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Preface

This book contains practical demonstrations of numerically obtaining the Fourier trans-
form of given numerical data. In particular, we demonstrate how to obtain the frequencies
that are present in data numerically, using what is called discrete Fourier transform. We
have used programs written in Mathematica in this regard.

To obtain the Fourier series, we first need to know the frequencies that we need to use.
Here lies a need for the Fourier transform. We find that if we have the Fourier series for
a function y(t), we can plot the Fourier series in an extended interval of time t. We find
that a function need not be periodic to be expressed analytically as a Fourier series. But
after expressing the function as a Fourier series, we can plot it in an extended interval of
time and get repeated or periodic plots of the original non-periodic function.

This book also contains numerical solutions of differential equations of driven damped
oscillators using the 4th-order Runge-Kutta method using programs written in Mathemat-
ica. Data of the numerical solution are compared with analytical solutions and are fed to
a discrete Fourier transform program to obtain frequency content of the oscillator using
programs written in Mathematica.

The behavior of mechanical systems such as driven damped oscillators can be depicted
by plotting velocity versus displacement, rather than displaying displacement as a function
of time. This velocity versus displacement coordinate system is known as phase space.
The trajectory in phase space provides another perspective of a system, and often it is
more valuable than the displacement versus time plot. We have depicted the motion of a
simple harmonic oscillator, a damped harmonic oscillator and a driven damped oscillator
in phase space.
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vi Preface

This book contains the first and first-hand practical demonstrations of obtaining dis-
crete Fourier transform of data numerically using Mathematica. We have explored the use
of discrete Fourier transform using Mathematica. Besides graduate students for the course
titled Computational Physics, this book will prove useful to all of Physical Science and
Engineering who often need to know the frequencies that are present in numerical data.
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1Exploring Fourier Transform and Fourier
Series Approximation Numerically

Abstract

This chapter contains practical demonstrations on numerically obtaining Fourier trans-
form of given numerical data. In particular, we demonstrate how to obtain the
frequencies that are present in the data numerically using what is called discrete
Fourier transform. We also demonstrate how to numerically obtain Fourier series
approximation to any function. Programs were written in Mathematica in this regard.

1.1 Frequency Content in Oscillatory Motion

Suppose, we have a given set of numerical data, for an oscillatory motion. For example,
suppose, we have a set of values of displacement y of a particle for a given set of values
of time t. We can numerically get the frequencies that are present in the data by obtaining
Fourier transform. This is outlined in the following.

Fourier transform pair is given by

y(t) = 1√
2π

+∝∫

−∝
Aeiωt dω (1.1)

and

A = 1√
2π

+∝∫

−∝
y(t) e−iωt dt (1.2)
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2 1 Exploring Fourier Transform and Fourier Series Approximation …

Equation (1.2) tells us about frequency content in Eq. (1.1). In other words, Eq. (1.2)
tells us which frequencies are present in the data for y and relative importance or
dominance of these frequencies.

To find A numerically, we replace Eq. (1.2) by

A = 1√
2π

T∫

0

y(t) e−iωt dt (1.3)

as an approximation. Here 0 to T is a time interval in which we have a set of numerical
data for y(t). T need not be true period in the oscillatory motion. We take y(t) = y(t +
T ).

We know from trapezoidal rule for numerical integration that

T∫

0

v dt = h

2

[
v0 + 2(v1 + v2 + v3 + · · · + vn−1) + vn

]
(1.4)

where vi’s are equally spaced values of v, in the interval 0 to T; h is the spacing. If v0 =
vn, we get

T∫

0

v dt = h(v1 + v2 + v3 + · · · + vn) (1.5)

As such, Eq. (1.3) can now be written as

A(n) = h
1√
2π

N∑
k=1

yk e
−iωn1 tk (1.6)

where yk is value of y for t = tk = k h, ωn1 = n1 ω1 = n1 (2π/T ) with T = N h. n1 =
0, 1, 2, 3, …, N. ω0 = 0 for n1 = 0 corresponds to the zero frequency or dc component
of the signal y(t) that does not oscillate. n = n1/T Eq. (1.6) gives

A(n) = h√
2π

N∑
k=1

yk e
−i

(
n1

2π
Nh

)
k h

or,

A(n) = h√
2π

N∑
k=1

yk e
−i

(
2π
N

)
kn1 (1.7)

or,


