

Machine Learning for VLSI Chip Design

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Machine Learning for VLSI Chip Design

Edited by Abhishek Kumar Suman Lata Tripathi and K. Srinivasa Rao

This edition first published 2023 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2023 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 9781119910398

Front cover images supplied by Pixabay.com Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Lis	st of C	Contributors	xiii			
Pr	eface		xix			
1	Applications of VLSI Design in Artificial Intelligence and Machine Learning Imran Ullah Khan, Nupur Mittal and Mohd. Amir Ansari					
		Introduction	2			
	1.2	Artificial Intelligence	4			
	1.3 Artificial Intelligence & VLSI (AI and VLSI)					
		Applications of AI	4			
1.5 Machine Learning						
1.6 Applications of ML						
		1.6.1 Role of ML in Manufacturing Process	6			
		1.6.2 Reducing Maintenance Costs and Improving Reliability	6			
		1.6.3 Enhancing New Design	7			
		Role of ML in Mask Synthesis	7			
	1.8	Applications in Physical Design	8			
		1.8.1 Lithography Hotspot Detection	9			
		1.8.2 Pattern Matching Approach	9			
		Improving Analysis Correlation	10			
		Role of ML in Data Path Placement	12			
		Role of ML on Route Ability Prediction	12			
	1.12	Conclusion	13			
		References	14			
2		gn of an Accelerated Squarer Architecture Based				
	on Yavadunam Sutra for Machine Learning					
	A.V. Ananthalakshmi, P. Divyaparameswari and P. Kanimozhi					
		Introduction	20			
	2.2	Methods and Methodology	21			
		2.2.1 Design of an n-Bit Squaring Circuit Based				
		on (n-1)-Bit Squaring Circuit Architecture	22			

		2.2.1.1 Architecture for Case 1: A < B	22		
		2.2.1.2 Architecture for Case 2: A > B	24		
		2.2.1.3 Architecture for Case 3: $A = B$	24		
	2.3	Results and Discussion	25		
	2.4	Conclusion	29		
		References	30		
3	Ma	chine Learning-Based VLSI Test and Verification	33		
	Jyot	ti Kandpal			
	3.1	Introduction	33		
	3.2	The VLSI Testing Process	35		
		3.2.1 Off-Chip Testing	35		
		3.2.2 On-Chip Testing	35		
		3.2.3 Combinational Circuit Testing	36		
		3.2.3.1 Fault Model	36		
		3.2.3.2 Path Sensitizing	36		
		3.2.4 Sequential Circuit Testing	36		
		3.2.4.1 Scan Path Test	36		
		3.2.4.2 Built-In-Self Test (BIST)	36		
		3.2.4.3 Boundary Scan Test (BST)	37		
		3.2.5 The Advantages of VLSI Testing	37		
	3.3	Machine Learning's Advantages in VLSI Design	38		
		3.3.1 Ease in the Verification Process	38		
		3.3.2 Time-Saving	38		
		3.3.3 3Ps (Power, Performance, Price)	38		
	3.4	Electronic Design Automation (EDA)	39		
		3.4.1 System-Level Design	40		
		3.4.2 Logic Synthesis and Physical Design	42		
		3.4.3 Test, Diagnosis, and Validation	43		
	3.5	Verification	44		
	3.6	Challenges			
	3.7	Conclusion	47		
		References	48		
4		IoT-Based Smart Home Security Alert System			
	for Continuous Supervision				
	Raj	Rajeswari, N. Vinod Kumar, K. M. Suresh, N. Sai Kumar			
	and	l K. Girija Sravani			
	4.1	Introduction	52		
	4.2	Literature Survey	53		
	4.3	Results and Discussions	54		

		4.3.1	Raspberry Pi-3 B+Module	54
		4.3.2	Pi Camera	56
		4.3.3	Relay	56
		4.3.4	Power Source	56
		4.3.5	Sensors	56
			4.3.5.1 IR & Ultrasonic Sensor	56
			4.3.5.2 Gas Sensor	56
			4.3.5.3 Fire Sensor	57
			4.3.5.4 GSM Module	57
			4.3.5.5 Buzzer	57
			4.3.5.6 Cloud	57
			4.3.5.7 Mobile	57
	4.4		lusions	62
		Refer	ences	62
5	A D	etailed	Roadmap from Conventional-MOSFET	
			re-MOSFET	65
	<i>P. K</i>	iran Ki	umar, B. Balaji, M. Suman, P. Syam Sundar,	
	Е. Р	admaj	a and K. Girija Sravani	
	5.1	Intro	duction	66
	5.2	Scalin	ng Challenges Beyond 100nm Node	67
	5.3	Alteri	nate Concepts in MOFSETs	69
	5.4	Thin-	Body Field-Effect Transistors	70
		5.4.1	0	71
			Multiple-Gate Ultrathin-Body Field-Effect Transistor	73
	5.5		ET Devices	74
	5.6	GAA	Nanowire-MOSFETS	77
	5.7		lusion	86
		Refer	ences	86
6	Gat	e All A	round MOSFETs-A Futuristic Approach	95
	Ritu	ı Yadav	and Kiran Ahuja	
	6.1	Intro	duction	95
		6.1.1	Semiconductor Technology: History	96
	6.2	Impo	rtance of Scaling in CMOS Technology	98
			Scaling Rules	99
			The End of Planar Scaling	100
		6.2.3	Enhance Power Efficiency	101
		6.2.4	Scaling Challenges	102
			6.2.4.1 Poly Silicon Depletion Effect	102
			6.2.4.2 Quantum Effect	103

			6.2.4.3	Gate Tunneling	103		
		6.2.5	Horizor	ntal Scaling Challenges	103		
			6.2.5.1	Threshold Voltage Roll-Off	103		
			6.2.5.2	Drain Induce Barrier Lowering (DIBL)	103		
			6.2.5.3	Trap Charge Carrier	104		
			6.2.5.4	Mobility Degradation	104		
	6.3	Reme		caling Challenges	104		
		6.3.1	By Chai	nnel Engineering (Horizontal)	104		
			6.3.1.1	Shallow S/D Junction	105		
			6.3.1.2	Multi-Material Gate	105		
		6.3.2	By Gate	Engineering (Vertical)	105		
			6.3.2.1	High-K Dielectric	105		
			6.3.2.2	Metal Gate	105		
			6.3.2.3	Multiple Gate	105		
	6.4			C in CMOS Miniaturization	106		
	6.5	Curre	ent Mosfe	t Technologies	108		
	6.6	Conc	lusion		108		
		Refer	ences		109		
7	Investigation of Diabetic Retinopathy Level Based						
				ural Network Using Fundus Images	113		
	<i>K</i> . <i>S</i>	Sasi Bh	ushan, U.	Preethi, P. Naga Sai Navya, R. Abhilash,			
				rija Sravani			
	7.1		duction		114		
	7.2	The P	roposed	Methodology	115		
	7.3			ption and Feature Extraction	116		
		7.3.1		on of Datasets	116		
			Preproc	0	116		
		7.3.3	Detectio	on of Blood Vessels	117		
				neurysm Detection	118		
	7.4	Resul	ts and Di	scussions	120		
	7.5		lusions		123		
		Refer	ences		123		
8	Anti-Theft Technology of Museum Cultural Relics						
	Using RFID Technology						
	B. R	Ramesh	Reddy, F	K. Bhargav Manikanta,			
	P.V.V.N.S. Jaya Sai, R. Mohan Chandra, M. Greeshma Vyas						
			ija Srava	ni			
	8.1	Intro	duction		128		

	8.2	Litera	iture Survey	128		
	8.3	Softw	are Implementation	129		
	8.4		ponents	130		
		8.4.1	Arduino UNO	130		
		8.4.2	EM18 Reader Module	130		
		8.4.3	RFID Tag	131		
		8.4.4	LCD Display	131		
		8.4.5	Sensors	132		
			8.4.5.1 Fire Sensor	132		
			8.4.5.2 IR Sensor	132		
		8.4.6	Relay	133		
	8.5	Work	ing Principle	134		
			Working Principle	134		
	8.6		ts and Discussions	135		
	8.7	Conc	lusions	137		
		Refer	ences	138		
9	Sma	art Irrig	gation System Using Machine Learning			
-		139				
	Techniques B. V. Anil Sai Kumar, Suryavamsham Prem Kumar,					
	Kon					
		Introduction				
	9.2	Hardy	ware Module	139 141		
		9.2.1	Soil Moisture Sensor	141		
		9.2.2	LM35-Temperature Sensor	143		
			POT Resistor	143		
		9.2.4	BC-547 Transistor	143		
		9.2.5	Sounder	144		
		9.2.6	LCD 16x2	145		
		9.2.7	Relay	145		
		9.2.8	Push Button	146		
		9.2.9	LED	146		
		9.2.10	Motor	147		
	9.3	Softw	rare Module	148		
		9.3.1	Proteus Tool	148		
		9.3.2	Arduino Based Prototyping	149		
	9.4	Mach	ine Learning (Ml) Into Irrigation	155		
	9.5	Conclusion				
		References				

x Contents

10	Desig	gn of Smart Wheelchair with Health Monitoring System	161				
	Narendra Babu Alur, Kurapati Poorna Durga, Boddu Ganesh,						
	Manda Devakaruna, Lakkimsetti Nandini, A. Praneetha,						
	T. Satyanarayana and K. Girija Sravani						
	10.1 Introduction						
	10.2	Proposed Methodology	163				
	10.3	The Proposed System	164				
	10.4	Results and Discussions	168				
	10.5	Conclusions	169				
		References	169				
11	Desig	gn and Analysis of Anti-Poaching Alert System					
	for R	ed Sandalwood Safety	171				
	K. Rı	ani Rudrama, Mounika Ramala,					
	Poor	na sasank Galaparti, Manikanta Chary Darla,					
	Siva S	Sai Prasad Loya and K. Srinivasa Rao					
	11.1	Introduction	172				
	11.2	Various Existing Proposed Anti-Poaching Systems	173				
		System Framework and Construction	174				
	11.4	Results and Discussions	176				
	11.5	Conclusion and Future Scope	182				
		References	182				
12	Tum	or Detection Using Morphological Image					
	Segm	entation with DSP Processor TMS320C6748	185				
	T. Anil Raju, K. Srihari Reddy, Sk. Arifulla Rabbani,						
	G. Su	resh, K. Saikumar Reddy and K. Girija Sravani					
	12.1	Introduction	186				
	12.2	Image Processing	186				
		12.2.1 Image Acquisition	186				
		12.2.2 Image Segmentation Method	186				
	12.3	TMS320C6748 DSP Processor	187				
	12.4	Code Composer Studio	188				
	12.5	Morphological Image Segmentation	188				
		12.5.1 Optimization	190				
	12.6	Results and Discussions	192				
	12.7	Conclusions	193				
		References	193				
13		gn Challenges for Machine/Deep Learning Algorithms	195				
	Raje	sh C. Dharmik and Bhushan U. Bawankar					
	13.1	Introduction	196				
	13.2	Design Challenges of Machine Learning	197				

	13.2.1	Data of Low Quality	197
	13.2.2	Training Data Underfitting	197
	13.2.3	Training Data Overfitting	198
	13.2.4	Insufficient Training Data	198
	13.2.5	Uncommon Training Data	199
	13.2.6	Machine Learning Is a Time-Consuming Process	199
	13.2.7	Unwanted Features	200
	13.2.8	Implementation is Taking Longer Than Expected	200
	13.2.9	Flaws When Data Grows	200
	13.2.10	The Model's Offline Learning and Deployment	200
	13.2.11	Bad Recommendations	201
	13.2.12	Abuse of Talent	201
	13.2.13	Implementation	201
	13.2.14	Assumption are Made in the Wrong Way	202
		Infrastructure Deficiency	202
	13.2.16	When Data Grows, Algorithms Become Obsolete	202
	13.2.17	Skilled Resources are Not Available	203
		Separation of Customers	203
		Complexity	203
		Results Take Time	203
	13.2.21	Maintenance	204
	13.2.22	Drift in Ideas	204
	13.2.23	Bias in Data	204
	13.2.24	Error Probability	204
	13.2.25	Inability to Explain	204
13.3	Commo	only Used Algorithms	
		nine Learning	205
		Algorithms for Supervised Learning	205
		Algorithms for Unsupervised Learning	206
	13.3.3	Algorithm for Reinforcement Learning	206
13.4	Applica	tions of Machine Learning	207
		Image Recognition	207
	13.4.2	Speech Recognition	207
		Traffic Prediction	207
		Product Recommendations	208
	13.4.5	Email Spam and Malware Filtering	208
13.5	Conclu		208
	Referen	ices	208
About th	e Editor	s	211
Index			213

List of Contributors

Imran Ullah Khan

Dept. of Electronics and Communication Engineering, Integral University, Lucknow, India

Nupur Mittal

Dept. of Electronics and Communication Engineering, Integral University, Lucknow, India

Mohd. Amir Ansari

Dept. of Electronics and Communication Engineering, Integral University, Lucknow, India

A.V. Ananthalakshmi

Department of ECE, Puducherry Technological University, Puducherry, India

P. Divyaparameswari

Department of ECE, Puducherry Technological University, Puducherry, India

P. Kanimozhi

Department of ECE, Puducherry Technological University, Puducherry, India

Jyoti Kandpal

Dept. of Electronics and Communication Engineering, NIT Arunanchal Pradesh, India

Rajeswari

Department of ECE, Lakireddy Bali Reddy College of Engineering, Mylavaram, India

N. Vinod Kumar

Department of ECE, Lakireddy Bali Reddy College of Engineering, Mylavaram, India

K. M. Suresh

Department of ECE, Lakireddy Bali Reddy College of Engineering, Mylavaram, India

N. Sai Kumar

Department of ECE, Lakireddy Bali Reddy College of Engineering, Mylavaram, India

K. Girija Sravani

Department of ECE, KL University, Green Fields, Guntur-522502, Andhra Pradesh, India

P. Kiran Kumar

Koneru Lakshmaiah Educational Foundation (Deemed to be University), Guntur, Andhra Pradesh-522502, India

B. Balaji

Koneru Lakshmaiah Educational Foundation (Deemed to be University), Guntur, Andhra Pradesh-522502, India

M. Suman

Koneru Lakshmaiah Educational Foundation (Deemed to be University), Guntur, Andhra Pradesh-522502, India

P. Syam Sundar

Koneru Lakshmaiah Educational Foundation (Deemed to be University), Guntur, Andhra Pradesh-522502, India

E. Padmaja

Koneru Lakshmaiah Educational Foundation (Deemed to be University), Guntur, Andhra Pradesh-522502, India

Ritu Yadav

ECE Department, I K Gujaral Punjab Technical University, Jalandhar, India

Kiran Ahuja

ECE Department, DAVIET, Jalandhar, India

K. Sasi Bhushan

Department of Electronics and Communication Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Krishna District, AP, India, 521230

U. Preethi

Department of Electronics and Communication Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Krishna District, AP, India, 521230

P. Naga Sai Navya

Department of Electronics and Communication Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Krishna District, AP, India, 521230

R. Abhilash

Department of Electronics and Communication Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Krishna District, AP, India, 521230

T. Pavan

Department of Electronics and Communication Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Krishna District, AP, India, 521230

B. Ramesh Reddy

Department of Electronics and Communication Engineering, LBR College of Engineering, Mylavaram, Krishna District, Andhra Pradesh

K. Bhargav Manikanta

Department of Electronics and Communication Engineering, LBR College of Engineering, Mylavaram, Krishna District, Andhra Pradesh

P.V.V.N.S. Jaya Sai

Department of Electronics and Communication Engineering, LBR College of Engineering, Mylavaram, Krishna District, Andhra Pradesh

R. Mohan Chandra

Department of Electronics and Communication Engineering, LBR College of Engineering, Mylavaram, Krishna District, Andhra Pradesh

xvi List of Contributors

M. Greeshma Vyas

Department of Electronics and Communication Engineering, LBR College of Engineering, Mylavaram, Krishna District, Andhra Pradesh

B. V. Anil Sai Kumar

School of Electronics and Electrical Engineering, Lovely Professional University, Punjab, India

Suryavamsham Prem Kumar

School of Electronics and Electrical Engineering, Lovely Professional University, Punjab, India

Konduru Jaswanth

School of Electronics and Electrical Engineering, Lovely Professional University, Punjab, India

Kola Vishnu

School of Electronics and Electrical Engineering, Lovely Professional University, Punjab, India

Abhishek Kumar

School of Electronics and Electrical Engineering, Lovely Professional University, Punjab, India

Narendra Babu Alur

Department of Electronics and Communication Engineering, and Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Krishna District, AP, India

Kurapati Poorna Durga

Department of Electronics and Communication Engineering, and Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Krishna District, AP, India

Boddu Ganesh

Department of Electronics and Communication Engineering, and Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Krishna District, AP, India

Manda Devakaruna

Department of Electronics and Communication Engineering, and Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Krishna District, AP, India

Lakkimsetti Nandini

Department of Electronics and Communication Engineering, and Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Krishna District, AP, India

A. Praneetha

Department of Computer Science Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Krishna District, AP, India

T. Satyanarayana

Department of Electronics and Communication Engineering, and Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Krishna District, AP, India

K. Rani Rudrama

Department of Electronics and Communication Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Krishna District, AP, India

Mounika Ramala

Department of Electronics and Communication Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Krishna District, AP, India

Poorna sasank Galaparti

Department of Electronics and Communication Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Krishna District, AP, India

Manikanta Chary Darla

Department of Electronics and Communication Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Krishna District, AP, India

xviii List of Contributors

Siva Sai Prasad Loya

Department of Electronics and Communication Engineering, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Krishna District, AP, India

K. Srinivasa Rao

Department of Electronics and Communication Engineering, KLEF, Vaddeswaram, Green Fields, 522502, Andhra Pradesh, India

T. Anil Raju

Department of Electronics and Communication Engineering, Lakireddy Bali Reddy College of Engineering, Mylavaram

K. Srihari Reddy

Department of Electronics and Communication Engineering, Lakireddy Bali Reddy College of Engineering, Mylavaram

Sk. Arifulla Rabbani

Department of Electronics and Communication Engineering, Lakireddy Bali Reddy College of Engineering, Mylavaram

G. Suresh

Department of Electronics and Communication Engineering, Lakireddy Bali Reddy College of Engineering, Mylavaram

K. Saikumar Reddy

Department of Electronics and Communication Engineering, Lakireddy Bali Reddy College of Engineering, Mylavaram

Rajesh C. Dharmik

Department of Information Technology, Yeshwantrao Chavan College of Engineering, Nagpur

Bhushan U. Bawankar

Department of Information Technology, Yeshwantrao Chavan College of Engineering, Nagpur

Preface

Machine Learning (ML) has touched all corners of human life and industry. Databased learning intelligence supports are the scalability of present technology and architecture. The current ML and deep learning (DL) algorithms require huge consumption of data and power. The industry is looking for an efficient VLSI circuit that can meet the demands of the AI-ML-DL universe. ML can pioneer different sectors throughout design methodologies from RTL design, synthesis, and verification. One of the deepest challenges of chip design is the time-consuming iterative process. Thanks to the learning model, time is considerably reduced. VLSIbased solutions and innovation of AI-ML-DL applications are growing in demand. Internet of Things–based solutions address the various challenges in society that require chips. This new book covers the latest AI/ML techniques, VLSI chip design, and systems to address societal challenges.

Applications of VLSI Design in Artificial Intelligence and Machine Learning

Imran Ullah Khan, Nupur Mittal* and Mohd. Amir Ansari

Dept. of Electronics and Communication Engineering, Integral University, Lucknow, India

Abstract

In our advanced times, complementary metal-oxide semiconductor (CMOS) based organizations like semiconductor and gadgets face extreme scheduling of products and other different pressures. For resolving this issue, electronic design automation (EDA) must provide "design-based equivalent scaling" to continue the critical industry trajectory. For solving this problem machine learning techniques should be used both inside and "peripherally" in the design tools and flows. This article reviews machine learning opportunities, and physical implementation of IC will also be discussed. Cloud intelligence-enabled machine learning-based data analytics has surpassed the scalability of current computing technologies and architectures. The current methods based on deep learning are inefficient, require a lot of data and power consumption, and run on a data server with a long delay. With the advent of self-driving cars, unmanned aerial vehicles and robotics, there is a huge need to analyze only the necessary sensory data with low latency and low power consumption on edge devices. In this discussion, we will talk about effective AI calculations, for example, fast least squares, binary and tensor convolutional neural organization techniques, and compare prototype accelerators created in field preogrammable gate array (FPGA) and CMOS-ASIC chips. Planning on future resistive random access memory (RRAM) gadgets will likewise be briefly depicted.

Keywords: VLSI, AI, ML, CAD & AVM

^{*}Corresponding author: mittal@iul.ac.in

Abhishek Kumar, Suman Lata Tripathi, and K. Srinivasa Rao (eds.) Machine Learning for VLSI Chip Design, (1–18) © 2023 Scrivener Publishing LLC