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Preface

While the first volume on Building Physics looked to the fundamentals governing
the heat, air, moisture response of building parts and whole buildings, this second
volume on Applied Building Physics shows how building physics may help in
upgrading building and building part design and construction by applying the
discipline related performance rationales, requirements and metrics to guarantee a
sound building quality. How, starts with the ambient conditions out- and indoors
acting as the environmental loads buildings and building parts or assemblies face.
Then a move is made to the performance fields of importance at the whole building
level, after which, directly linked to the book on Building Physics, the heat, air,
moisture requirements and metrics actually expected when designing and realizing
building parts assemblies pass the review.

This content to a large extent reflects the 38 years of teaching Building Physics
and Applied Building Physics to architectural, building and civil engineering
students, that, coupled to more than 36 years of experience in building and building
part performance research and more than 50 years of activity in consultancy and
in curing hundreds of heat, air, moisture-related damage cases. When and where
needed, information from international sources and literature has been consulted,
which is why all chapters end with an extended further reading list. The book uses
SI units. It could be of help for undergraduate and graduate students in architectural
and building engineering, although also practising building engineers, who want
to refresh their knowledge, may benefit. Presumed anyhow is that the reader has
a sound knowledge of the fundamentals treated in the first book, along with a
background in construction materials and building design and construction.
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List of Units and Symbols

Units

The book uses the SI system, internationally mandatory since 1977, with as base
units the metre (m), the kilogram (kg), the second (s), the Kelvin (K), the ampere
(A) and the candela. Derived units of importance when studying applied building
physics are:

Unit of force Newton (N) 1 N = 1 kg m/s2

Unit of pressure Pascal (Pa) 1 Pa = 1 N/m2 = 1 kg/(m s2)
Unit of energy Joule (J) 1 J = 1 N m = 1 kg m2/s2

Unit of power Watt (W) 1 W = 1 J s−1 = 1 kg m2/s3

Symbols

For the symbols, the ISO standards (International Standardization Organization) are
followed. For quantities not included, the CIB-W40 recommendations (International
Council for Building Research, Studies and Documentation, Working Group ‘Heat
and Moisture Transfer in Buildings’) and the list edited by Annex 24 of the IEA,
EBC (International Energy Agency, Executive Committee on Energy in Buildings
and Communities) apply.



xx List of Units and Symbols

Table 1 List with symbols and quantities.

Symbol Meaning SI units

a Acceleration m/s2

a Thermal diffusivity m2/s
b Thermal effusivity W/(m2 K s0.5)
c Specific heat capacity J/(kg K)
c Concentration kg/m3, g/m3

e Emissivity —
f Specific free energy J/kg
fhi

Temperature ratio —
g Specific free enthalpy J/kg
g Acceleration by gravity m/s2

g Mass flux kg/(m2 s)
h Height m
h Specific enthalpy J/kg
h Surface film coefficient for heat transfer W/(m2 K)
k Mass-related permeability (mass could be moisture, air, salt, etc.) s
l Length m
l Specific enthalpy of evaporation or melting J/kg
m Mass kg
n Ventilation rate s−1, h−1

p Partial pressure Pa
q Heat flux W/m2

r Radius m
s Specific entropy J/(kg K)
t Time s
u Specific latent energy J/kg
v Velocity m/s
w Moisture content kg/m3

x,y,z Cartesian co-ordinates m

A Water sorption coefficient kg/(m2 s0.5)
A Area m2

B Water penetration coefficient m/s0.5

D Diffusion coefficient m2/s
D Moisture diffusivity m2/s
E Irradiation W/m2

F Free energy J

(Continued)
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Table 1 List with symbols and quantities. (Continued)

Symbol Meaning SI units

G Free enthalpy J
G Mass flow (mass = vapour, water, air, salt) kg/s
H Enthalpy J
I Radiation intensity J/rad
K Thermal moisture diffusion coefficient kg/(m s K)
K Mass permeance s/m
K Force N
L Luminosity W/m2

M Emittance W/m2

P Power W
P Thermal permeance W/(m2 K)
P Total pressure Pa
Q Heat J
R Thermal resistance m2 K/W
R Gas constant J/(kg K)
S Entropy, saturation degree J/K, –
T Absolute temperature K
T Period (of a vibration or a wave) s, days, etc.
U Latent energy J
U Thermal transmittance W/(m2 K)
V Volume m3

W Air resistance m/s
X Moisture ratio kg/kg
Z Diffusion resistance m/s

𝛼 Thermal expansion coefficient K−1

𝛼 Absorptivity —
𝛽 Surface film coefficient for diffusion s/m
𝛽 Volumetric thermal expansion coefficient K−1

𝜂 Dynamic viscosity N s/m2

𝜃 Temperature ∘C
𝜆 Thermal conductivity W/(m K)
𝜇 Vapour resistance factor —
𝜈 Kinematic viscosity m2/s
𝜌 Density kg/m3

𝜌 Reflectivity —

(Continued)
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Table 1 List with symbols and quantities. (Continued)

Symbol Meaning SI units

𝜎 Surface tension N/m
𝜏 Transmissivity —
𝜙 Relative humidity —
𝛼, 𝜙, 𝛩 Angle rad
𝜉 Specific moisture capacity kg/kg per unit of moisture potential
𝛹 Porosity —
𝛹 Volumetric moisture ratio m3/m3

𝛷 Heat flow W

Table 2 List with suffixes and notations.

Symbol Meaning Symbol Meaning

Indices
A Air m Moisture, maximal
c Capillary, convection o Operative
e Outside, outdoors r Radiant, radiation
h Hygroscopic sat Saturation
i Inside, indoors s Surface, area, suction
cr Critical v Water vapour
CO2, SO2 Chemical symbol for gasses w Water

𝜙 Relative humidity

Notation Meaning

[], bold, Matrix, array, value of a complex number
Dash (e.g.: ā) Vector



1

Introduction

Subject of the Book

This is the second volume in a series of three:

● Building Physics: Heat, Air and Moisture, Fundamentals, Engineering Methods,
Material Properties and Exercises

● Applied Building Physics: Ambient Conditions, Whole Building and
Building Assembly Performance

● Performance-Based Building Design: from Below Grade over Floors, Walls, Roofs,
and Windows to Finishes

The term ‘applied’ could be perceived as a pleonasm since ‘Building Physics’ is
by definition referring to a body of knowledge, whose application is essential for
the correct performance of new construction and renovation. Whatever, the subjects
discussed in this second book offer a link between ‘Building Physics: Heat, Air and
Moisture’ and the volume on ‘Performance-Based Building Design’.

Highlighted in Chapter 1 are the climate, the indoor environment and several
related design approaches. Chapter 2 advances the performance concept with its
hierarchical structure, from the urban environment down to whole buildings,
building assemblies, the layers assemblies consist of and the materials used. In
Chapter 3, several fields of importance that fix building physics-related performance
requirements at the whole building level are discussed. Chapter 4 analyses the
heat, air, moisture performance metrics, to which building envelopes must comply
to ensure a correct behaviour. Chapter 5 advances timber frame walls as example
of a construction choice with possibly a problematic heat, air, moisture response,
while for the sake of completeness, the Appendix repeats lists with material
property values, already discussed in ‘Building Physics: Heat, Air and Moisture,
Fundamentals, Engineering Methods, Material Properties and Exercises’.

Well known is that a performance-based approach should guarantee building
quality. Of course, physical integrity is not the only value of importance in the built
environment. Also, functionality, spatial quality and aesthetics, all belonging to the
architect’s responsibility, are, but these should never figure as arguments to neglect
a correct overall structural and physical performance.

Applied Building Physics: Ambient Conditions, Functional Demands, and Building Part Requirements,
Third Edition. Hugo Hens.
© 2024 Ernst & Sohn GmbH. Published 2024 by Ernst & Sohn GmbH.
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Further Reading

CIB-W40 (1975). Quantities, Symbols and Units for the description of heat and moisture
transfer in Buildings: Conversion factors, IBBC-TNP, report no. BI-75-59/03.8.12,
Rijs-wijk.

ISO-BIN (1985). Standards series X02-101 – X023-113.
Kumaran, K. (1996). Task 3: Material Properties, Final Report IEA EBC Annex 24,

ACCO, Leuven, 135 p.
De Freitas, V. P. and Barreira, E. (2012). Heat, air and moisture transfer terminology,

parameters and concepts, Report CIB W040, 52 p.
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1

Ambient Conditions Out- and Indoors

1.1 Overview

The role the ambient conditions have in building physics could be compared to the
role loads have in structural engineering, the reason why the term ‘ambient or envi-
ronmental loads’ is often used. Their knowledge is essential to make appropriate
decisions when designing building envelopes and whole buildings. The components
shaping the conditions out- and indoors are:

Outdoors Indoors

Air temperature 𝜃e Air temperature 𝜃i

Radiant temperature 𝜃R

Relative humidity (RH) 𝜙e Relative humidity (RH) 𝜙i

(Partial water) vapour pressure pe (Partial water) vapour pressure pi

Solar radiation ES

Under-cooling qrL

Wind vw Air speed v
Rain and snow gr

Air pressure Pa,e Air pressure Pa,i

In what follows, all are discussed separately. Bear in mind though that the greater
the difference between the out- and indoor temperature and relative humidity is, the
stricter the envelope and HVAC performance requirements become. If not, main-
taining thermally comfortable and environmentally healthy conditions indoors will
among other things require more energy than acceptable.

Predicting the future climate outdoors remains a guess. Not only are most
components not measured everywhere, but the future is never a copy of the past
and does not obey the paradigm ‘the longer the data chain available, the better the

Applied Building Physics: Ambient Conditions, Functional Demands, and Building Part Requirements,
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Figure 1.1 Global warming, (a) increase in the world’s average annual temperature from
1850 to 2014; (b) the same for Uccle, Belgium.

forecast’. Moreover, global warming combined with the actual measures taken and
future measures that will be taken to minimize the emission of global warming
gasses, is loading any long-term prediction with uncertainty, see Figure 1.1.

A way to bypass that uncertainty is by using reference values and reference years
for any performance check requiring climate data. Many of the facts and trends illus-
trating this in the book come from the weather station at Uccle, Belgium (50∘ 51′

north, 4∘ 21′ east). The large number of observations available there allowed to syn-
thetize what happened over the last century.
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1.2 Outdoors

1.2.1 In General

The geographic location is what largely determines the climate: northern or south-
ern latitude, proximity of the sea, presence of a warm or cold sea current, and height
above sea level. Of course, also microclimatic factors play. In city centres, the air
temperature is on average 4–6 ∘C higher than at the countryside, while the rela-
tive humidity (RH) is lower and the solar radiation less intense, a reality called the
urban heat island effect. To illustrate, Table 1.1 lists the monthly mean dry bulb tem-
peratures measured at Uccle and Sint Joost for the period 1901–1930, both weather
stations in the Brussels region, with the Uccle one situated in a green area and the
Sint Joost one in the city centre.

From the annual down to the daily fluctuations, all are linked to the earth’s
elliptic orbit around the sun, the earth’s inclination, the rotation around its axis
and at its surface, more locally, the sequence of low- and high-pressure days. As a
consequence, outside the equatorial band with its wet and dry seasons, each year
sees a winter, springtime, summer and autumn passing. In addition, each 24 hours,
day- and night-time alternate. In temperate and cold climates, high pressure brings
warmth in summer and cold in winter, while low pressure cares for more moderate
but often wet weather in summer and fresh but wet weather in winter. Anyhow,
the last decennia, global warming is changing these patterns. New are more heat
waves in summer, sequences of days showing excessive rain fall and warmer
winters.

The data needed should focus on the annual cycle, the daily cycle and the
daily averages. From a meteorological point of view, the 30-year averages, for the
twentieth to twenty-first century 1901–1930, 1931–1960, 1961–1990, 1991–2020,
2021–2050, figure as the annual reference. Due to long-term climate changes
induced by solar activity and global warming, the consequence of a still increasing
imbalance between GW-gasses released and removed from the atmosphere, the
trend to warmer, just mentioned, is real. Relocation of weather stations, more
accurate measuring and the way averages are calculated also impact the data.
Up to 1930, as daily mean was used the average between the daily minimum and
maximum temperature logged by a minimum/maximum mercury thermometer.
Today, the air temperature is logged each 10′ and the daily mean is calculated as the
average of the 144 values so obtained.

Table 1.1 Monthly average dry bulb temperature at Uccle and Sint Joost, Brussels (∘C).

Month J F M A M J J A S O N D

Uccle 2.7 3.1 5.5 8.2 12.8 14.9 16.8 16.4 14.0 10.0 5.2 3.7
Sint Joost 3.8 4.2 6.8 9.4 14.6 16.7 18.7 18.0 15.4 11.2 6.4 4.7
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1.2.2 Air Temperature

Calculating the heating and cooling load and estimating related annual end energy
use requires knowledge of the outside air temperature, while the loads so quanti-
fied fix the size and the investment in the HVAC installation and the energy use
as annual cost. From day to day, the air temperature further impacts the heat, air,
moisture stress building enclosures endure, while high hourly values increase over-
heating risk indoors. As imposed by the World Meteorological Organization (WMO),
the measuring accuracy in the open field, 1.5 m above grade in a thermometer hut
(Figure 1.2) should be ±0.5 ∘C. Table 1.2 gives the 30-year monthly averages for sev-
eral weather stations across Europe and North America.

An annual average with one harmonic reflects the table data quite well, although
two harmonics, the second on a half a year basis, do better:

Single harmonic∶ 𝜃e = �̄�e + A1,1 sin
( 2𝜋t

365.25

)
+ B1,1 cos

( 2𝜋t
365.25

)
(1.1)

Two harmonics∶
𝜃e = �̄�e + A2,1 sin

( 2𝜋t
365.25

)
+ B2,1 cos

( 2𝜋t
365.25

)
+ A2,2 sin

( 4𝜋t
365.25

)
+ B2,2 cos

( 4𝜋t
365.25

) (1.2)

In both �̄�e is the annual average and t time.
For three locations, the two harmonics gave as a result (∘C, also see Figure 1.3):

�̄�e A2,1 B2,1 A2,2 B2,2

Uccle 9.8 −2.4 −7.4 0.45 −0.1
Kiruna −1.2 −4.2 −11.6 1.2 0.5
Catania 17.2 −4.1 −6.6 0.8 0.2

Figure 1.2 Thermometer hut.


