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Vorwort 

Die Stabilitätsfälle Biegeknicken, Biegedrillknicken und Plattenbeulen sowie Berech-
nungen nach Theorie II. Ordnung sind zentrale Themen des Stahlbaus. Aus Gründen 
der Sicherheit und Wirtschaftlichkeit muss sie jeder in der Praxis tätige Ingenieur be-
herrschen und die zweckmäßigen Nachweisverfahren kennen.  
 
Das vorliegende Buch ist als Lehrbuch für Studierende an Technischen Hochschulen, 
Universitäten und Fachhochschulen sowie für Ingenieure in der Baupraxis konzipiert. 
Im Vordergrund stehen das Verständnis für das Tragverhalten, der Zusammenhang 
mit den theoretischen Grundlagen und die Durchführung zweckmäßiger Tragfähig-
keitsnachweise. Besonderer Wert wird auf die Vermittlung von Methoden, Verfahren 
und Vorgehensweisen gelegt, die mit zahlreichen Bildern und Berechnungsbeispielen 
veranschaulicht werden. 
 
Die letzte Auflage aus dem Jahre 2008 wurde vollständig überarbeitet und dem Stand 
der Technik entsprechend aktualisiert. Dies betrifft sowohl die theoretischen Grund-
lagen als auch die normengerechte Bemessung von Tragwerken und Bauteilen. Alle 
Berechnungsbeispiele wurden an die Bemessungsregeln der europäischen Normen, 
d. h. an DIN EN 1993-1-1:2010 und DIN EN 1993-1-5:2010, angepasst. Darüber 
hinaus wurde der Umfang des Buches mit 150 Seiten beträchtlich erweitert. Die 
Erweiterungen betreffen im Wesentlichen Folgendes:  

 In Kapitel 2 wird ein Zweigelenkrahmen als „baustatisches Lehrbeispiel“ für den 
Nachweis ausreichender Tragfähigkeit eines stabilitätsgefährdeten Tragwerks aus 
Baustahl behandelt. Dabei geht es um die Wahl sinnvoller Nachweisverfahren, 
die Vorgehensweisen bei der Nachweisführung und um Hinweise auf wissens-
werte Details und Hintergrundinformationen, die zum Verständnis des Tragver-
haltens und der Berechnungsmethoden beitragen. Die bewusst breit angelegten 
Ausführungen gehen weit über die üblichen Nachweise für einen Zweigelenk-
rahmen hinaus, weil sie auch die fachliche Basis für andere Tragwerke bilden 
sollen. 

 Kapitel 7 „Theorie II. Ordnung mit Ersatzimperfektionen“ wurde im Hinblick auf 
die Art der Nachweisführung, den Ansatz der Ersatzimperfektionen und den 
Nachweis ausreichender Querschnittstragfähigkeit fast vollständig neu geschrie-
ben. Darüber hinaus wurden weitere Berechnungsbeispiele ergänzt.  

 In einem neuen Kapitel 11 werden Berechnungen nach der Fließzonentheorie und 
entsprechende Tragfähigkeitsnachweise behandelt. Damit kann das tatsächliche 
Tragverhalten sehr realitätsnah erfasst werden und die Ursachen für das Er-
reichen der Grenztragfähigkeit sind erkennbar, sodass das Verständnis für die 
Stabilität von Tragwerken gefördert wird. Vorteilhaft ist auch, dass bei vielen 
baupraktischen Anwendungsfällen höhere Tragfähigkeiten als mit allen anderen 
Verfahren nachgewiesen werden können. 



Vorwort VI 

 
Zurzeit liegt ein Norm-Entwurf DIN EN 1993-1-1:2020-08 vor. Abschnitt 1.9 enthält 
einige Erläuterungen und Kommentare, die Änderungen gegenüber der derzeit 
gültigen Norm betreffen. Mit der Einführung der Norm ist 2022 zu rechnen. 
 
Aktuelle Hinweise zum Buch werden unter www.kindmann.de bekannt gegeben. 
 
 
Dortmund, März 2021 R. Kindmann 
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1 Einleitung und Übersicht 

1.1 Einführung  

Die Stabilitätsfälle Biegeknicken, Drillknicken, Biegedrillknicken und Plattenbeulen 
werden durch Druckbeanspruchungen verursacht. Hinzu kommt beim Biegedrill-
knicken ein exzentrischer Lastangriff, der die Stabilitätsgefahr erhöhen kann. Beim 
Plattenbeulen ergibt sich der Stabilitätsverlust infolge von Druck- und/oder Schub-
spannungen. 
 

   
Bild 1.1 Zeigestock bei Zug- und Druckbeanspruchung   
Mit einem kleinen Experiment lässt sich anschaulich nachweisen, dass Druckbean-
spruchungen wesentlich kritischer als Zugbeanspruchungen sind. Man benötigt nur 
einen normalen Zeigestock, der jedoch wie allgemein üblich dünn und schlank sein 
sollte. Aus welchem Werkstoff er besteht, ist in diesem Zusammenhang zweitrangig. 
In Bild 1.1 links wird mit beiden Händen an den Enden des Zeigestocks gezogen. 
Trotz größter Anstrengungen gelingt es nicht, den Zeigestock sichtbar zu verlängern. 
Wenn dagegen, wie in Bild 1.1 rechts, der Zeigestock gegen die Wand gedrückt wird, 
können ohne große Kraftanstrengungen Verformungen erzeugt werden. Es soll nicht 
unerwähnt bleiben, dass man dem Zeigestock eine kleine Auslenkung geben muss, so-
fern er ideal gerade ist. Alternativ dazu kann man einen etwas krummen, d. h. „imper-
fekten“ Zeigestock verwenden. Was hier einführend am Beispiel des Zeigestocks an-
schaulich erläutert wird, kann beispielsweise mithilfe von Bild 11.1 vertieft werden. 
Das Bild und der begleitende Text enthalten grundlegende Erläuterungen zum Biege-
knicken einer druckbeanspruchten Stütze, die an der Bauhaus-Universität Weimar ex-
perimentell untersucht wurde.  
Damit sind die zentralen Themen des Buches bereits weitgehend umrissen: Die Stabi-
litätsfälle und die Berechnung von Verformungen und Beanspruchungen nach Theorie 
II. Ordnung unter Berücksichtigung von Imperfektionen. Das sind natürlich keine 
neuen Themen, schließlich hat die klassische Stabilitätstheorie schon eine lange 
Tradition! Was neu ist, betrifft die Berechnungsmethoden und die Denkweise, die sich 
im Laufe der Zeit grundsätzlich verändert hat und die in der Lehre und den Lehr-
büchern entsprechend vermittelt werden muss. Bild 1.2 veranschaulicht wesentliche 

Stahlbau. Teil 2: Stabilität und Theorie II. Ordnung. 5. Auflage. Rolf Kindmann.
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   1   Einleitung und Übersicht 2 

Unterschiede. Beim Fall a, der Vorgehensweise nach der klassischen Stabilitäts-
theorie, geht man von einem ideal geraden Druckstab aus und nimmt an, dass die 
Kraft genau mittig eingeleitet wird. Mit Aufbringen und Erhöhen der Last wird der 
Stab zusammengedrückt und bleibt, da er sich im stabilen Gleichgewicht befindet, 
zunächst gerade. Bei N = Ncr, der Verzweigungslast, tritt indifferentes Gleichgewicht 
auf und der Druckstab ist „unschlüssig“, ob er gerade bleiben oder ausknicken soll. 
Fachlich präziser ausgedrückt, nennt man den Übergang zum labilen Gleichgewicht 
„indifferentes Gleichgewicht“ und spricht auch von der „Verzweigung des Gleich-
gewichts“. So weit die klassische Stabilitätstheorie.  

 
Bild 1.2 Stabilität (Verzweigung des Gleichgewichts) eines Druckstabes  
 und Theorie II. Ordnung mit w0    
Mittlerweile hat sich die Denkweise geändert und man geht wie im Fall b von einem 
imperfekten (vorgekrümmten) Druckstab aus. Dabei weist der Druckstab von Anfang 
an gewisse Auslenkungen auf und nach Theorie II. Ordnung ergibt sich die darge-
stellte nichtlineare Last-Verformungs-Beziehung. Sofern die Imperfektionen klein 
sind und man unbegrenzt elastisches Tragverhalten voraussetzt, nähert sich die Kurve 
asymptotisch der horizontalen Gerade durch N = Ncr. Darüber hinaus zeigt die Kurve, 
dass die Auslenkungen mit wachsendem N überproportional größer werden, was auch 
für die Biegemomente und Querkräfte gilt.  
Da der Werkstoff nicht unbegrenzt elastisch ist, wird die maximale Normalkraft er-
reicht, wenn in Feldmitte infolge N und M ein Fließgelenk entsteht. Bei dieser Vorge-
hensweise müssen mit der Vorverformung w0 ersatzweise alle Imperfektionen erfasst 
werden, die im Hinblick auf die Tragfähigkeit von Bedeutung sind. Natürlich gilt dies 
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auch für den Fall, dass man die Verzweigungslast Ncr verwendet und die maximale 
Normalkraft N =   Npl,Rd mit dem Abminderungsfaktor  bestimmt, s. Abschnitte 2.7 
und 3.2.  
Die in Bild 1.2 dargestellten Methoden (Fälle a und b) sind Näherungsverfahren zur 
Ermittlung der Tragfähigkeit. Realitätsnäher (genauer) sind Nachweise nach der 
Fließzonentheorie. Dabei werden als Imperfektionen Vorverformungen (Vorkrüm-
mungen) und Eigenspannungen angesetzt und darüber hinaus Fließzonen berück-
sichtigt, die im Verlauf der schrittweisen Lasterhöhung entstehen. Abschnitt 2.7 ent-
hält dazu ein einführendes Berechnungsbeispiel mit Erläuterungen zum Verständnis. 
Stabilitätsnachweise mit der FZT sind zurzeit in der Baupraxis noch nicht üblich, sie 
werden sich in den kommenden Jahren aber mehr und mehr verbreiten.  
Die Veränderung der Denk- und Vorgehensweisen steht in engem Zusammenhang mit 
den alten und neuen Nachweismethoden. Früher, d. h. nach der alten Stabilitätsnorm 
DIN 4114 [6], hat man den Stabilitätsnachweis fast immer mit der Bedingung 

zul
S
F

 (1.1) 

geführt (Druckkraft S, Fläche F) und für die Ermittlung der Knickzahlen  wurde die 
Knicklänge, die sich aus der Verzweigungslast ergibt, verwendet. Natürlich waren in 
den Knickzahlen  (s. Bild 3.13) die Einflüsse von Imperfektionen und infolge 
Theorie II. Ordnung enthalten. Dies war jedoch nicht in den Köpfen der Ingenieure 
verankert, sodass viele bei Einführung der DIN 18800 [4] glaubten, dass die Theorie 
II. Ordnung eine Erfindung der Normenmacher sei. Ein zu Gl. (1.1) vergleichbarer 
Nachweis ist mit 

pl,d

N 1
N

 (1.2) 

auch in DIN 18800 Teil 2 enthalten. Der Unterschied zu früher besteht darin, dass 
heutzutage alle in der Praxis tätigen Ingenieure wissen, was die Abminderungsfakto-
ren  (vergleichbar mit  und 1/ ) abdecken. Darüber hinaus werden heutzutage 
häufig Nachweise geführt, bei denen die Berechnungen nach Theorie II. Ordnung un-
mittelbar erkennbar sind.  
Aufgrund der über 40-jährigen Erfahrung im Stahlbau hat der Verfasser die o. g. Sta-
bilitätsnormen häufig verwendet und darüber hinaus an der Erstellung der DIN 18800 
Teil 2 als Mitglied des Normenausschusses mitgewirkt. Man sollte sich stets bewusst 
sein, dass Normen kein Lehrbuchwissen vermitteln und man daher auf gute Lehr-
bücher angewiesen ist. In diesem Zusammenhang hat der Autor zahlreiche Lehr-
bücher und Veröffentlichungen herangezogen und damit das entsprechende Wissen 
kontinuierlich erarbeitet. Einige Bücher hatten eine außergewöhnliche Bedeutung und 
sollen aufgrund der besonderen Wertschätzung nachfolgend genannt werden:  

 Pflüger: Stabilitätsprobleme der Elastostatik [55] 
 Roik/Carl/Lindner: Biegetorsionsprobleme gerader dünnwandiger Stäbe [56] 
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 Roik: Vorlesungen über Stahlbau [60] 
 Wlassow: Dünnwandige elastische Stäbe [71] 
 Bürgermeister/Steup/Kretschmar: Stabilitätstheorie [3] 
 Petersen: Stahlbau [53], Statik und Stabilität der Baukonstruktionen [54] 

 
 
1.2 Grundsätzliches 

Zentrales Thema des vorliegenden Buches sind die Stabilität von Stabtragwerken und 
Berechnungen nach Theorie II. Ordnung. Da dabei die lineare Stabtheorie die Basis 
bildet, sind einige grundlegende Erläuterungen zu den üblichen Annahmen, Methoden 
und Vorgehensweisen sowie Hinweise zu grundlegenden Aspekten der Stabilität und 
Theorie II. Ordnung sinnvoll. 
 

 
Bild 1.3 Stabquerschnitt im Koordinatensystem mit Verschiebungs- 

und Schnittgrößen 
 
Stäbe werden in einem x-y-z-Koordinatensystem gemäß Bild 1.3 beschrieben, bei 
dem die x-Achse die Stabachse ist. Sie verläuft durch den Schwerpunkt S und y und 
z sind die Hauptachsen des Querschnitts. In diesem Koordinatensystem wird auch 
der Schubmittelpunkt M(yM, zM) angegeben. Bild 1.3 zeigt beispielhaft einen Son-
derfall mit yM  0 und zM = 0. 
 
Zur Ermittlung der Punkte S und M sowie der Richtungen von y und z sind entspre-
chende Berechnungen durchzuführen. Sie werden in [21] ausführlich erläutert und die 
erforderlichen Vorgehensweisen hergeleitet. Bei Querschnitten mit Symmetrie-
eigenschaften vereinfachen sich die Berechnungen und bei Querschnitten mit min-
destens zwei Symmetrieachsen entfallen sie gänzlich, weil S und M im Schnittpunkt 
der Symmetrieachsen liegen und die Richtungen von y und z den Symmetrieachsen 
entsprechen. Bild 1.4 zeigt dazu einige Beispiele.  
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Bild 1.4 Richtung der Hauptachsen sowie Lage von S und M 

Bei einigen Problemstellungen wird auch eine Profilordinate s und eine normierte 
Wölbordinate  benötigt, siehe Bild 1.5 und [21]. 
 

 
Bild 1.5 Profilordinate s und Wölbordinate  
 
Zur Erläuterung weiterer Grundlagen und Prinzipien wird der Kragträger in Bild 1.6 
betrachtet, der am freien Ende durch Einzellasten Fx, Fy und Fz belastet wird. Da Fy 
außermittig zum Schubmittelpunkt angreift, tritt auch Torsion auf, sodass hier der all-
gemeine Beanspruchungsfall „zweiachsige Biegung mit Normalkraft und Torsion“ 
vorliegt, s. Abschnitt 1.4. 
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Verformungen 
Es versteht sich von selbst, dass die Verschiebungen u, v und w die Differenz zwi-
schen der verformten Lage und der Ausgangslage sind. Die Richtungen von u, v und 
w entsprechen den Richtungen der Koordinaten x, y und z in der unverformten Aus-
gangslage. Wichtig ist, dass sich auch die Verdrehungen x, y und z auf diese Rich-
tungen beziehen, s. auch Bild 1.7. Dies gilt auch für die im Folgenden verwendeten 
Verdrehungen x , M yw  und M zv . Der Index M bei Mw  und Mv  kenn-
zeichnet, dass es sich um die Verdrehungen um den Schubmittelpunkt handelt, s. auch 
Bild 1.3. 
 
Lasten 
Es ist eine wesentliche Grundlage der Stabtheorie, dass Lasten bei der Verformung 
eines Tragwerks ihre Richtung beibehalten. Die Indizes x, y und z beziehen sich daher 
auf die unverformte Ausgangslage. Darüber hinaus wird angenommen, dass die 
Lasten mit dem Tragwerk fest verbunden sind und sie daher wie ihr Angriffspunkt 
verschoben werden (s. Bild 1.6). Daraus resultiert auch, dass sich am verformten 
System (Theorie II. Ordnung) zusätzliche Beanspruchungen ergeben. 
 
 

 
Bild 1.6 Grundsatzbeispiel Kragträger 
 
Koordinatensysteme 
Alle Verformungs- und Lastgrößen werden auf das x-y-z-System in der unverform-
ten Ausgangslage des Stabes bezogen (siehe oben). Bei einer Verformung des Stabes 
geht das Koordinatensystem mit, weil es wie die Lasten fest mit dem Stab verbunden 
ist. Eigentlich müsste man das „mitgehende“ x-y-z-Koordinatensystem zwecks Unter-
scheidung anders bezeichnen. Dies hat sich aber nicht allgemein durchgesetzt, weil 
damit auch gewisse Nachteile verbunden sind. 
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Spannungen 
Natürlich kann man Spannungen in beliebigen Koordinatensystemen angeben. Sinn-
voll ist das aber nicht, weil damit die Tragfähigkeit von Querschnitten beurteilt wer-
den soll. Es ist daher offensichtlich, dass sich die Richtungen der Spannungen auf das 
mitgehende x-y-z-Koordinatensystem beziehen. Die Normalspannung x, die wich-
tigste Spannung bei Stäben, hat daher die gleiche Richtung wie die verformte Stab-
achse. Bei der Spannungsermittlung bestehen zwischen Theorie I. und II. Ordnung 
keine Unterschiede und man kann daher die üblichen Berechnungsformeln verwen-
den. Es kommt nur darauf an, den Einfluss der Theorie II. Ordnung bei den Schnitt-
größen zu berücksichtigen und die Spannungen mit den „richtigen“ Schnittgrößen, 
den sogenannten Nachweisschnittgrößen, zu berechnen. 
 
 
Schnittgrößen 
Schnittgrößen werden in englischsprachigen Ländern häufig „stress resultants“, also 
Spannungsresultierende, genannt. Bei Stäben werden Spannungen x, xy und xz in 
der Querschnittsebene gemäß Tabelle 1.1 zu „resultierenden“ Normalkräften, Quer-
kräften, Biegemomenten, Torsionsmomenten und Wölbbimomenten, also 
 

N, Vy, Vz, My, Mz, Mx und M ,  
 
zusammengefasst. Da sie sich aus den Spannungen ergeben, beziehen sich die Schnitt-
größen auf das „mitgehende“ x-y-z-Koordinatensystem, d. h. auf Querschnitte in der 
verformten Lage. Diese Schnittgrößen werden im Folgenden Nachweisschnittgrö-
ßen genannt, wenn eine Klarstellung zweckmäßig ist. Teilweise ist es sinnvoll, die 
Schnittgrößen auf andere Richtungen zu beziehen, beispielsweise auf das x-y-z-Koor-
dinatensystem in der unverformten Ausgangslage. Zwecks Unterscheidung werden 
sie Gleichgewichtsschnittgrößen genannt. Zur Erläuterung ist in Bild 1.7 die Ermitt-
lung der Nachweisschnittgrößen My und Mz aus den Gleichgewichtsschnittgrößen dar-
gestellt, wenn sich der Querschnitt um den Winkel  verdreht hat (Torsion). Für die 
Beurteilung der Querschnittstragfähigkeit müssen die Nachweisschnittgrößen verwen-
det werden. 
 

  
Bild 1.7 Nachweisschnittgrößen My und Mz 
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Stabilitätsuntersuchungen und Tragfähigkeit 
Bei Stabilitätsuntersuchungen sind gemäß Abschnitt 1.5 homogene Gleichungssyste-
me der Ausgangspunkt der Berechnungen und es werden Eigenwerte (Verzweigungs-
lasten Ncr, Mcr) sowie bei Bedarf Eigenformen (Knickbiegelinien) ermittelt. Wie bei 
den Berechnungen nach Theorie II. Ordnung müssen in einem ersten Rechenschritt 
die Schnittgrößen N, My, Mz und M  bestimmt werden. Die Tragfähigkeit stabilitäts-
gefährdeter Tragwerke kann gemäß Kapitel 2 mit den folgenden Verfahren nachge-
wiesen werden (s. Tabelle 2.10): 
 

 Ersatzstabverfahren (ESV) mit Abminderungsfaktoren  bzw. LT 
 Ersatzimperfektionsverfahren (EIV) mit w0 oder v0 
 Fließzonentheorie (FZT) mit w0 oder v0 und Eigenspannungen 

 
 
1.3 Bezeichnungen und Annahmen 

Koordinaten, Ordinaten und Bezugspunkte, s. Bild 1.8 
x Stablängsrichtung 
y, z Hauptachsen in der Querschnittsebene  

 normierte Wölbordinate  
s Profilordinate  
S Schwerpunkt  
M Schubmittelpunkt  

 

 

 
 
uS:  
Verschiebung im  
Schwerpunkt S 
 
vM und wM:  
Verschiebungen im 
Schubmittelpunkt M 

Bild 1.8 x-y-z-KOS und Definition der positiven Verschiebungsgrößen 
 
Bei Stäben ist die x-Achse stets die Stabachse und die Achsen y und z bilden die 
Querschnittsebene, s. Bilder 1.3 bis 1.5. In Bild 1.4 sind einige Querschnitte darge-
stellt. Dort werden beispielhaft die Lage der Bezugspunkte S und M sowie die Rich-
tung der Hauptachsen y und z gezeigt. Die Profilordinate s und die Wölbordinate  
werden in Bild 1.5 an einem Beispiel erläutert. 
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Verschiebungsgrößen, s. Bild 1.8  
u, v, w Verschiebungen in x-, y- und z-Richtung 

 
x  =  Verdrehung um die x-Achse 

y w  Verdrehung um die y-Achse 

z v  Verdrehung um die z-Achse 

 Verdrillung der x-Achse  
 
Einwirkungen, Lastgrößen, s. Bild 1.9 
qx, qy, qz Streckenlasten  
Fx, Fy, Fz Einzellasten  
mx Streckentorsionsmoment  
MxL Lasttorsionsmoment  
MyL, MzL Lastbiegemomente  
M L Lastwölbbimoment  
 

  
 
Bild 1.9   Positive Wirkungsrichtungen und  

 
Bild 1.10   Schnittgrößen an der positiven 

                Angriffspunkte der Lastgrößen                   Schnittfläche eines Stabes 
 
Schnittgrößen, s. Bild 1.10 
N Längskraft, Normalkraft  
Vy, Vz Querkräfte  
My, Mz Biegemomente DIN EN 1993-1-1: 
Mx Torsionsmoment T 
Mxp primäres Torsionsmoment Tt 
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Mxs sekundäres Torsionsmoment Tw 
M  Wölbbimoment B 
Index el Grenzschnittgrößen nach der Elastizitätstheorie  
Index pl Grenzschnittgrößen nach der Plastizitätstheorie  
Index Rd Bemessungswert der Beanspruchbarkeit   
Index Ed Bemessungswert der Beanspruchung  
 
Spannungen, s. Bild 1.11 

 

x, y, z  Normalspannungen 

xy, xz, yz Schubspannungen 

v Vergleichsspannung 
 
 
 
 
           Bild 1.11   Spannungen an der positiven 
                             Schnittfläche eines Stabes 

 
Die Spannungen werden gemäß Tabelle 1.1 zu resultierenden Schnittgrößen zusam-
mengefasst. Dabei ist zu beachten, dass die Normalkraft und die Biegemomente im 
Schwerpunkt wirken, die Querkräfte, die Torsionsmomente und das Wölbbimoment 
dagegen im Schubmittelpunkt, vgl. Bild 1.10. 
 
Tabelle 1.1 Schnittgrößen als Resultierende der Spannungen 

Bedingung Schnittgröße Definition 

 Normalkraft  

 Querkraft  

 Querkraft  

 Torsionsmoment x xz M xy M xp xs
A

M y y z z dA M M  

 Biegemoment  

zM 0:  Biegemoment  

 Wölbbimoment  

xF 0 : x
A

N dA

yV 0 : y xy
A

V dA

zV 0 : z xz
A

V dA

xM 0 :

yM 0 : y x
A

M z dA

z x
A

M y dA

x
A

M dA
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Querschnittskennwerte 
A Fläche 
Iy, Iz Hauptträgheitsmomente 
I , IT Wölbwiderstand, Torsionsträgheitsmoment 
Wy, Wz Widerstandsmomente 
Sy, Sz statische Momente 
iM, ry, rz, r  Größen für Theorie II. Ordnung und Stabilität, s. Tabelle 9.2 

y z
p

I I
i

A
 polarer Trägheitsradius 

 
Biegeknicken (BK) und Biegedrillknicken (BDK) 
Ncr ideale Drucknormalkraft (Verzweigungslast, Eigenwert) 
Lcr Knicklänge für Biegeknicken 

cr Verzweigungslastfaktor des Systems (Eigenwert) 
Mcr,y ideales Biegedrillknickmoment (Eigenwert) 

LT,  bezogene Schlankheitsgrade 

, LT Abminderungsfaktoren (LT: lateral torsional buckling) 
1 Bezugsschlankheitsgrad 

w0, v0 Vorkrümmungen (Imperfektionen) 
0 Vorverdrehung, Schiefstellung (Imperfektion) 
 Stabkennzahl für Biegeknicken 

 
Plattenbeulen 

E Bezugsspannung 
k , k  Beulwerte 

cr, cr ideale Beulspannungen (Eigenwerte) 
P  bezogener Schlankheitsgrad 
,  Abminderungsfaktoren 

 
Werkstoffkennwerte für Stahl, s. Bild 2.1 und Abschnitt 2.3 
E Elastizitätsmodul            E = 21000 kN/cm2 
G Schubmodul                   G = E/(2 · (1 + )) ≈ 8100 kN/cm2 

 Poissonsche Zahl            = 0,3 (Querkontraktion) 
ρ Dichte                              = 7850 kg/m3       
fy Streckgrenze   

R yf 3     
fu, u Zugfestigkeit, Bruchdehnung   
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Lcr Knicklänge für Biegeknicken 

cr Verzweigungslastfaktor des Systems (Eigenwert) 
Mcr,y ideales Biegedrillknickmoment (Eigenwert) 

LT,  bezogene Schlankheitsgrade 

, LT Abminderungsfaktoren (LT: lateral torsional buckling) 
1 Bezugsschlankheitsgrad 

w0, v0 Vorkrümmungen (Imperfektionen) 
0 Vorverdrehung, Schiefstellung (Imperfektion) 
 Stabkennzahl für Biegeknicken 

 
Plattenbeulen 

E Bezugsspannung 
k , k  Beulwerte 

cr, cr ideale Beulspannungen (Eigenwerte) 
P  bezogener Schlankheitsgrad 
,  Abminderungsfaktoren 

 
Werkstoffkennwerte für Stahl, s. Bild 2.1 und Abschnitt 2.3 
E Elastizitätsmodul            E = 21000 kN/cm2 
G Schubmodul                   G = E/(2 · (1 + )) ≈ 8100 kN/cm2 

 Poissonsche Zahl            = 0,3 (Querkontraktion) 
ρ Dichte                              = 7850 kg/m3       
fy Streckgrenze   

R yf 3     
fu, u Zugfestigkeit, Bruchdehnung   
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Teilsicherheitsbeiwerte/Bemessungswerte 
M Teilsicherheitsbeiwert für die Widerstandsgrößen (Material)  
F Teilsicherheitsbeiwert für die Einwirkungen (Force)  
 Kombinationsbeiwert  

Ed, Rd Bemessungswerte der Beanspruchungen bzw. der 
Beanspruchbarkeiten 

 

 
Abkürzungen 
BDK Biegedrillknicken  
DGL Differentialgleichung  
ESV Ersatzstabverfahren mit Abminderungsfaktoren  bzw. LT,  
 s. Kapitel 3 bis 6  
EIV Ersatzimperfektionsverfahren mit w0, v0 bzw. 0 , s. Kapitel 7  
FEM Finite Elemente Methode  
FZT Fließzonentheorie mit w0, v0 bzw. 0 und Eigenspannungen,  

s. Kapitel 11 
 

GMNIA Geometrically and Materially Nonlinear Analysis with 
Imperfections 

 

TSV Teilschnittgrößenverfahren, s. Abschnitt 7.5.5  
 
Fließkriterium 
 

2 2 2 2 2 2
x y z x y x z y z xy xz yz

2 2 2
y y y

3 1
f f f

 

Vergleichsspannung 
 

2 2 2 2 2 2
v x y z x y x z y z xy xz yz y( ) 3 ( ) f  

 
Sofern nicht anders angegeben, gelten folgende Annahmen und Voraussetzungen: 

 Es wird linearelastisches-idealplastisches Werkstoffverhalten gemäß Bild 2.1 vo-
rausgesetzt. 

 Verformungen sind so klein, dass geometrische Beziehungen linearisiert werden 
können, s. Tabelle 2.1. 

 Die Querschnittsform eines Stabes bleibt bei Belastung und Verformung erhalten. 
 Für zweiachsige Biegung mit Normalkraft wird die Bernoulli-Hypothese vom 

Ebenbleiben der Querschnitte vorausgesetzt und der Einfluss von Schubspannun-
gen infolge von Querkräften auf die Verformungen vernachlässigt (schubstarre 
Stäbe). 

 Bei der Wölbkrafttorsion wird die Wagner-Hypothese vorausgesetzt und der Ein-
fluss von Schubspannungen infolge des sekundären Torsionsmomentes auf die 
Verdrehung vernachlässigt. 
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1.4 Grundlegende Beziehungen nach Theorie I. Ordnung 

Bei der Stabtheorie wird in der Regel von den folgenden Voraussetzungen ausge-
gangen:  

 y und z sind die Hauptachsen des Querschnitts.  
 Die Stabachse verläuft durch den Schwerpunkt S. 
 Einige Lasten, Verformungen und Schnittgrößen werden auf den Schwerpunkt S 

bezogen, andere auf den Schubmittelpunkt M (s. Bilder 1.3, 1.4, 1.9 und 1.10). 
  ist die normierte Wölbordinate. 
 Die Querschnittskennwerte beziehen sich auf die Hauptachsen und die Punkte S 

bzw. M. 
 
Aufgrund dieser Vorgehensweise können bei der linearen Stabtheorie (Theorie I. Ord-
nung) beliebige Beanspruchungsfälle in vier voneinander entkoppelte Teilprobleme 
aufgeteilt werden:  
 

Normalkraft, Biegung um die z-Achse, Biegung um die y-Achse und Torsion 
 
In Tabelle 1.2 sind die grundlegenden Beziehungen für die vier Teilprobleme der line-
aren Theorie schubstarrer Stäbe zusammengestellt. Die Tabelle enthält eine Zuord-
nung der Lastgrößen, Verformungen und Schnittgrößen sowie Angaben zum Gleich-
gewicht am Stabelement und zur Normalspannung x. 
 
Tabelle 1.2 Vier Teilprobleme bei der linearen Stabtheorie nach [21]  
 „Normal- 

kraft” 
„Biegung um die 

z-Achse” 

„Biegung um die 
y-Achse” 

„Torsion” 

Lastgrößen     

Verformun-
gen 

  
 

 

 
 

 
 

 

Schnitt-
größen 

N  
 

 

 
 

 

Gleich-
gewicht 

 z y

y y

M V

V q
 y z

z z

M V

V q
  

 

Spannung 
x =  

z

z

M

M y
I
E y v

 
y

y

M

M
z

I

E z w
  

xx F;q zLyy M;F;q yLzz M;F;q LxLx M;M;m

Suu Mvv

Mvyu
Mww

Mwzu u

Mzzv

Myyw

zM

yV
yM

zV

M

xsxpx MMM

xqN xsMM

xx mM

SuE
A
N

E

M
I
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1.4 Grundlegende Beziehungen nach Theorie I. Ordnung 

Bei der Stabtheorie wird in der Regel von den folgenden Voraussetzungen ausge-
gangen:  

 y und z sind die Hauptachsen des Querschnitts.  
 Die Stabachse verläuft durch den Schwerpunkt S. 
 Einige Lasten, Verformungen und Schnittgrößen werden auf den Schwerpunkt S 

bezogen, andere auf den Schubmittelpunkt M (s. Bilder 1.3, 1.4, 1.9 und 1.10). 
  ist die normierte Wölbordinate. 
 Die Querschnittskennwerte beziehen sich auf die Hauptachsen und die Punkte S 

bzw. M. 
 
Aufgrund dieser Vorgehensweise können bei der linearen Stabtheorie (Theorie I. Ord-
nung) beliebige Beanspruchungsfälle in vier voneinander entkoppelte Teilprobleme 
aufgeteilt werden:  
 

Normalkraft, Biegung um die z-Achse, Biegung um die y-Achse und Torsion 
 
In Tabelle 1.2 sind die grundlegenden Beziehungen für die vier Teilprobleme der line-
aren Theorie schubstarrer Stäbe zusammengestellt. Die Tabelle enthält eine Zuord-
nung der Lastgrößen, Verformungen und Schnittgrößen sowie Angaben zum Gleich-
gewicht am Stabelement und zur Normalspannung x. 
 
Tabelle 1.2 Vier Teilprobleme bei der linearen Stabtheorie nach [21]  
 „Normal- 

kraft” 
„Biegung um die 

z-Achse” 

„Biegung um die 
y-Achse” 

„Torsion” 

Lastgrößen     

Verformun-
gen 

  
 

 

 
 

 
 

 

Schnitt-
größen 

N  
 

 

 
 

 

Gleich-
gewicht 

 z y

y y

M V

V q
 y z

z z

M V

V q
  

 

Spannung 
x =  

z

z

M

M y
I
E y v

 
y

y

M

M
z

I

E z w
  

xx F;q zLyy M;F;q yLzz M;F;q LxLx M;M;m

Suu Mvv

Mvyu
Mww

Mwzu u

Mzzv

Myyw

zM

yV
yM

zV

M

xsxpx MMM

xqN xsMM

xx mM

SuE
A
N

E

M
I
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Als Beispiel für die Aufteilung in die vier Teilprobleme wird in Bild 1.12 ein Ein-
feldträger untersucht, der durch Fx, Fy, qz und mx belastet wird. Bei der linearen 
Stabtheorie (Theorie I. Ordnung) können die vier Teilprobleme getrennt voneinander 
untersucht werden. Bild 1.12 zeigt, welche Beanspruchungsfälle durch die einzelnen 
Lastgrößen entstehen und welche Verformungen und Schnittgrößen auftreten. Dar-
über hinaus verdeutlicht das Bild, welche Knotenfreiwerte bei der FEM zu dem jewei-
ligen Beanspruchungsfall gehören. 
 
Für das Beispiel in Bild 1.12 wurden Berechnungen mit dem Programm FE-STAB 
durchgeführt und dabei der Träger in zehn gleich lange Stabelemente eingeteilt. Damit 
ist die Modellierung fein genug, dass die Funktionsverläufe für die Verformungen und 
Schnittgrößen vom Programm in zutreffender Weise dargestellt werden können. Im 
Hinblick auf die Rechengenauigkeit sind bei der Wölbkrafttorsion mindestens fünf 
Stabelemente erforderlich, s. Bild 3.9 in [29]. 
 

 
Bild 1.12 Beispiel zur Aufteilung in vier Beanspruchungsfälle und Ergebnisse  

bei der linearen Stabtheorie 
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1.5 Stabilität und Theorie II. Ordnung 

Der Titel des vorliegenden Buches lautet „Stahlbau Teil 2: Stabilität und Theorie II. 
Ordnung“. Wie bereits mit Bild 1.1 anschaulich erläutert, geht es hauptsächlich um 
druckbeanspruchte Bauteile, oder, allgemeiner ausgedrückt, um die Tragfähigkeit von 
Stahlkonstruktionen, bei denen die Stabilitätsfälle Biegeknicken, Drillknicken, Biege-
drillknicken und Plattenbeulen bemessungsrelevant sind.  
 
Den Ausgangspunkt der Problemstellung bilden in der Regel die Schnittgrößen und 
Verformungen, die mit den üblichen Methoden der Statik für lineares Material-
verhalten (Hooke’sches Gesetz) und der geometrisch linearen Theorie (s. Tabelle 2.1) 
berechnet werden. Bei einfachen baustatischen Systemen können die Berechnungen 
häufig mit Gleichgewichtsbedingungen, Formeln oder Tabellenwerken durchgeführt 
werden. Als Standardverfahren für beliebige Systeme wird in der Regel die Methode 
der Finiten Elemente (FEM) verwendet, die in [29] ausführlich behandelt wird.  
 
Für Berechnungen nach der Elastizitätstheorie I. Ordnung ergibt sich in [29], Ab-
schnitt 3.5, das Gleichungssystem  

K v p  (1.3) 
zur Bestimmung der unbekannten Verformungsgrößen v. K(Q) ist die Gesamtsteifig-
keitsmatrix, in die die Querschnittskennwerte („Q“) A, Iy, Iz, I  und IT eingehen. Der 
Vektor p  enthält die Lastgrößen des Systems. Gl. (1.3) ist die Systemgleichung für 
die Ermittlung von Schnittgrößen und Verformungen nach Theorie I. Ordnung. 
 
Für geometrisch nichtlineare Berechnungen nach Theorie II. Ordnung wird das Glei-
chungssystem um die geometrische Gesamtsteifigkeitsmatrix G erweitert und durch 
einen Lastvektor, der die geometrischen Imperfektionen erfasst, ergänzt: 

00 0
K G v p p mit: p G v  (1.4) 

In die geometrische Steifigkeitsmatrix G(S, F) gehen die Schnittgrößen („S“) N, My, 
Mz und Mrr sowie außermittig angreifende Einzel- und Gleichstreckenlasten (Forces: 
„F“) ein, s. Bild 8.8 und Tabelle 9.2. Gl. (1.4) ist die Systemgleichung für Berech-
nungen nach dem Ersatzimperfektionsverfahren (EIV), also für Berechnungen nach 
Theorie II. Ordnung mit Ansatz von Vorkrümmungen v0 bzw. w0 oder Vorverder-
hungen 0. Bild 1.2 enthält als Beispiel einen vorverformten Druckstab (Fall b).  
 
Aufgrund der Formulierung des Gleichgewichts am schwach verformten System und 
der damit verbundenen Linearisierung nach Theorie II. Ordnung (s. Tabelle 2.1) stellt 
Gl. (1.4) ein lineares Gleichungssystem dar, das sich mit zwei Rechenschritten lösen 
lässt. Da die Schnittgrößen, die in die geometrische Steifigkeitsmatrix eingehen, zu 
Beginn der Berechnungen nicht bekannt sind, wird zunächst das Gleichungssystem 
(1.3) gelöst und es werden damit die Schnittgrößen N, My, Mz und Mrr nach Theorie I. 
Ordnung berechnet. Im zweiten Schritt kann das Gleichungssystem (1.4) gelöst wer-


