- 10.3.3 High-Throughput Native Mass Spectrometry 327
- 10.3.4 Mass Analyzers 329
- 10.3.5 Data Processing 329
- 10.3.5.1 Contrasts Between Non-Native and Native MS Data Processing and Interpretation 329
- 10.3.5.2 Software for Native MS 330
- 10.4 Application Highlights 330
- 10.4.1 Using Native MS to Develop Stable Protein Formulations 332
- 10.4.2 Native MS to Understand Drug/Target Interaction 334
- 10.4.3 Native Mass Spectrometry and Tractable Protein–Protein Interactions for Drug Discovery 335
- 10.4.4 Structural Stability Using Collision-Induced Unfolding 336
- 10.4.5 Vaccines and Virus Proteins Using CDMS 336
- 10.5 Conclusions and Future Directions 337 References 337

Section 5 Other Ambient Ionization Other than ESI 347

11 Laser Diode Thermal Desorption-Mass Spectrometry (LDTD-MS): Fundamentals and Applications of Sub-Second Analysis in Drug Discovery Environment 349

> *Pierre Picard, Sylvain Letarte, Jonathan Rochon, and Réal E. Paquin* A Historical Perspective of the LDTD *349*

- 11.2 Instrumentation 351
- 11.2.1 LDTD Process 351

11.1

11.2.2 Sample Holder Design 352

xii Contents

- 11.2.3 Vapor Extraction Nozzle 353
- 11.3 Theoretical Background 354
- 11.3.1 Thermal Process 354
- 11.3.2 Gas Dynamics 358
- 11.3.3 Ionization 359
- 11.4 Sample Preparation *362*
- 11.4.1 Motivations 362
- 11.4.2 General Guidelines 362
- 11.4.2.1 Compound Detection Background 363
- 11.4.2.2 Details on Ionic Saturation 364
- 11.4.2.3 Consideration for Biological Matrices 367
- 11.5 Applications 370
- 11.5.1 CYP Inhibition Analysis 371
- 11.5.2 Permeability 373
- 11.5.3 Protein Binding 378
- 11.5.4 Pharmacokinetic 378
- 11.5.5 Preparation Tips 382
- 11.6 Conclusion 384
- 11.6.1 Use and Merits of the Technology 384
- 11.6.2 Limitations 385
- 11.6.3 Perspectives 386 References 387
- 12 Accelerating Drug Discovery with Ultrahigh-Throughput MALDI-TOF MS 393

Sergei Dikler

- 12.1 Introduction 393
- 12.2 uHT-MALDI MS of Assays and Chemical Reactions 396
- 12.2.1 HT-MALDI of Enzymatic Assays 396
- 12.2.2 Screening Chemical Reactions Using uHT-MALDI 401
- 12.2.3 uHT-MALDI of Cell-Based Assays 404
- 12.2.4 uHT-MALDI of Other Types of Assays and Libraries 406
- 12.3 Bead-Based Workflows 408
- 12.4 Using Functionalized, Modified, and Microarrayed MALDI Plates for HT-MALDI *411*
- 12.5 Summary and Future Trends 413 Acknowledgment 414 References 414

13 Development and Applications of DESI-MS in Drug Discovery *423 Wenpeng Zhang*

- 13.1 Introduction 423
- 13.2 Development of DESI and Related Ambient Ionization Methods 424
- 13.3 Applications in Drug Discovery 427
- 13.3.1 Pharmaceutical Analysis and Therapeutic Drug Monitoring 427
- 13.3.2 Analysis of Drugs in Natural Products 428
- 13.3.3 DESI-Based Mass Spectrometry Imaging 430
- 13.3.4 Detection of Drug–Protein Interactions 435
- 13.3.5 High-Throughput Experimentation 438
- 13.3.6 High-Throughput Screening 439
- 13.4 Conclusions and Future Outlook 440 References 442

Section 6 Conclusion 453

- 14The Impact of HT-MS to Date and Its Potential to Shape
the Future of Metrics-Based Experimentation and Analysis455
455Matthew D. Troutman
- 14.1 Defining High-Throughput Mass Spectrometry (HT-MS) 456
- 14.2 HT-MS: Impact to Date 457
- 14.3 Considering How HT-MS Will Shape the Future of Drug Discovery 458 References 462

Index 467

List of Contributors

Leigh Bedford SCIEX, Concord, ON, Canada

Aivett Bilbao Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA

Thomas R. Covey SCIEX, Concord, ON, Canada

Sammy Datwani Beckman Coulter Life Sciences San Jose, CA, USA

Sergei Dikler Bruker Scientific, LLC Billerica, MA, USA

Eva Duchoslav SCIEX, Concord, ON, Canada

Lucien Ghislain Beckman Coulter Life Sciences San Jose, CA, USA John Janiszewski National Center for Advancing Translational Sciences (NCATS) Rockville, MD, USA

Mengxuan Jia Preclinical Development ADMET/BA Merck & Co., Inc South San Francisco, CA, USA

Yang Kang SCIEX, Concord, ON, Canada

Brendon Kapinos Pfizer Worldwide Research and Development, Groton, CT, USA

Adam Latawiec SCIEX, Concord, ON, Canada

Sylvain Letarte R&D Department, Phytronix Technologies Inc., Québec QC, Canada

Chang Liu SCIEX, Concord, ON, Canada xvi List of Contributors

Juncai Meng

Discovery Technology and Molecular Pharmacology (DTMP) Janssen Research & Development LLC, Spring House, PA, USA

Olivier Mozziconacci

Discovery Pharmaceutical Sciences Merck & Co., Inc, South San Francisco CA, USA

Réal E. Paquin

Université Laval Québec, QC, Canada

Pierre Picard R&D Department, Phytronix Technologies Inc., Québec QC, Canada

Elizabeth Pierson Analytical R&D, Merck & Co., Inc., Rahway, NJ, USA

Subhasish Purkayastha SCIEX, Framingham, MA, USA

Jonathan Rochon R&D Department, Phytronix Technologies Inc., Québec, QC, Canada

Dylan H. Ross Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA

Bradley B. Schneider SCIEX, Concord, ON, Canada

Wilson Z. Shou

Lead Discovery and Optimization Bristol-Myers Squibb Company Princeton, NJ, USA

Richard D. Smith

Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA

Aaron Stella SCIEX, Framingham, MA, USA

Christopher F. Stratton

Discovery Technology and Molecular Pharmacology (DTMP), Janssen Research & Development, LLC Spring House, PA, USA

Lawrence M. Szewczuk

Discovery Technology and Molecular Pharmacology (DTMP), Janssen Research & Development, LLC Spring House, PA, USA

Matthew D. Troutman Hit Discovery and Optimization Pfizer, Inc., Groton, CT, USA

Andrew D. Wagner Lead Discovery and Optimization Bristol-Myers Squibb Company Princeton, NJ, USA

Jianzhong Wen Preclinical Development ADMET/BA Merck & Co., Inc South San Francisco, CA, USA

Jonathan Wingfield

Mechanistic and Structural Biophysics Discovery Sciences, R&D AstraZeneca, Cambridge, UK

Hui Zhang

Entos Inc. Department of Analytical Technologies, Entos San Diego, CA, USA

Wenpeng Zhang

State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing, China

Xueyun Zheng

Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA

Preface

The automated and integrated high-throughput sample analysis is critical to the drug discovery process. Traditional high-throughput bioanalytical technologies such as colorimetric microplate-based readers are often constrained by linear dynamic range. In addition, they need label attachment schemes with the propensity to modify equilibrium and kinetic analysis. On the other hand, mass spectrometry (MS) based methods can achieve label-free, universal mass detection of a wide arrange of analytes with exceptional sensitivity, selectivity, and specificity. However, these techniques are limited by the speed of sample introduction. In recent decades, there have been a lot of efforts to improve the throughput of MS-based analysis for drug discovery. Along with those developments, a dedicated book would be helpful to introduce the fundamentals, experimental details, and applications of a wide variety of technologies that enabled high-throughput mass spectrometry-based screens in supporting broad drug discovery applications. The key research areas include hit discovery by label-free screen, synthetic reaction optimization, lead optimization and SAR support, ADME (absorption, distribution, metabolism, and excretion), toxicology screening, etc.

This book starts with an overview of the 40 years of efforts to improve the analytical throughput of MS-based approaches (Chapter 1). Then, technologies with highspeed sequential and parallel chromatographic sample introduction, high repetition rate lasers, ion mobility, and low-volume MS samplings were summarized.

Due to its high specificity and high sensitivity, the LC-MS technology has been widely used in various steps of the drug discovery workflow. In Part 2 (Chapter 2–3), the efforts to improve the LC-MS analytical throughput are introduced. The development of the high-speed sample introduction for LC-MS and its application on ADME and HTS applications is described in Chapter 2. Another approach for throughput improvement utilizing paralleled multiplexing LC is described in Chapter 3.

Following the conventional LC-MS-based technologies, other electrospray ionization (ESI)MS-based high-throughput platforms without chromatographic

xx Preface

separation are summarized in Part 3 (Chapter 4–7). Direct online solid-phase extraction (SPE) MS and its application in ADME and HTS workflows are described in Chapter 4. The utilization of the acoustic energy for non-contact transfer samples from microplates to MS for high-throughput analysis, including the acoustic mist ionization (AMI) and through the open-port interface (OPI), is summarized in Chapter 5. By skipping the chromatographic separation process, these approaches demonstrated higher analytical throughput than the conventional LC-MS approach. However, there would be the risk of potential isomeric/isobaric interference. Ion mobility spectrometry (IMS) and differential mobility spectrometry (DMS), described in Chapters 6 and 7, respectively, provide the additional dimension of the selectively, potentially solving the specificity issues of these high-throughput technologies for some drug discovery assays.

Part 4 (Chapters 8–10) summarized the MS-based high-throughput hit identification technologies based on the drug-target interaction. Affinity-selection mass spectrometry (ASMS) is a rapidly developing technology for high-throughput hit identification. The off-line and in-line ASMS approaches are introduced in Chapters 8 and 9. In addition, as a direct confirmation tool for the protein-drug binding, native MS has been rapidly developed in the past decade, which is described in Chapter 10.

Part 5 (Chapter 11–13) introduces developments of ambient ionization technologies other than the conventional ESI and their applications in the high-throughput drug discovery workflows, such as Laser Diode Thermal Desorption (LDTD, Chapter 11), Matrix-Assisted Laser Desorption/Ionization (MALDI, Chapter 12), and Desorption Electrospray Ionization (DESI, Chapter 13).

The last chapter (Chapter 14) provides perspectives for future development opportunities after a brief reflection of the realized impacts of high-throughput MS on drug discovery and the pharmaceutical industry.

We believe our goal in this book is accomplished through the extensive coverage of fundamentals, experimental details, and applications of state-of-art technologies that enable high-throughput MS-based screens in supporting drug discovery. We hope it could benefit scientists in pharmaceutical/biopharmaceutical companies and CROs who design and perform the studies and provide analytical support throughout drug discovery processes. We would like to acknowledge the commitment and contributions of all authors of the book chapters and the support and valuable discussions with colleagues and collaborators in the SCIEX research team and Pfizer Discovery Science department. In addition, we sincerely thank the editorial team at John Wiley & Sons, especially Adalfin Jayasingh, Stacey Woods, Jonathan Rose, Andreas Sendtko, and Sabeen Aziz, for their generous support of this book. Finally, we are grateful to our family members for their understanding and support for our editing work in the evening and on weekends.

List of Abbreviations

%-RBA	relative binding affinity percentage
μFLC	microflow liquid chromatography
2d	two-dimensional
2-HG	2-hydroxyglutarate
3CLpro	3-chymotrypsin-like cysteine protease
4EBP1	Eukaryotic translation initiation factor 4E-binding protein 1
Α	pre-exponential factor constant
ACE50	affinity competition experiment 50% inhibitory concentration
AChE	acetylcholinesterase
ADC	antibody—drug conjugate
ADE-OPI-MS	acoustic droplet ejection-open port interface-mass
	spectrometry
ADME	adsorption, distribution, metabolism, and excretion
AEMS	acoustic ejection mass spectrometry
AMI-MS	acoustic mist ionization-mass spectrometry
AMS	affinity mass spectrometry
ANSI	American National Standards Institute
APCI	atmospheric pressure chemical ionization
API	atmospheric pressure ionization
APIs	active pharmaceutical ingredients
APPI	atmospheric pressure photo ionization
ASAP	atmospheric solids analysis probe
ASMS	affinity selection mass spectrometry
ASMS	American society mass spectrometry
Asp	aspartic acid
ATD	arrival time distribution
ATP	adenosine triphosphate

xxii List of Abbreviations

AUC	analytical ultracentrifugation
AUC	area under the curve
BACC	bacterial acetyl coenzyme-A carboxylase
BACE	beta-site APP cleaving enzyme
BAMS	bead assisted mass spectrometry
Bcl-xL	B-cell lymphoma-extra large protein
bdf	batch data file
BE	buffer exchange
Bead-GPS	bead-based global proteomic screening
BFA	bound fraction analysis
BKM120	Buparlisib
BSA	bovine serum albumin
BTE	Boltzmann transport equation
C18	octadecyl stationary phase
C8	octyl stationary phase
CCS	collision cross section
CD	circular dichroism
CDMS	charge detection mass spectrometry
CEM	chain ejection model
cGAMP	cyclic GMP-ATP
cGAS	cyclic GMP-AMP synthase
CHCA	α-cyano-4-hyroxycinnamic acid
CHK1	checkpoint kinase
CID	collision induced dissociation
CIU	collision induced unfolding
CN	cyano stationary phase
CoV	compensation voltage
CPATI	cytosolic proteome and affinity-based target identification
CRIMP	Compression Ratio Ion Mobility Programming
CRM	charged residue model
CV	coefficient of variation
CYP	cytochrome P450
Da	Dalton, measurement unit used in mass spectrometry
DAR	drug-to-antibody ratio
DART	direct analysis in real time
DDI	drug–drug interaction
DEC	desorption enhancing coating
DEL	DNA-encoded library
DESI	desorption electrospray ionization
DHAP	2,5-dihydroxyacetophenone
DHFR	dihydrofolate reductase

diCQA	dicaffeoylquinic acid
DI-GCE/MS/MS	• •
	mass spectrometry
DIMS	differential IMS
DIOS	desorption ionization on silicon
DLS	dynamic light scattering
DMA	differential mobility analyzer
DMS	differential mobility spectrometry
DP	declustering potential
DQ	DiscoveryQuant
DSF	differential scanning fluorimetry
DT	drift time
DTIMS	drift tube IMS
DUB	deubiquitilase
E_{a}	energy of activation
ebox	electronics box
$E_{\rm d}$	bound dissociation energy
EDTA	ethylenediaminetetraacetic acid
EHDI	electrohydrodynamic ionization
EI	electron impact
EM	electron microscopy
ERK1/ERK2	extracellular signal-regulated kinase 1 and 2
ESI	electrospray ionization
ESI-MS	electrospray ionization mass spectrometry
E_λ	energy associated with the vibrational wavelength
FAB	fast atom bombardment
FAIMS	high field asymmetric waveform ion mobility spectrometry
FAK	focal adhesion kinase
FASN	fatty acid synthase
FIA	flow injection analysis
FLD	fluorescence detector
FP	fluorescence polarization
FTE	full-time equivalent
FTICR	Fourier-transform ion cyclotron resonance
FWHM	full width at half maximum
GABA	γ-aminobutyric
GC	gas chromatography
GLP	good laboratory practice
GPC	gel permeation chromatography
GST	glutathione S-transferase
GWAS	genome-wide association studies

xxiv List of Abbreviations

HBSS	Hank's buffered salt solution
HCV	hepatitis C virus
HDMA	high-density micropatterned array
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HIC	
HLM	hydrophobic interaction chromatography human liver microsomes
HMW	high molecular weight species
HPLC	high-performance liquid chromatography
HRMS	high-resolution mass spectrometry
HT-ADME	high-throughput absorption, distribution, metabolism,
	excretion
HTE	high-throughput experimentation
HT-LC/MS/MS	high-throughput mass spectrometry
HT-MALDI	high-throughput matrix-assisted laser desorption/ionization
HT-MS	high-throughput mass spectrometry
HTRF	homogenous time-resolved fluorescence
HTS	high-throughput screening
IC_{50}	half maximal inhibitory concentration
ID	internal diameter
IDH1	isocitrate dehydrogenase 1
IEX	ion exchange chromatography
IM	ion mobility
IMAC	immobilized metal ion affinity chromatography
iMALDI	immuno-matrix-assisted laser desorption/ionization
IMS	ion mobility spectrometry
IR-MALDESI	infrared matrix-assisted desorption electrospray ionization
IS	internal standards
isoAsp	isoaspartic acid
ITC	isothermal titration calorimetry
ITO	indium tin oxide
IVIVC	in vitro to in vivo correlations
k	rate constant
LC	liquid chromatography
LC/MS/MS	liquid chromatography tandem mass spectrometry
LC-MALDI	liquid chromatography-matrix-assisted laser desorption/
	ionization
LC-MS	liquid chromatography mass spectrometry
LDLR	low-density lipoprotein receptor
LDTD	laser diode thermal desorption
LESA	liquid extraction surface analysis
LLE	liquid–liquid extraction
	1 1

LOD	limits of detection
LogD	distribution coefficient
LOQ	limit of quantitation
LOQ LPS	lipopolysaccharides
M3	microfabricated monolithic multinozzle
mAbs	monoclonal antibodies
MagMASS	magnetic microbead affinity selection screen
MALDI	matrix-assisted laser desorption ionization
MALDI-2	laser-induced postionization
MALDI-FTICR MS	matrix-assisted laser desorption/ionization Fourier-
	transform ion cyclotron resonance mass spectrometry
MALDI-TOF MS	matrix-assisted laser desorption/ionization time-of-flight
	mass spectrometry
MetAP2	methionyl aminopeptidase 2
MnESI	microflow-nanospray electrospray ionization
MPS	mesoporous silica
MRM	multiple reaction monitoring
MRO	medical review officer
MS	mass spectrometer
MS/MS	tandem mass spectrometry
MSI	mass spectrometry imaging
MTBE	methyl tert-butyl ether
MTP	microtiter plate
MuRF	muscle RING-finger protein
NADPH	nicotinamide adenine dinucleotide phosphate
NALDI	nanostructure-assisted laser desorption/ionization
Nano-DESI	nanospray desorption electrospray ionization
NAPA-LDI	nanopost array-laser desorption/ionization
NDM-1	New Delhi metallo-lactamase1
NDX	native-denatured exchange
nESI	nano electrospray ionization
NHS	N-hydroxysuccinimide
NIMS	nanostructure-initiator mass spectrometry
nL	nanoliter
NMR	nuclear magnetic resonance
nMS	native mass spectrometry
NSAID	nonsteroidal anti-inflammatory drugs
NSP14	nonstructural protein 14
OATP2B1	organic anion transporting polypeptide 2B1
OIMS	overtone IMS
OPSI	open port sampling interface

xxvi List of Abbreviations

PAH	polycyclic aromatic hydrocarbon
PBED	polybrominated diphenyl ether
PBS	phosphate-buffered saline, buffer solution about pH 7.4
PCB	polychlorinated biphenyl
PCB	printed circuit board
PC-mass-tags	photocleavable mass-tags
PFAS	per- and polyfluoroalkyl substances
РК	pharmacokinetic
pK _a	acid dissociation constant
ΡΚCα	protein kinase C-α
PMF	peptide mass fingerprinting
PoC	percentage of control
POE	percent of enrichment
PPT	protein precipitation technique
PROTAC	proteolysis targeting chimera
PTP1B	tyrosine phosphatase 1B
PUF-MS	pulsed ultrafiltration-mass spectrometry
PVDF	polyvinylidene difluoride
QA/QC	quality assurance and quality control
qPCR	quantitative polymerase chain reaction
qTOF	quadrupole time-of-flight
QuEChERS	quick easy cheap effective rugged and safe
R	universal gas constant
R^2	coefficient of determination
RAM	restricted access media, usually a type of filtering or
	extraction media
RAM	restricted access medium
RF-MS	RapidFire – mass spectrometry
ROI	return on investment
RXRa	retinoid X receptor-a
S/N	signal-to-noise ratio
SALLE	salt assisted liquid-liquid extraction
SAM	S-adenosyl-L-methionine
SAMDI	self-assembled monolayers and matrix-assisted laser
	desorption ionization
SAR	structure-activity relationship
SEC	size-exclusion chromatography
SEC-TID	size-exclusion chromatography for target identification
SEM	scanning electron microscope
SESI	secondary electrospray ionization

SEZ	staggered elution zone chromatography
SIK2	salt-inducible kinase 2
SIMS	secondary ion mass spectrometry
Sirt3	Sirtuin 3
SISCAPA	stable isotope standards and capture by anti-peptide
SISCAIA	antibodies
SLIM	structures for lossless ion manipulations
SLS	static light scattering
SME	small molecular entity
SmyD3	SmyD3 histone methyltransferase
SNP	single-nucleotide polymorphism
SPE	solid phase extraction
SPE-MS	solid-phase extraction mass spectrometry
SPME	solid-phase microextraction
SPME	*
	surface plasmon resonance
SRM	selected reaction monitoring
SSP	surface sampling probe
SUPER	Serpentine Ultralong Path with Extended Routing
SV	separation voltage
SWATH	sequential window acquisition of all theoretical mass spectra
T	absolute temperature in Kelvin
ТСР	tumor cell percentage
THC	tetrahydrocannabinol
TIMS	trapped ion mobility
TLC	layer chromatography
TMA-lyase	trimethylamine-lyase
TM-DESI	transmission mode DESI
TM-IMS	transversal modulation IMS
TOF	time-of-flight
TR-FRET	time-resolved fluorescence energy transfer
TRIS	Tris (hydroxymethyl) aminomethane
TWIMS	traveling wave ion mobility
UFA	unbound fraction analysis
UHPLC	ultrahigh-performance (or pressure) liquid chromatography
UHPLC/MS	ultrahigh-performance liquid chromatography-mass
	spectrometry
uHT-MALDI	ultrahigh-throughput matrix-assisted laser desorption/
	ionization
uHTS	ultrahigh-throughput screening
UPLC	ultra performance liquid chromatography

xxviii List of Abbreviations

UV	ultraviolet, usually meant to describe absorbances between 190 and 400 nm
UVPD	ultraviolet photodissociation
WBA	whole-body autoradiography
XRD	X-ray diffraction
Δ^9 -THCC	Carboxylic Δ^9 -tetrahydrocannabinol
λ	phonon wavelength