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Preface

Polymer crystallization is one of the main factors controlling the properties of
crystalline or semi-crystalline polymers. The parameters such as molecular weight,
arrangement of polymer chains, the interaction between the polymer chains, chain
folding, branching affect the polymer crystallization (orientation). Traditional
semi-crystalline polymers are polyolefins (e.g. polypropylene, polyethylene),
polyamides (e.g. nylon), and polyesters (e.g. polyethylene terephthalate). The crys-
tallinity of the polymers can be controlled by changing the thermal parameters
(heating and cooling rates), blending, modifying the polymer chain length, etc.
Different methodologies can be used to evaluate the crystallinity, growth, size,
and other features of crystals in polymers, such as polarized optical microscopy,
X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman
spectroscopy, differential scanning calorimetry (DSC), and nuclear magnetic
resonance, to name a few. There are many theories and mechanisms for polymer
crystallization that were suggested for a better understanding of the crystallization
kinetics/process and studying its impact on the properties of the polymer. In terms
of application, crystalline polymers are used in automobiles, aircraft, toys, biomed-
ical devices, household applications, construction, building, etc., due to their high
strength and load-bearing capacity.

This book comprises 12 chapters. Chapter 1, “Introduction to Polymer Crys-
tallization,” gives a basic introduction to polymer crystallization. Chapter 2,
“Characterization of Polymer Crystallization by Using Thermal Analysis,” dis-
cusses the isothermal and non-isothermal crystallization mechanisms of polymers
and polymer composites in detail. Chapter 3, “Crystallization Behavior of Polypropy-
lene and Its Blends and Composites,” gives a complete picture of polypropylene
crystallinity. Chapter 4, “Crystallization of PE and PE-Based Blends, and Compos-
ites,” discusses the structure, morphology, crystallization kinetics, and theory of
crystallization in PE blends and composites. Chapter 5, “Crystallization of PLA
and its Blends and Composites,” gives a detailed overview of the crystallization
kinetics of PLA, PLA-based blends, and composites. Chapter 6, “Crystallization in
PLLA-Based Blends, and Composites,” gives a detailed overview of the structure,
properties, and crystallization behavior of PLLA (one type of optical isomer of PLA)
based systems. Chapter 7, “Crystallization in PCL-Based Blends and Composites,”
gives a detailed outline of the crystalline behavior of PCL, PCL-based blends, and



xii Preface

composites. Chapter 8, “Crystallization and Shape Memory Effect,” examines the
interrelationship between crystallinity and shape memory effect in polymers and
their potential biomedical applications. Chapter 9, “3D Printing of Crystalline
Polymers,” examines the mechanical, thermal, and tribological characteristics of
3D-printed crystalline polymers. Chapter 10, “Crystallization from Anisotropic
Polymer Melts,” discusses in detail the impact of anisotropy in the melt phase on the
morphology of the semi-crystalline polymers. Chapter 11, “Molecular Simulations
of Polymer Crystallization,” discusses the usefulness of molecular simulations as
a tool for a complete understanding of the mechanisms of polymer crystalliza-
tion. Chapter 12, “Application, Recycling, Environmental and Safety Issues, and
Future Prospects of Crystalline Polymer Composites,” discusses the applications
(automotive, biomedical, defense, aerospace, etc.), recycling, environmental issues,
and prospects of crystalline polymer composites. The priceless information on all
the areas of polymer crystallization will make this book a one-stop reference for
academicians, scientists, professors, researchers, students, and those who are inter-
ested in understanding the fundamentals and advancements in the crystallization
of polymers.

Thanks to the authors for their contribution.

14 February 2023 Jyotishkumar Parameswaranpillai (India)
Jenny Jacob (India)
Senthilkumar Krishnasamy (India)
Aswathy Jayakumar (Republic of Korea)
Nishar Hameed (Australia)
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Introduction to Polymer Crystallization
N.M. Nurazzi1,2, M.N.F. Norrrahim3, S.S. Shazleen4, M.M. Harussani5,
F.A. Sabaruddin6, and M.R.M. Asyraf7,8

1Universiti Sains Malaysia, School of Industrial Technology, Bioresource Technology Division, 11800 Penang,
Malaysia
2Universiti Sains Malaysia, School of Industrial Technology, Green Biopolymer, Coatings & Packaging
Cluster, 11800 Penang, Malaysia
3Universiti Pertahanan Nasional Malaysia (UPNM), Research Centre for Chemical Defence, Kem Perdana
Sungai Besi, 57000 Kuala Lumpur, Malaysia
4Universiti Putra Malaysia, Institute of Tropical Forestry and Forest Products (INTROP), 43400 Serdang,
Selangor, Malaysia
5Tokyo Institute of Technology, School of Environment and Society, Department of Transdisciplinary Science
and Engineering, Meguro, Tokyo 152-8552, Japan
6Universiti Putra Malaysia, Faculty of Biotechnology and Biomolecular Sciences, 43400 Serdang, Selangor,
Malaysia
7Universiti Teknologi Malaysia, Engineering Design Research Group (EDRG), Faculty of Engineering, School
of Mechanical Engineering, 81310, Johor Bahru, Johor, Malaysia
8Universiti Teknologi Malaysia, Centre for Advanced Composite Materials (CACM), 81310, Johor Bahru, Johor,
Malaysia

1.1 Introduction

Long-chain molecule polymeric materials have benefited from the use of crystalliza-
tion as a fundamental thermodynamic phase transition in condensed matter physics
of pure substances. Keller made the electron microscope findings on polyethylene
(PE) single crystals grown in diluted solutions in 1957, following the synthesis of
high-density PE with the development of Ziegler–Natta catalysts, thus developed the
chain-folding model [1]. Since then, the discovery of diverse polymer crystal mor-
phologies has been aided by the chain-folding concept. Nowadays, semi-crystalline
polymers, such as polyolefins, polyesters, and polyamides, account for more than
two thirds of all synthetic polymer products produced worldwide due to their numer-
ous uses in our everyday lives. The degree of crystallinity, which normally ranges
between 10% and 80%, describes the proportion of organized polymer molecules
[2]. Only small-molecule materials, which are often brittle materials, can attain the
greater value of crystallinity.

Hu asserts that the chemical structures of repeating units of polymer can be
categorized using two distinct contributions to the perseverance of melting points:
intramolecular interactions of collinear connection energy of bonds on the chain for

Polymer Crystallization: Methods, Characterization, and Applications, First Edition.
Edited by Jyotishkumar Parameswaranpillai, Jenny Jacob, Senthilkumar Krishnasamy,
Aswathy Jayakumar, and Nishar Hameed.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.



2 1 Introduction to Polymer Crystallization

thermodynamic adaptability and intermolecular interactions of local bond–bond
interactions for the parallel-packing of two neighboring bonds in the conventional
lattice models for parallel-packing order [3]. As a result, the melting temperatures
of polymers with repeating units that favor greater stiffness or more dense/stronger
packing are typically higher. Techniques used to evaluate the crystallinity of
polymers include density measurement, X-ray diffraction (XRD), infrared spec-
troscopy, differential scanning calorimetry (DSC), and nuclear magnetic resonance
(NMR) [4, 5].

Referring to Zhang et al., the mechanical and optical performance of crystalline
polymers like PE and polyethylene terephthalate (PET) corresponds with molding
parameters that are strongly influenced by their crystallinity [6]. Crystalline poly-
mers undergo stress at freezing and retain stress from crystallization, according to
Kato et al. [7]. Due to the lack of appropriate methods for quantitatively evaluat-
ing these transitions, the micro-mechanical forces during polymer crystallization
remain a highly discussed topic. Up until now, the forms of proof have been theoreti-
cal, indirect experimental, or empirical discussions [7]. There are several experimen-
tal methodologies and approaches to estimate the amplitude of micro-mechanical
forces during polymer crystallization to limit and avoid material failure owing to
these forces. This includes non-destructive test [8], destructive test [9], and computer
simulation [10]. Between these, non-destructive techniques have been employed
to examine the physical relaxation of components during heating and determine
their initial stress state, such as holographic interferometry and synchrotron XRD
research. Despite the benefits of these techniques being non-destructive, neither a
qualitative computation nor a stress visualization can be completed instantly.

Approximately 30–60% of the substance was comprised of polymer crystals,
which ranged in size from a few nanometers to several, randomly oriented in space.
Because crystalline polymers could withstand loads and act in diverse directions like
reinforced rubber, as well as because macromolecules were often much longer than
the crystal dimensions. The fundamental understanding that crystals might function
as cross-linkers similar to those in cross-linked rubbers [11]. The tensile, microhard-
ness, and compression behavior patterns of semi-crystalline polymers (Figure 1.1b)
have been significantly influenced by micro-mechanical forces throughout polymer
crystallization through tie chain portions, which appear to be molecular connections
between individual crystallites from the perspective of the molecular topology of
the amorphous phase (Figure 1.1a). Additionally, tie chain polymer crystallization
improves fracture toughness and slow crack propagation resistance [12, 13].

Most molecular-level descriptions of the semi-crystalline phase are based on
topological properties, including the theories of tie chain segments, loop segments,
tails, and the alternating of crystalline and amorphous domains [14]. Olsson et al.
claim that interface Monte Carlo moves are utilized to relocate sites and change
chain connections on the atoms and chains in the amorphous domain to produce
new loops, tails, and bridges. The resulting samples’ crystalline components are still
faultless, that is, devoid of twins or dislocations. According to reports, these faults
weaken the critical shear stress and weaken slide processes. As a result, the models
under consideration are idealizations of a true semi-crystalline PE material, and
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(a)

(b)

Figure 1.1 The arrangement of polymer molecular chains (a) in amorphous and (b) in
semi-crystalline polymers state.

the anticipated resistance to crystal yielding is anticipated to be larger than what
has actually been empirically observed [15].

1.2 Degree of Crystallinity

The degree of crystallinity determines how ordered a solid is structurally; the
more crystalline a polymer is, the more regularly its chains are aligned, and the
arrangement of atoms or molecules is repeatable and consistent. The degree of
crystallization of polymer materials has a big impact on their characteristics. In
terms of performance, a molded part is stiffer, stronger, but also more brittle the
more crystallization there is. Hardness, density, transparency, and diffusion are
all significantly influenced by the degree of crystallinity. Chemical composition
and thermal history, such as cooling conditions during manufacturing fabrication
process and post-thermal treatment, have an impact on the degree of crystallization.
However, the characteristics are also influenced by the size of the structural units
or the molecular orientation in addition to the degree of crystallinity [16, 17].
In general, a higher degree of crystallinity is typically the result of variables that
make polymers more regular and organized because fewer short branches allow
molecules to pack more tightly together. Syndiotactic and isotactic polymers have
a higher degree of stereoregularity than atactic polymers, but the polymers are also
more organized and have regular copolymer structures [18]. Based on the study
by Yao et al., it was discovered that a rise in crystallinity directly correlated with
an improvement in mechanical characteristics by examining the effects of various
crystallization parameters, such as crystal shape ratio and crystallinity [19]. The
PET crystal structure ratios did not, however, substantially enhance the mechanical
characteristics. Furthermore, at a higher isothermal temperature, considerably
higher than the Tg, the crystallinity of PET foam will be strongly increased. Slow
crystallization can be used to explain the increase in crystalline content at higher
temperatures, which promotes regular chain folding and subsequently reduces
topological disorder at the surface of the crystallites. According to Jonas et al., the
relationship between the service temperature and crystallinity is strong within
the experimental range of 10–150 ∘C. When the operating temperature is close to
or higher than Tg, migration causes isothermal-induced crystal perfection, and
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Amorphous state Semi-crystalline state

Fast crystallization

Slow crystallization

Chain refolding and migration

Represents crystal lamellae

Above Tg

Figure 1.2 The schematic diagram of the mechanism of crystallization enhancement
formation from the amorphous state to crystalline in isothermal treatment above Tg.
Source: Adapted from Yao et al. [19].

rejection of the structural faults at the crystal’s surface causes a rise in the crystalline
phase content [20]. The mechanism of crystallization enhanced development from
the amorphous state to the crystalline state in isothermal treatment above Tg is
schematically depicted in Figure 1.2. The delayed crystallization promotes better
crystal lamella development and chain refolding, as seen in Figure 1.2.

1.3 Thermodynamics on the Crystallization of Polymers
Characteristics

The partial alignment of the molecular chains in polymer materials can cause
crystallization. Amorphous and crystalline domains coexist in these thin lamellar
formations, which are created on the scale of nanometers when molecular chains
change from a high-entropy random coil state to a reduced-entropy partially folded
(semi-crystalline) state [1]. The majority of the solid-state attributes created by
polymer materials were impacted by crystallization. Although there is a significant
thermo-mechanical dependence in polymer crystallization, one of the major
difficulties is controlling the semi-crystalline state precisely. In order to manage the
crystalline behavior of the polymers for practical applications, processing factors
such as (i) the crystallization temperature [21], (ii) cooling rate [22], and (iii) the
application of high shear strain [23] are varied.

Generally, as the crystallization temperature rises, so does the thickness of the
crystalline lamellae. Slower cooling rates lead to greater crystallinity, and applying
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shear stress or shear strain speeds up the nucleation and crystallization of polymer
structures [24, 25]. Additionally, the presence of shear stress or shear strain will
lead to shish-kebab morphologies of the crystalline polymer and provide rise to var-
ied crystalline morphologies [26]. Crystalline polymers typically exhibit spherulitic
structure [27] and fiber formation [28, 29] in the absence of shear. It is true that the
crystallization of polymers results in non-equilibrium states. While there is a siz-
able disparity between melting temperatures (Tm) and crystallization temperatures,
there is no thermodynamic phase cohabitation for semi-crystalline polymers (Tc).

From condensed matter physics perspective, the close packing of molecules
necessary to create the crystalline lattice order is typically caused by intermolecular
interactions. Polyolefins, such as isotactic polypropylene (PP), organize their inter-
nal rotations to generate helices in their crystalline states, notably zigzag 2/1 helices
for PE and also twisting 3/1 helices, by minimizing their local intramolecular inter-
action potentials [30]. Consequently, the rigid-rod helices highlight the anisotropic
characteristics of intermolecular interactions: the local intermolecular interactions
between two rods differ significantly depending on whether they are packed
parallel or crossing each other. This leads us to the macromolecular component of
the thermodynamic forces that drive polymer crystallization, which is illustrated by
the interactions between local chains of macromolecules parallelly packed together
[31]. For instance, the stereo-optical sequence regularity of polymers with strong
intermolecular interactions like polyvinyl chloride (PVC) and polyacrylonitrile
(PAN) may be compromised during crystallization [32]. According to a different
theory of protein folding, the lengthy hydrogen-bonding interactions further along
the chain are what cause extreme β-folding for the crystalline sequence, whereas
the short-range hydrogen-bonding interactions along the chain correspond to
intermolecular interactions in polyamide crystals.

Conclusively, the most essential factor in the parallel packing of polymers during
their crystalline phase is chain connectedness. Therefore, even though the melt-
ing enthalpy and intermolecular interactions of polyolefins may be influenced by
intramolecular interactions, considerations from anisotropic intermolecular inter-
actions favor parallel packing as the thermodynamic driving forces for polymer crys-
tallization in accordance with the nature of condensed matter physics [3].

1.4 Polymer Crystallization Mechanism

1.4.1 Strain-Induced Crystallization of Polymer

The development of a highly oriented crystalline phase has a favorable effect on the
material’s mechanical behavior in many of these applications. The development of
extended crystals in the direction of extension during fiber spinning significantly
boosts the fiber’s strength. The melt is exposed to bi-axial extension during the
film-blowing process, and the films have crystals orientated on the plane, giving
them the appropriate mechanical characteristics. The invention of a special blow
molding procedure that guarantees that the polymer is bi-axially oriented has



6 1 Introduction to Polymer Crystallization

made it possible to use polyester bottles to accommodate carbonated beverages.
Injection molding, for example, the production of a highly oriented outer layer
might result in readily cleaved articles. Orientation can also have a negative effect
on the mechanical behavior of articles [33].

According to Nitta, a melt-crystallized polymer displays an alternating two-phase
structure made up of layers of amorphous material and crystalline lamellae
that resemble plates (Figure 1.3a). Folded chain crystallites made up of partially
stretched conformations emerge when a polymer molecule’s contour length is
noticeably greater than the typical lamellar thickness of the order of 10 nm and the
chain axes within the lamellae are generally normal to the face of the lamellae [34].
The oriented skin is the layer that is closest to the wall. It is preceded by a partially
oriented fine-grained layer with isotropic structural morphology in stress-free
areas close to the die’s center [35]. Solid-state drawing is typically done during
the production of polymer films utilizing a high-speed drawing technique under
flowing melt conditions. The manner in which polymer molecules crystallize in
the drawing solid and flowing melt determines the structure and characteristics of
these polymeric products (Figure 1.3b).

At high temperatures, polymers above their melting point are modeled as
viscoelastic liquids. The solid phase can be either amorphous or semi-crystalline
depending on the molecular composition and cooling rate. While polymers with
regular structures can crystallize because the chains are too regular to allow for
regular packing, those with irregular structures cannot. The rate of crystallization
is typically zero at the Tm and Tg states and achieves its highest at a temperature
in between these two when polymers typically crystallize. The glass transition
temperature is the point below which the polymer molecules cease to be mobile
and turn “frozen” or also called vitrified. As a result of their high rates of crystal-
lization at temperatures below the melting point and the inability to cool polymers
like PE quickly enough to temperatures below the glass transition temperature
without significant crystallization occurring, polymers like PE have always been

Crystalline lamella

Melt Solid

(a)

(b)

Figure 1.3 Schematic illustrations of crystallization (a) from an equilibrium melt and (b) in
the drawing solid and flowing melt.
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semi-crystalline in solid form. The melt must be chilled gradually for significant
crystallization in polymers like PET, which crystallize slowly. These polymers retain
an amorphous state if they are cooled below their glass transition temperature.
Crystallization is triggered by the deformation when amorphous PET is subse-
quently distorted at temperatures barely above the glass transition temperature. The
majority of PET products are produced by deforming at these temperatures because
the amount and orientation of the crystalline phase can be regulated, allowing for
precise control of the final solid’s mechanical properties.

1.4.2 Crystallization of Polymer from Solution

Depending on the degree of dilution, polymer crystallization can occur from a
solution or by evaporating solvent. In diluted solutions, the molecular chains
have no interaction with one another and exist as isolated polymer coils in the
solution. Solvent evaporation causes the concentration of the solvent to rise,
which encourages molecular chain interaction and the potential for crystallization,
such as when a melt crystallizes [36]. The highest level of polymer crystallinity
might be achieved through crystallization from the solution. For instance, when
crystallizing from a diluted solution, extremely linear PE can produce single crystals
resembling platelets with a thickness of 10–20 nm. Using a solvent that dissolves
individual monomers but not the final polymer, precipitation is a distinct procedure.
After a certain level of polymerization, the semi-crystalline, polymerized product
precipitates out of the solution.

According to Huang et al., the kinetics of crystallization from solvent evapora-
tion as well as thermodynamics determine the crystal structure and morphology of
polymers. To better comprehend the crystallization process and resulting final struc-
ture of polymers, several kinetic parameters were applied to a model system [37].
The migration of polymer chains to the crystal growth front and the rate of crystal
development, which may be altered in solution crystallization by modifying the rate
of solvent evaporation, are two opposing processes that influence the formation of
crystal structure and morphology. By altering the kinetic process, Huang and his col-
leagues have investigated the crystalline form and structure of poly(L-lactide) (PLLA)
in a PLLA–chloroform mixture. The findings led to the identification of the three
stages of the PLLA crystallization process: solvent adsorption, surface gel formation,
and crystallization. The tiny chloroform molecules that were continually adsorbed
into the PLLA samples ignited the solvent adsorption. As shown in Figure 1.4a, the
formation of surface gels and even local PLLA–chloroform solutions was caused by
the adsorption of chloroform onto the PLLA film’s surface, diffusion of the PLLA
segments, and hydrodynamic flow. Because the amount of solvent adsorbed into
each layer of PLLA decreased along the direction perpendicular to the substrate,
which is coupled to the amount of solvent adsorbed as well as the migration of
PLLA segments, a concentration gradient of PLLA chains was also produced. PLLA
then crystallized as a result of its concentration fluctuation, which was connected
to a shifting concentration gradient and nonlinear solvent evaporation kinetics. As
a result of solvent evaporation at that point, PLLA crystal lamellae began to form
around the nuclei from the PLLA–chloroform system (Figure 1.4b).
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Dilute

Solvent
evaporation

(a)

(b)

Silicon wafer

Crystal Amorphous chains Solvent

Concentration
gradient

Concentrated

Figure 1.4 Diagrammatic representation of PLLA crystallization caused by solvent
evaporation and PLLA concentration gradient. In (a), solvent is adsorbed onto the surface of
the film to create a PLLA solution with concentration gradient. In (b), solvent evaporation
drives PLLA crystal nucleation and growth. Source: Reproduced from ref. [37].

1.5 Applications of Crystalline Polymer

All polymers have some degree of crystallinity. As has been previously discussed,
crystallinity of polymer has a significant influence on its properties, with more crys-
talline polymers having chains that are more regularly aligned. By increasing the
degree of crystallinity, the density and hardness of the material are increased. This
is due to the fact that more intermolecular bonds are formed when it is in the crys-
talline phase. Therefore, the polymer gets stronger and its deformation can result in
the higher strength owing to oriented chains [38]. Besides, highly crystalline poly-
mers are stiff, less susceptible to solvent penetration, have high melting points, are
barriers to moisture and gases, and are resistant to oil and grease [39]. For instance,
PP, PE, nylon, syndiotactic polystyrene, and Kevlar. Even though crystallinity makes
a polymer strong, it also lessens its resistance to impact.

Conversely, amorphous polymers are softer, have lower melting points, and
are more permeable to solvents. Some highly amorphous polymers include poly-
carbonate, poly(methyl methacrylate), polyisoprene, and polybutadiene. While
semi-crystalline polymers, on the other hand, have both crystalline and amorphous
areas. Most plastics benefit from semi-crystallinity because it combines the flexi-
bility of amorphous polymers with the strength of crystalline polymers, making
this form of polymer both strong and flexible. Semi-crystalline polymers have a
limited heat tolerance before softening and bending. Yet, semi-crystalline plastics
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Table 1.1 Difference in general properties of highly crystalline, semi-crystalline, and
amorphous polymers [40, 42].

Type of polymer

Properties Highly crystalline Semi-crystalline Amorphous

Hardness Hard Hard Soft
Melting point High and sharp

melting point
High and sharp
melting point

No distinct melting
point and softens
over a broad range of
temperature

Mechanical High strength High strength Low strength
High fatigue and
wear resistance

Good fatigue and
wear resistance

Poor fatigue and
wear resistance

Clarity Opaque to visible
light

Translucent Tend to be
translucent or
transparent

Resistance to
chemical

High High Low

Gas
permeability

Low Low High

Arrangement
of molecules

Regular and
uniformly packed
molecules

Regular and
uniformly packed
molecules

Random

Ideal
application

Ideal for long
exposure and high
strength applications
such as in structural
applications

Ideal for applications
that need high
strength and low
friction and have an
environment that
experiences any
repeated cyclic
loading and chemical
contact

Ideal for applications
that require high
dimensional accuracy
and stability with a
transparent, overall
good appearance, low
to zero mechanical
abuse, and chemical
contact

have a propensity to quickly shift from a solid state to a low-viscosity liquid once
the melting point is achieved [40].

In the industrial sector, crystallization kinetics are a crucial factor to take into
account while designing a polymer for a certain application because it will affect the
final polymer product [41]. For instance, flexibility at low to ambient temperatures
is required for many applications of polymers and polymer coatings. Amorphous
polymers are the best option in this situation since they have some resistance to
elasticity and impact. In contrast, a polymer with more crystallinity may be favored
when hardness and rigidity are needed. The difference between highly crystalline,
semi-crystalline, and amorphous polymers as well as their ideal applications are
highlighted in Table 1.1.
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2.1 Introduction

The kinetics of crystallization is one important factor in polymer processing, which
affects final thermal property, mechanical property, etc. The crystallization process
starts with nucleation followed by crystals growth. Heterogeneous nucleation is
more common in polymers and can be accelerated by adding nucleation agents.
Crystallization processes can be measured via non-isothermal crystallization, cold
crystallization, and isothermal crystallization. The crystallization of polymers
usually consists of two stages: nucleation and growth of crystals [1–4]. The stage of
crystal growth can be analyzed in categories of (secondary) nucleation on the surface
of already existing crystals. Crystallization can be regarded as processes of nucleation
that take place on a crystal’s bulk and on its surface. Correspondingly, both stages
affect the final crystallization behavior. The material could be brittle when the slow
primary crystallization of polymer occurs and a few nuclei become large spherulites.
Besides, it is reported that the heterogenous nucleation of polymer composites
is enhanced, which can result in different mechanical and thermal behaviors.
Since the crystallization process is dependent on various parameters (e.g. cooling
rate, cooling temperature, etc.), it is necessary to know the kinetics of polymer
crystallization to control final properties or reveal crystallization mechanism.

To characterize the polymer crystallization, various methods have been applied,
including computation method, X-ray diffraction (XRD) [5, 6], Fourier-transform
infrared spectroscopy (FTIR) [7], RAMAN spectroscopy, polarized optical
microscopy (POM) [8], differential scanning calorimetry (DSC) [9], and so on.
The computation of polymer crystallization is a theoretical method and can
accurately provide theoretical information [10]. However, the difference between
theoretical assumption and actual crystallization is different. Besides, computation
studies need high performance computing systems. The XRD can provide data
related to the crystalline structure, crystal size, and crystallinity. The FTIR and
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RAMAN spectrum can detect the configuration of macromolecules during phase
transition. Although such methods can provide much information about polymer
crystallization, it is hard to have the model to characterize and predict it. The
POM can count the number of crystals and measure the crystal size. Based on
the change in crystal numbers and their size with time, the prediction of polymer
crystallization is achieved. However, the performance of POM to characterize the
polymer crystallization requires preferred experimental conditions.

The DSC method is now usually used to characterize polymer crystallization,
where the sample is placed in the enclosed environment. To characterize the poly-
mer crystallization, only the plots of heat flow, temperature, and time are required.
The collection of data using the DSC method has been proposed by ICTAC Kinetics
Committee [11]. In this chapter, we are aiming to present the characterization
of polymer crystallization by using DSC method. Both isothermal crystallization
mechanism and non-isothermal crystallization mechanism are discussed.

2.2 Basic Principle

2.2.1 General Idea

Simplified thermal and dynamic description of crystallization kinetics following
equation (2.1) is based on constitutive system of equations defining the relations
between rate of crystallization (d𝛼/dt), rate of temperature changes (dT/dt), and
state of investigated system (𝛼, T). The k(T) represents temperature term model,
and f (𝛼) represents kinetic term model. The overall transformation can be affected
by several processes, and Eq. (2.2) can be used. The d represents number of steps
during the process. Here, we only focus on one-step thermal dynamical description
of crystallization kinetics.

d𝛼
dt

= k(T)f (𝛼) (2.1)

d𝛼
dt

=
d∑
1

k(T)i f (𝛼i)i (2.2)

● Temperature term model k(T)
Generally, k(T) is expressed by Arrhenius model following equation (2.3), where
A is pre-factor, R is gas constant, and E is activation energy.

k(T) = A exp
(
− E

RT

)
(2.3)

● Kinetic term model f (𝛼)
The f (𝛼) is connected to kinetic models, including accelerating model (Eq. (2.4)),
deaccelerating model (Eq. (2.5)), and sigmodal model (Eq. (2.6)). Especially,


