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Microplastics (MPs) are emerging global contaminants, and the scientific community is becoming increasingly 
interested in this topic. This book discusses recent developments in multidisciplinary research on MPs, including 
their distribution in the soil, hydrosphere, and aerosphere, as well as their sources, fates, distribution, toxicity, and 
management. Particularly during the SARS-CoV-2 pandemic, there has been tremendous production and 
consumption of single-use MPs. But although most MPs are produced on land, they are eventually deposited in 
the marine environment. This book reviews the state of single-use plastics and MPs in the atmosphere, the ocean, 
soil systems, and the food chain and food web along with treatment technologies and management.

The sampling, processing, and analytical procedures employed to date to identify MPs are complex. Leaching 
MPs from landfills and industrial wastewater, vector transport of pollutants, and MPs found on beaches and in 
marine settings are all evaluated in the hydrosphere. Additionally, MPs in sewage sludge, soils fertilized with 
sludge, and soils irrigated with wastewater are explored, as well as any potential consequences for plants and 
human health. Important management strategies are also covered, including suggestions for useful information 
for policymakers, non-experts, environmental researchers, ecologists, and toxicologists. The interplay of MPs at 
the macro and molecular levels with the human, animal, and environmental domains is highlighted (Figure 1). 
As MPs enter or accumulate in the food chain or participate in the food web, their fate in the ecosystem is crucial. 
It is well-recognized that MPs have a significant capacity for adsorbing a wide range of pollutants, particularly 
organic toxins. Therefore, it is anticipated that all of the findings will contribute to the establishment of necessary 
environmental laws and policies as well as pinpoint knowledge gaps regarding MP pollution and contamination.

MPs in the environment originate from a variety of sources and are distributed worldwide. Sources include 
abrasion of synthetic textiles during laundry, tire abrasion while driving, city dust, spills, road markings, weather-
ing and abrasion by vehicles, marine coatings, etc., in addition to domestic items such as personal care products 
and industrial uses such as plastic pellets in manufacturing, transport, and recycling. MPs also come from marine 
accidents such as the X-Press Pearl maritime disaster in 2021, which released thousands of tons of plastic nurdles 
and other polymers into the marine environment, contaminating coral reefs, seagrass beds, and the food chain. 
The pathways of global MP cycling include the road runoff pathway, wastewater pathway, wind pathway, and 
ocean pathway. The fate of MPs in the environment is particularly important because they are transferred to and 
accumulate in the food chain and become part of the food web.

Management of plastics and MPs is critical for many reasons:

1)	 Every year, several million tons of primary and secondary MPs leak into the oceans.
2)	 Discarded plastics could wrap around the earth four times in a single year.
3)	 Disposable plastic items represent 50% of marine litter.
4)	 About 95% of disposable plastic packing is wasted.
5)	 Plastics can survive in the environment for up to 500 years.
6)	 Recycling plastics takes 88% less energy than making new plastic. We can save a huge amount of gasoline by 

recycling plastics.

Preface
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“Mission Starfish 2030: Restore Our Ocean and Waters” is a document prepared by an independent commission 
of the European Union for Healthy Oceans, Seas, and Coastal and Inland Waters. Its overall goal is to restore the 
earth’s oceans and waters by 2030. More concretely, inspired by the shape of a starfish, the Mission highlights four 
interdependent challenges  – unsustainable footprint; climate change; lack of understanding, connection, and 
investment; and inadequate governance – by proposing five overarching objectives for 2030:

a)	 Filling the knowledge and emotional gap
b)	 Regenerating marine and water ecosystems
c)	 Zero pollution
d)	 Decarbonizing our waters, ocean, and sea waters
e)	 Revamping governance

This book is relevant for helping to achieve the Mission Starfish goals via plastic abatement.

Figure 1  The word cloud map generated from the titles and keywords of the chapters in this book.
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Single Use Plastics
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1.1  Introduction

Plastics consist of monomers, additives, dyes, and other ingredients, most of which are toxic. They are combina-
tions of unreacted monomers and hazardous chemicals that can cause adverse health effects if they enter the 
human body. Microplastics are plastics smaller than 5 mm (Arthur et al. 2009; Thompson et al. 2004) formed from 
the breakdown of plastics over time due to natural or anthropogenic causes. Even if microplastics are not visible, 
they can affect the quality of the air, water, and soil.

Most microplastics are created by the breakdown of larger items such as clothing, car tires, and mismanaged 
urban plastic waste. It is known that microplastics accumulate in the soil and roadside dust in cities (Jan Kole 
et al. 2017). Low-density polymeric materials can easily be suspended by wind, water, and vehicle traffic and 
transported long distances by air circulation, leading to the presence of microplastics in different areas of the 
environment.

Another source of microplastic is the textile industry (Bhat et al. 2021). Synthetic fibers are necessary materials 
originating from the textile industry and are used in every field. Polyester, especially polyethylene terephthalate, 
is the most widely used synthetic fiber in the textile industry due to its hydrophobic property, elasticity, and high 
thermal insulation. Other fibers used in the textile industry are nylon, acrylic, and polypropylene.

Plastics are considered environmentally permanent; however, once released into the environment, they 
become susceptible to disintegration by exposure to external forces like chemical decomposition, photo-
oxidation, biological decomposition, and mechanical forces that disrupt their structural integrity. Plastics that 
are broken down naturally or anthropogenically by external factors are not destroyed but are broken down into 
smaller pieces each time.

Although the basis of plastics is petroleum, which is organic, its structure suits the purpose of plastic. Each 
different type of plastic means another chemical bond and the use of another chemical. There are more than 5000 
different types of plastic on the market, so the number of chemicals used to produce plastic is quite large 
(Zimmermann et al. 2019). Each plastic’s unique structure causes the plastics to be not evaluated as a whole, and 
recycling becomes difficult. It has been observed that microorganisms can degrade most organic-based polymers 
in a hot and humid environment. However, providing a suitable environment is not easy in practice, and more 
research is needed to confirm the validity of this approach (Pekhtasheva et al. 2012).
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Microplastics can be harmful to humans, animals, and the environment due to their small dimensions (Bhat 
et  al.,  2022a,  2022b). They have been found in humans: for example, cellulosic and plastic microfibers were 
observed in human lung tissue (Pauly et al. 1998). Research has also found that a person can breathe between 
26 and 130 airborne microplastics in an indoor environment (Prata 2018). Plastic fibers have been found to remain 
in lung fluid for 180 days (Law et al. 1990). Therefore, inhaling microplastics will cause problems due to their 
accumulation in the human body (Bhat et al., 2022a, 2022b).

Microplastics and nanoplastics are new topics, and their definitions are still limited. Microplastics are defined 
based on their size as polymeric particles ˂5 mm (Arthur et al. 2009; Thompson et al. 2004). Very little biological 
information is known about polymeric particles ˂5 mm and are more likely to be ingested than larger items. 
However, the decision about size limits is not based on actual evidence but rather on pragmatism. Using the prefix 
micro, the size definition of microplastics should be within the micro range: between 1 and 1000 μm. If we use a 
size definition below ˂5 mm, these polymeric particles should be described as millimeter-, micro-, and nano-sized 
polymeric plastics, because the ˂5 mm definition includes the millimeter, micrometer, and nanometer size range. 
From a nomenclature point of view, it would be intuitive to categorize plastics based on conventional size units. 
In general, plastics with sizes in the nanometer scale (1–1000 nm) should be nanoplastics. Following this reason-
ing and using the SI prefixes for length, microplastics would have sizes of 1–1000 μm, followed by milli-plastics 
(1–10 mm), centi-plastics (1–10 cm), and deci-plastics (1–10 dm). However, this conflicts with the current termi-
nology. For example, nanoplastics and microplastics are typically considered 1–100 nm and 1–5000 μm in size, 
respectively. Accordingly, new size categories, fully consistent with the SI nomenclature, would have little chance 
of being adopted by the scientific community. As a pragmatic compromise, we propose the following categories: 
(i) nanoplastics, 1 to <1000 nm (to conform to existing definitions of nanomaterials, a subdivision in nanoplastics 
[1 to <100 nm] can be made); (ii) microplastics, 1 to <1000 μm; (iii) mesoplastics, 1 to <10 mm; and (iv) macro-
plastics, 1 cm and larger.

Apart from the size definition, researchers also define microplastics as polymeric particles produced from the break-
down of bigger plastic particles, while nanoplastics are formed from microplastics; however, microplastics and nano-
plastics are also categorized into primary and secondary polymeric particles. So, the definitions of microplastics and 
nanoplastics should include both primary and secondary polymeric particles. We define microplastics and nanoplas-
tics as polymeric particles that are either deliberately designed for commercial use or produced from the breakdown 
of larger plastic particles. It is clear that microplastics (˂5 mm) include a broad range of sizes, and it is impossible to see 
all these particles with the naked eye, especially when taking a sample in the micro or nano range. Microplastics can 
also be defined as polymeric particles, half of which can be seen by the naked eye.

The majority of studies on microplastics to date have seen fibers in their samples irrespective of other types of 
microplastics (Dris et al. 2015, 2016, 2017; Prata et al. 2020; Soltani et al. 2021; Song et al. 2021; Su et al. 2020; 
Szewc et al. 2021; Truong et al. 2021). The reason is that fibers are straight and long and usually larger than other 
microplastics like pellet fragments. Researchers have primarily focused on the millimeter size of microplastics, 
and fibers are abundant under this size range. Other microplastics can also be seen under the micro- or nanometer 
size range dimensions, including pellets, fragments, granules, films, etc. So during the analysis of microplastics in 
the future, not only the millimeter size range but also micro-size ranges should also be considered.

Scientific study using bibliometric analysis has recently gained popularity (Can-Güven  2020; Eraslan 
et al. 2021; Sun et al. 2020; Yu et al. 2020). Statistical and quantitative analysis of research publications displays 
quantifiable data when examining research trends in the literature for the growth of specific themes. As a result, 
we can analyze the specific research patterns and characteristics of the research literature in a given field, such 
as the metrological characteristics of the research literature in that field. This approach is also gaining popularity 
as a tool for scientific investigation. The data visualization and analysis software RStudio (biblioshiny, the shiny 
interface for bibliometrix) has transformed traditional bibliometric analysis, making it one of the most popular 
tools for knowledge mapping (Eraslan et al. 2021). It enhances the visualization of the analytic process and ena-
bles quick access to the bibliometric structure of a study subject. This can assist researchers in identifying poten-
tial future study hotspots.


