
Bertrand Meyer Editor

The French
School of
Programming

The French
School of
Programming

Bertrand Meyer
Editor

The French
School of
Programming

Editor
Bertrand Meyer
Constructor Institute
Schaffhausen, Switzerland

ISBN 978-3-031-34517-3 ISBN 978-3-031-34518-0 (eBook)
https://doi.org/10.1007/978-3-031-34518-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-34518-0
https://doi.org/10.1007/978-3-031-34518-0
https://doi.org/10.1007/978-3-031-34518-0
https://doi.org/10.1007/978-3-031-34518-0
https://doi.org/10.1007/978-3-031-34518-0
https://doi.org/10.1007/978-3-031-34518-0
https://doi.org/10.1007/978-3-031-34518-0
https://doi.org/10.1007/978-3-031-34518-0
https://doi.org/10.1007/978-3-031-34518-0
https://doi.org/10.1007/978-3-031-34518-0

We dedicate this book to the memory of

Gilles Kahn (1946–2006),

a pioneer of programming research in France
and onetime director of INRIA, who exerted
a profound influence on an entire generation
of researchers.

Foreword

An email from BertrandMeyer in November 2022 surprised me. He asked if I would
write a foreword for this collective volume on programming written by French
researchers. I was flattered, of course. But the surprise was what Bertrand said next.
In spite of the book’s title, The French School of Programming, Bertrand said, “As
a matter of fact no such ‘school’ exists in the strict sense.” But I believe that it does
exist. I know this because I learned a lot of my computer science directly from its
members.

I learned the foundations of distributed algorithms from Michel Raynal’s books,
particularly Synchronization and Control of Distributed Systems and Programs
(with Jean-Michel Hélary). The books gave me the background for industrial
distributed and concurrent systems, where I applied formal methods for assurance.
These projects include nuclear secondary protection systems (the final line of
defense with voting implemented using Laddic magnetic devices); railway signaling
systems (with minimum headways between trains guaranteed by automatic synchro-
nization control); and smart cards for financial transactions (a massively distributed
system with no centralized control).

I learned abstract interpretation from Patrick and Radhia Cousot. I discovered the
beauty and utility of Galois connections. This led me to appreciate the elegance of
Hoare and He’sUnifying Theories of Programming, which has formed the backbone
of my research in the semantics of heterogeneous systems over the last two decades.

Marie-Claude Gaudel introduced me to her theoretical framework for under-
standing the relationship between testing and proof. She showed that testing could
tell us more than whether an implementation conforms to a specification on a given
test set. Her framework describes a landscape with two extremes. At one end, we
prove nothing, but we need an infinite amount of testing. At the other, we test
nothing, but we need a complete proof of a system and its context. We can move
across this landscape, positioning ourselves between the two extremes. We need
to make assumptions about the system under test that support selecting bounded
test sets. Marie-Claude showed that testing can be based on strong principles. I
am currently applying her ideas to a testing theory for probabilistic behaviors.
Our systems under test are artificial neural networks, robotics, and cyber-physical

vii

viii Foreword

systems. They solve decision and control tasks under uncertainty. A route to greater
resilience for these systems is through a rigorous testing theory. As Marie-Claude
might have said, probabilistic testing can be formal too.

In the late 1980s, I read Bertrand Meyer’s book Object-Oriented Software
Construction. I learned Eiffel and strengthened my knowledge of design by contract
in a programming language. I used the book to teach a course on object-oriented
programming twice a year to Oxford’s part-time masters students from industry.
The use of assertions as test oracles was well received and became standard practice
in several partner companies.

This book contains contributions by other members of the French School. Jean-
Marc Jézéquel has made significant contributions to the foundations of the theory
of model-driven architecture. Giuseppe Castagna has established the foundations of
session types. Pierre-Louis Curien has made fundamental contributions to research
in theoretical computer science, including programming languages and proof theory.
Jöelle Coutaz has been influential in human-computer interaction, including user
interface plasticity and multimodal interaction. Jean-Pierre Jouannaud has helped
establish the theory and practice of term rewriting. Jean-Jacques Ĺevy has made
fundamental contributions to our understanding of concurrency and mobility,
particularly through the join-calculus. Jean-Pierre Briot has helped us to understand
the fundamentals of actors and agents. Thierry Coquand has made important
contributions in constructive mathematics, especially the calculus of constructions.

Finally, the French computer scientist Jean-Raymond Abrial influenced me. (He
has not made a contribution to this book.) Abrial’s work on the Z notation inspired
my entire career. I attended a course he gave at Wolfson College in Oxford in the
early 1980s. I was working in industry and immediately saw how to apply his
ideas to practical projects. I wrote specifications for the storage manager and the
call processing subsystems for the operating system in GEC’s System X telephone
exchanges. I started teaching Z to others in the industry. I even wrote a couple
of books on software specification using Z. Abrial’s insights are responsible for
my reputation as a computer scientist. He taught me how to use mathematics
for software specification and development. I helped apply Z to IBM’s Customer
Information Control System. It is a family of mixed-language servers that provide
online transaction processing. The project won a Queen’s Award. I used a refinement
theory based on Z to prove the correctness of theMondex smart-card protocol. It was
the first product certified to the very highest level of information security (ITSEC
level 6). I taught Z to thousands of students around the world and in the global south
in particular.

So yes, there is a French School of Programming. Rigor and mathematics
underpins its research and has led to many remarkable breakthroughs in computer
science. Somewhat fancifully, I see the school as a modern computer science version
of the Bourbaki collective. Forty years ago, I made the trip from theWolfson College
workshop to look at the shelves in Oxford’s Whitehead Library full of books by
the prolific and elusive mathematician that never was. But the French School of
Programming has real computer scientists who have made a huge contribution to

Foreword ix

our discipline and influenced all computer scientists everywhere over the last 50
years. I know, because I am one of them.

University of York
York, UK

Jim Woodcock

December 2022

Preface: The French School of
Programming

Is there one? Not in the physical sense of a school building featuring a big
“FRENCH SCHOOL OF PROGRAMMING” sign above the door, classrooms, and
students. (Not even in the Rue des Écoles in Paris, the Street of Schools, including
among others the famous Collège de France where Gérard Berry, one of the authors
of this book, teaches.) Also not in the virtual sense of a formal association of
like-minded colleagues, such as the School of Nancy in glassmaking or the School
of Barbizon in painting. The French computer science and software engineering
community is in tune with the rest of the international science and technology world
and has always participated enthusiastically in all its main currents, from the most
academic and formal to the most industrial and practical. The contributions to this
volume are representative of this vibrant diversity of interests and trends.

And yet there is a common spirit. A quest for elegance and simplicity; insistence
on a sound mathematical basis, supported by the great tradition of French math-
ematics and its influence on the teaching of mathematics in lycées, universities,
and grandes écoles; a focus on the truly important problems: these are some of
the distinctive traits of the best work carried out by French researchers and by
researchers in French institutions.

Starting from this observation, we contacted in December 2020 some of the most
prestigious names in the field with a request to contribute. Most of those approached
responded positively; the present volume, with its 13 contributions, is the result,
produced after a mutual review process and many discussions. While no restriction
had been stated regarding the possible involvement of coauthors, the contributions
turned out all to be single-author, showing how seriously the contributors took the
request to provide an original chapter reflecting some of their best work.

The book is divided into four parts, reflecting the diversity of interests in the
French community and each of them corresponding to an area in which it has made
major contributions over several decades:

• Software engineering (Part I)
• Programming language mechanism and type systems (Part II)

xi

xii Preface: The French School of Programming

• Theory (Part III)
• Language design and programming methodology (Part IV)

They are preceded by a Preface and an Overview chapter. To reflect how
intricately the community is bound to its international counterparts, it was important
to start the volume by providing the perspective of a foreign colleague. Jim
Woodcock, long involved in collaborations with some of the authors of this book
and other members of the community, was kind enough to provide the insightful
Foreword. The Overview chapter was written by Gérard Berry; it is not only a
personal scientific history (of both the author and the French School, of which he
has been a prominent member) but also an introduction to the rest of the volume.

Part I, Software Engineering, starts (Chap. 2) with an appraisal by Marie-
Claude Gaudel of her own pioneering work on software testing, which played a
major role in providing a sound theoretical basis for testing, now accepted as a full
part of the verification process with its own mathematical basis, and extended here
with new perspectives. Another critical area which today enjoys solid theoretical
foundations is distributed computing, in no small part thanks to the books and
articles by Michel Raynal; Chap. 3 gives an excellent overview of both the field and
his work, with simplicity as its core concept. Jean-Marc Jézéquel was for many years
Director of IRISA, the Brittany branch of Inria (the legendary national research
center in computer science and digital technologies), the source of numerous major
contributions; he is also a top researcher in software engineering and has been active
in developing one of the principal trends in the field, model-driven engineering.
Chapter 4 is, like several others in the book, a combination of a survey of this
field and a description of the author’s individual journey through it. Again in the
same spirit of a personal appraisal of a field to which the author has made prime
contributions, Joëlle Coutaz describes in her richly illustrated Chap. 5 the stunning
evolution of software engineering for human-computer interaction.

Part II has three chapters devoted to programming language mechanisms and
type systems, with a mix of theoretical and practical contributions, reflecting the
unique richness of French work in this field and the lack of a strict separation
between formal and informal approaches. In Chap. 6, Jean-Pierre Briot discusses an
important abstraction, agents, providing a unifying generalization of classical pro-
gramming language concepts of procedure, object, actor, component, and service.
He shows the power of this concept and, as in other chapters, describes it in part by
telling the story of his own personal itinerary. Chapter 7 by Pierre-Louis Curien is
perhaps the most personal of all, describing his discovery of denotational (Scott-
Strachey) semantics, all the way to sequential algorithms, “categorical abstract
machines,” and the Caml and OCaml languages—another set of widely influential
French developments—as well as the Curry-Howard correspondence and other
fundamental dualities in proofs, logic, and programming languages. Chapter 8
by Thierry Coquand (whose work has profoundly marked the field of logic for
computer science, in particular through the Coq proof assistant, one of the most
widely used frameworks for software verification) ponders dependent system theory,

 20302 13691 a 20302 13691
a

http://doi.org/10.1007/978-3-031-34518-0_2

 12772 21691 a 12772
21691 a

http://doi.org/10.1007/978-3-031-34518-0_3

 1939 29691 a 1939 29691
a

http://doi.org/10.1007/978-3-031-34518-0_4

 28515 33691 a 28515 33691 a

http://doi.org/10.1007/978-3-031-34518-0_5

 20581 40358 a 20581 40358 a

http://doi.org/10.1007/978-3-031-34518-0_6

 22595 45691 a 22595 45691 a

http://doi.org/10.1007/978-3-031-34518-0_7

 34281 52358 a 34281 52358 a

http://doi.org/10.1007/978-3-031-34518-0_8

Preface: The French School of Programming xiii

an opportunity to provide a sweeping review of ideas in the field since the days of
the first AUTOMATH system.

Part III is devoted to theory. Chapter 9 continues the practice of telling
the personal story of important discoveries; Patrick Cousot describes the initial
insights that led him, together with Radhia Cousot, to invent the theory for which
they are famous, abstract interpretation, and takes us through its advances and
developments through the years. Abstract interpretation is an outstanding example
of a theory that is both mathematically elegant and rich with practical applications to
industrial software verification. In Chap. 10, Jean-Jacques Lévy, another prestigious
representative of the French school of programming languages and logic, explores
the notion of redex in lambda calculus and its many ramifications. Jean-Pierre
Jouannaud, author of Chap. 11, is a pioneer in an important theoretical approach
to computing and programming, rewriting systems; in his chapter, he provides
a sweeping survey of the field and many insights into the nature of functional
programming and functional languages.

The two chapters of Part IV, Language Design and Programming Methodol-
ogy, are longer than the others and may be viewed as small monographs. Chapter
12 by Giuseppe Castagna is a comprehensive presentation of a wide range of topics
in type theory and develops an extensive unifying theory. This chapter reflects the
broad scope of the “French School” concept, as the authors of this book include both
French researchers working abroad and foreigners having pursued their careers in
France; the latter category has among others included Italians, particularly in type
theory and semantics where the French and Italian schools have enjoyed close links.
In the final Chap. 13, I take the reader through a number of fundamental decisions
in the design of Eiffel and contrast them with the corresponding choices in such
languages as Java, C++, and C#, which the chapter argues are based on a flawed
understanding of object-oriented ideas, damaging to the quality of the resulting
software.

Heartfelt thanks are due to the authors who responded to the call and provided not
pièces de circonstance but, in all cases, highly personal, substantial, and insightful
contributions. The preparation of the volume provided a pleasant experience of
collaborative work.

In no way is this collection exhaustive; even as it was being completed, some
participants already commented about who else could have participated and what
a second volume might include. No such plans currently exist, but this book as it
stands, with each chapter written by a major contributor to the field, often on a topic
that he or she created, offers countless insights into both decisive past advances and
promising ideas for the future. It provides a fascinating look into some of the most
burning concepts of modern programming.

Zurich Bertrand Meyer
April 2024

 18374 2360 a 18374 2360 a

http://doi.org/10.1007/978-3-031-34518-0_9

 16032 10360 a 16032
10360 a

http://doi.org/10.1007/978-3-031-34518-0_10

 10893 14360 a 10893
14360 a

http://doi.org/10.1007/978-3-031-34518-0_11

 -2016 22360 a -2016 22360 a

http://doi.org/10.1007/978-3-031-34518-0_12

 6097 30360 a 6097 30360 a

http://doi.org/10.1007/978-3-031-34518-0_13

Contents

1 The French School of Programming: A Personal View 1
Gérard Berry

Part I Software Engineering

2 “Testing Can Be Formal Too”: 30 Years Later . 17
Marie-Claude Gaudel

3 A Short Visit to Distributed Computing Where Simplicity Is
Considered a First Class Property . 47
Michel Raynal

4 Modeling: From CASE Tools to SLE and Machine Learning 69
Jean-Marc Jézéquel

5 At the Confluence of Software Engineering
and Human-Computer Interaction:
A Personal Account . 89
Joëlle Coutaz

Part II Programming Language Mechanisms and Type Systems

6 From Procedures, Objects, Actors, Components, Services,
to Agents . 125
Jean-Pierre Briot

7 Semantics and Syntax, Between Computer Science
and Mathematics . 147
Pierre-Louis Curien

8 Some Remarks About Dependent Type Theory . 175
Thierry Coquand

xv

xvi Contents

Part III Theory

9 A Personal Historical Perspective on Abstract Interpretation 205
Patrick Cousot

10 Tracking Redexes in the Lambda Calculus . 241
Jean-Jacques Lévy

11 Confluence of Terminating Rewriting Computations 265
Jean-Pierre Jouannaud

Part IV Language Design and Programming Methodology

12 Programming with Union, Intersection, and Negation Types 309
Giuseppe Castagna

13 Right and Wrong: Ten Choices in Language Design 379
Bertrand Meyer

About the Authors1

Gérard Berry is Professor Emeritus à Collége de France. He worked from 1970
to 2001 at the École des Mines and Inria. His research and industrial activities con-
cerned the mathematics and logic of computing, toward the design of semantically
clean programming languages in close connection with novel computation models
and application fields. From 1970 to 1982, he introduced the syntactic and semantic
notions of stability and sequentiality, which were keys to the solution, with Pierre-
Louis Curien, of the full abstraction problem (building semantics that exactly reflect
the operational properties of the language) for lambda calculus-based languages.

In 1982, he turned to real-time and reactive programming, creating a mixed
research group with control theorists and computer scientists. The key novelty was
pure synchrony, in which concurrent processes are assumed to react instantaneously
to incoming events and internal communication to produce their outputs. This led to
the definition of the synchronous concurrent language Esterel and its mathematical
semantics, with evolutions and implementations from 1984 to 2007, in strong
cooperation with the Lustre group in Grenoble and the Signal group in Rennes.
Esterel gained industrial applications in such areas as avionics, communication
protocols, computer-aided design of digital circuits, hardware-software codesign,
and human-machine interfaces.

From 2001 to 2009, he was the full-time Chief Scientist of the Esterel Tech-
nologies startup company, which improved and industrialized Esterel for hardware
and software applications at Dassault Aviation, Intel, Texas Instruments, STMicro-
electronics, NXP, etc. Esterel Technologies then bought the Lustre/SCADE team
from Telelogic to create the SCADE 6 synchronous language which unified Esterel
and Lustre; the company was bought by Ansys in 2012, and SCADE 6 became
the world leader in certified safety-critical reactive applications with now 300+
industrial customers.

1 Institutions: CNRS is the National Center for Scientific Research. Inria is the National Institute
for Research in Digital Science and Technology. IRISA is a large Inria laboratory in Brittany
(Rennes, Lannion and Vannes).

xvii

xviii About the Authors

From 2009 to 2012, Gérard Berry came back to research as Director of Research
and President of Inria’s Evaluation Committee, also holding in parallel two yearly
chairs at Collège de France in 2007–2008 and 2009–2010. In September 2012,
he was appointed a Full Professor at Collège de France on the new Algorithms,
Machines, and Languages chair, where he taught all the above and other subjects
before becoming Emeritus Professor in September 2019.

Gérard Berry is a member of the French Academy of Sciences and Academy of
Technologies and received the 2014 Gold Medal of CNRS.

Contact: gerard.berry@college-de-france.fr; Web: https://www.college-de-
france.fr/chaire/gerard-berry-algorithmes-machines-et-langages-chaire-statutaire/
biography

Jean-Pierre Briot is CNRS Research Director in informatics at CNRS. He is
a member of LIP6, the joint informatics research lab of CNRS and Sorbonne
Université in Paris. He is also an Honorary Visiting Professor at PUC-Rio (Pontifícia
Universidade Católica do Rio de Janeiro) in Brazil.

His general research interests are in the design of intelligent adaptive and
cooperative software, at the crossroads of artificial intelligence, distributed systems,
programming languages, and software engineering. His current interest is in the use
of AI techniques (notably deep learning) for music creation processes.

He has been a visiting professor or researcher in various institutions including
UNIRIO, Kyoto University, PUC-Rio, Tokyo Institute of Technology, UIUC, USC,
and University of Tokyo. He has advised or co-advised more than 30 PhD students
and about 20 master students. He has edited 12 books or journal special issues. More
details and publications are available at https://webia.lip6.fr/~briot/cv/.

Contact: Jean-Pierre.Briot@lip6.fr; Web: https://webia.lip6.fr/~briot/

Giuseppe Castagna received a PhD degree in Theoretical Computer Science from
Université Paris 7 on January 1994. The same year he was appointed a research
scientist at CNRS and joined the Computer Science Laboratory of the École
Normale Supérieure de Paris.

In 2001, he started the “Programming Languages” group in École Normale
Supérieure which he led till fall 2006, when he was appointed Senior Research Sci-
entist of CNRS and joined the Institut de Recherche en Informatique Fondamentale
(IRIF: Research Institute on the Foundations of Computer Science) of Université
Paris Diderot. In 2011, he was peer-elected a member of the Academia Europæa.
He is, since January 2023, the director of IREF, where he served as deputy director
from 2018 to 2022.

His main research contributions are in the design and definition of typed
programming languages and in the theory of subtyping.

Contact: Giuseppe.Castagna@irif.fr; Web: https://www.irif.fr/~gc/

Thierry Coquand is known for his work in type theory, proof theory, and
constructive mathematics. His work on type theory has had a strong influence in
the design of some interactive proof assistants, such as Agda, Coq, and Lean.

 4131 10360 a 4131 10360 a

mailto:gerard.berry@college-de-france.fr
https://www.college-de-france.fr/chaire/gerard-berry-algorithmes-machines-et-langages-chaire-statutaire/biography
https://www.college-de-france.fr/chaire/gerard-berry-algorithmes-machines-et-langages-chaire-statutaire/biography
https://www.college-de-france.fr/chaire/gerard-berry-algorithmes-machines-et-langages-chaire-statutaire/biography
https://www.college-de-france.fr/chaire/gerard-berry-algorithmes-machines-et-langages-chaire-statutaire/biography
https://www.college-de-france.fr/chaire/gerard-berry-algorithmes-machines-et-langages-chaire-statutaire/biography
https://www.college-de-france.fr/chaire/gerard-berry-algorithmes-machines-et-langages-chaire-statutaire/biography
https://www.college-de-france.fr/chaire/gerard-berry-algorithmes-machines-et-langages-chaire-statutaire/biography
https://www.college-de-france.fr/chaire/gerard-berry-algorithmes-machines-et-langages-chaire-statutaire/biography
https://www.college-de-france.fr/chaire/gerard-berry-algorithmes-machines-et-langages-chaire-statutaire/biography
https://www.college-de-france.fr/chaire/gerard-berry-algorithmes-machines-et-langages-chaire-statutaire/biography
https://www.college-de-france.fr/chaire/gerard-berry-algorithmes-machines-et-langages-chaire-statutaire/biography
https://www.college-de-france.fr/chaire/gerard-berry-algorithmes-machines-et-langages-chaire-statutaire/biography
https://www.college-de-france.fr/chaire/gerard-berry-algorithmes-machines-et-langages-chaire-statutaire/biography
https://www.college-de-france.fr/chaire/gerard-berry-algorithmes-machines-et-langages-chaire-statutaire/biography
https://www.college-de-france.fr/chaire/gerard-berry-algorithmes-machines-et-langages-chaire-statutaire/biography
https://www.college-de-france.fr/chaire/gerard-berry-algorithmes-machines-et-langages-chaire-statutaire/biography
https://webia.lip6.fr/{~}briot/cv/
https://webia.lip6.fr/{~}briot/cv/
https://webia.lip6.fr/{~}briot/cv/
https://webia.lip6.fr/{~}briot/cv/
https://webia.lip6.fr/{~}briot/cv/
https://webia.lip6.fr/{~}briot/cv/

 3341 32358 a 3341 32358 a

mailto:Jean-Pierre.Briot@lip6.fr
https://webia.lip6.fr/{~}briot/
https://webia.lip6.fr/{~}briot/
https://webia.lip6.fr/{~}briot/
https://webia.lip6.fr/{~}briot/
https://webia.lip6.fr/{~}briot/

 3341 51688 a 3341 51688 a

mailto:Giuseppe.Castagna@irif.fr
https://www.irif.fr/{~}gc/
https://www.irif.fr/{~}gc/
https://www.irif.fr/{~}gc/
https://www.irif.fr/{~}gc/
https://www.irif.fr/{~}gc/

About the Authors xix

He was awarded the Kurt Gödel Society Centenary Research Prize, Senior
Category, in 2008 for his work in proof theory and constructive mathematics, and
he jointly got the ACM Software System Award in 2013 for his work in type theory.

Together with Vladimir Voevodsky (IAS Princeton) and Steve Awodey (CMU),
he organized the special year 2012–2013 at the Institute for Advanced Study,
Princeton, on the Univalent Foundations of Mathematics. Helped by a group of PhD
students and postdocs, he was able to find the first computational interpretation of
the axiom of univalence.

Contact: coquand@chalmers.se; Web: https://www.cse.chalmers.se/~coquand/

Patrick Cousot is the inventor, with Radhia Cousot, of abstract interpretation. He
received the Doctor of Engineering degree in Computer Science and the Doctor ès
Sciences degree in Mathematics from Université Grenoble-Alpes.

He is Silver Professor of Computer Science at the Courant Institute of Mathe-
matical Sciences, New York University, USA. Previously, he was Professor at the
École Normale Supérieure in Paris, the École Polytechnique, and the University of
Lorraine and Research Scientist of CNRS at the Université Grenoble-Alpes.

He was awarded the Silver Medal of the CNRS (1999), the Grand Prix of Com-
puter Science and Its Applications of the Airbus Foundation Group awarded by the
French Academy of Sciences (2006), a Humboldt Research Award (2008), and the
EATCS (European Association for Theoretical Computer Science) Distinguished
Achievements Award (2022). With Radhia Cousot, he received the ACM-SIGPLAN
Programming Languages Achievement Award (2013), the IEEE Harlan D. Mills
Joint Award (2014), and the IEEE John Von Neumann Medal (2018). He received
honorary doctorates from the Universität des Saarlandes (2001) and the Ca’ Foscari
University of Venice (2022). He is a fellow of the ACM and a member of the
Academia Europaæ.

Contact: cousot@gmail.com; Web: https://cs.nyu.edu/~pcousot/

Joelle Coutaz is Honorary Professor at Université Grenoble-Alpes and Founder of
the Engineering Human-Computer Interaction group within the Grenoble Informat-
ics Laboratory (LIG). Her research interests include human-computer interaction,
multimodal and tangible interaction, user interface plasticity, and end-user develop-
ment for smart homes and ubiquitous computing.

Since 1989 and until she retired in 2013, she was continuously involved in
European projects and active in the international scientific community. In particular,
she has been involved in the ESPRIT-FP3 BRA/LTR project AMODEUS 1&2,
the first in Europe to truly promote a multidisciplinary approach to HCI. She has
served as Vice Chair of the IFIP Working Group 2.7(13.4) on “User Interface
Engineering.” She has been a member of the editorial board of Interacting with
Computer (Oxford Academic) and of the ACM Transactions on Computer-Human
Interaction (TOCHI). She has coordinated a working group on ambient intelligence
for the French Ministry of Research to create a new trans-disciplinary field that
brings together information and communications technologies and social and human
sciences to address societal challenges in novel ways. From 2012 to 2020, she co-
directed the Amiqual4Home innovation platform in the field of ambient intelligence

 3341 10360 a 3341 10360
a

mailto:coquand@chalmers.se
https://www.cse.chalmers.se/{~}coquand/
https://www.cse.chalmers.se/{~}coquand/
https://www.cse.chalmers.se/{~}coquand/
https://www.cse.chalmers.se/{~}coquand/
https://www.cse.chalmers.se/{~}coquand/
https://www.cse.chalmers.se/{~}coquand/

 3341 35024 a 3341 35024 a

mailto:cousot@gmail.com
https://cs.nyu.edu/{~}pcousot/
https://cs.nyu.edu/{~}pcousot/
https://cs.nyu.edu/{~}pcousot/
https://cs.nyu.edu/{~}pcousot/
https://cs.nyu.edu/{~}pcousot/

 26869 46355 a 26869 46355 a

https://cordis.europa.eu/project/id/7040/en

 11531 49022 a 11531
49022 a

http://ui-engineering.org/

 27599 50355
a 27599 50355 a

http://iwc.oxfordjournals.org/

 3524 53022
a 3524 53022 a

http://www.acm.org/tochi/

 3431 58355 a 3431 58355
a

https://amiqual4home.inria.fr/

xx About the Authors

funded by the EquipEx program of the “Programme d’Investissement d’Avenir”
(investing in the future program) in collaboration with the Inria center at the
Université Grenoble Alpes.

In 2013, she was named a Chevalier of the Légion d’Honneur (order of the
Legion of Honor) for her pioneering contributions to human-computer interaction
and has received several awards, including an honorary doctorate from the Univer-
sity of Glasgow, membership in the ACM SIGCHI Academy, as well as the titles of
IFIP TC13 Pioneer and IFIP fellow for her substantial contributions and impact on
the field of human-computer interaction. She is an honorary member of the Société
Informatique de France.

Contact: joelle@crowley-coutaz.fr; Web: http://crowley-coutaz.fr/coutaz/joelle.
html

Pierre-Louis Curien is an emeritus CNRS researcher at IRIF (Institut de
Recherche en Informatique Fondamentale), a joint laboratory of CNRS and UPC
(Université Paris Cité).

His research interests revolve around the theory (or semantics) of programming
languages. His main works concern sequentiality, functional programming (design
of the categorical abstract machine, which gave its name to the language OCaml),
proof theory and type theory, and more recently homotopical algebra.

He received his PhD thesis in 1979 (under the guidance of Gérard Berry and
the distant supervision of Maurice Nivat) and his Doctorat d’Etat in 1983 (both
at Université Paris 7, ancestor of UPC). He was Cofounder and Director (1999–
2009) of the Laboratory PPS (Preuves, Programmes et Systèmes—Proofs, Programs
and Systems—now part of IRIF). He was Cofounder and Leader (2009–2019) of
the Inria joint team πr2. He acted as Deputy Director of the FSMP (Fondation
Sciences Mathématiques de Paris—Paris Mathematical Sciences Foundation) and
of the federative structures that preceded its creation (2002–2011).

He is the editor-in-chief of the journal Mathematical Structures in Computer
Science (since 2016).

He is the author of two influential books: Categorical Combinators, Sequen-
tial Algorithms, and Functional Programming, Pitman (1986), and Domains and
Lambda-Calculi, Cambridge University Press (1998, with Roberto Amadio). He
has supervised 20 PhD students. He won the 2020 Inria Grand Prize.

Contact: curien@irif.fr; Web: https://www.irif.fr/~curien/

Marie-Claude Gaudel’s research interests are in the areas of software: formal
methods, program robustness, testing, and certification.

Now retired, she was a professor at the University of Paris-Sud at Orsay (UPS),
where for several years she was the director of the LRI (Computer Science Research
Laboratory). Before joining UPS, she was a researcher at Inria and then in charge of
the Software Engineering group at the industrial research center of Alcatel-Alsthom
in Marcoussis.

She has been a member of the editorial boards of Science of Computer Program-
ming and Formal Aspects of Computing since the founding of both journals.

 26068 1027 a 26068 1027 a

https://www.inria.fr/en/inria-centre-university-grenoble-alpes

 3446 13027 a 3446 13027 a

mailto:joelle@crowley-coutaz.fr
http://crowley-coutaz.fr/coutaz/joelle.html
http://crowley-coutaz.fr/coutaz/joelle.html
http://crowley-coutaz.fr/coutaz/joelle.html
http://crowley-coutaz.fr/coutaz/joelle.html
http://crowley-coutaz.fr/coutaz/joelle.html
http://crowley-coutaz.fr/coutaz/joelle.html
http://crowley-coutaz.fr/coutaz/joelle.html

 3341 44358 a 3341 44358 a

mailto:curien@irif.fr
https://www.irif.fr/{~}curien/
https://www.irif.fr/{~}curien/
https://www.irif.fr/{~}curien/
https://www.irif.fr/{~}curien/
https://www.irif.fr/{~}curien/

About the Authors xxi

She received an Outstanding Paper Award of the IEEE Chapter of Software
Engineering for the results of her group on program robustness in Marcoussis, and
she was awarded the CNRS Silver Medal for her pioneering work on software
testing based on formal specifications. She is a Doctor Honoris Causa of EPFL
(École Polytechnique Fédérale de Lausanne) and of the University of York (UK).
She has been an invited professor and then “Pesquisador Visitante Especial” at the
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo.
Currently, she is an Honorary Visiting Professor at the University of York. She is
an active member of the French association “Femmes & Sciences” (women and
sciences). She is a Chevalier of the Légion d’Honneur (order of the Legion of Honor)
and an honorary member of the Société Informatique de France.

Contact: marieclaude.gaudel@gmail.com; Web: https://www.lri.fr/membre.php?
mb=278

Jean-Marc Jézéquel is a Professor at the University of Rennes and a member of
the DiverSE team at IRISA/Inria. Since 2021, he is Vice President of Informatics
Europe. From 2012 to 2020, he was Director of IRISA.

His interests include model-driven software engineering for software product
lines and specifically component-based, dynamically adaptable systems with quality
of service constraints, including security, reliability, performance, timeliness, etc.
He is the author of 4 books and of more than 300 publications in international
journals and conferences. He was a member of the steering committees of the AOSD
and MODELS conference series. He is currently Associate Editor-in-Chief of IEEE
Computer Society and of the journal Software and Systems Modeling, as well as
Member of the editorial boards of the Journal of Systems and Software and the
Journal of Object Technology. He received an engineering degree from Telecom
Bretagne in 1986 and a PhD degree in Computer Science from the University of
Rennes in 1989.

In 2016, he received the Silver Medal from CNRS and in 2020 the IEEE/ACM
MODELS career award. He was an invited professor at McGill University in 2022.

Contact: jean-marc.jezequel@irisa.fr; Web: https://people.irisa.fr/Jean-Marc.
Jezequel/

Jean-Pierre Jouannaud graduated from École Polytechnique and obtained his
doctorate from Université Paris 6 in 1978. He was then a professor successively
at the universities of Nancy, Paris-Sud, and École Polytechnique, as well as an
invited professor at SRI International and Stanford University, California (2 years);
Universitat Politècnica de Catalunya, Spain (1 year); Keio University, Tokyo, Japan
(6 months); National Taiwan University, Taipei, Taiwan (4 months); and Tsinghua
University in Beijing, China (5 years). He is now Professor Emeritus at Université
Paris-Saclay, Laboratoire de Méthodes Formelles (Formal Methods Laboratory).

Since the early 1980s, his research interests have been focusing on the interplay
between deduction rules, rewrite rules, decision procedures, programming lan-
guages, and type theory; in the development of programming languages, rewriting
tools, and proof assistants; and in the application of these tools to the formal proof of
systems. He is in particular known as a member of the “OBJ group,” a group of four

 3316 14360 a 3316 14360 a

mailto:marieclaude.gaudel@gmail.com
https://www.lri.fr/membre.php?mb=278
https://www.lri.fr/membre.php?mb=278
https://www.lri.fr/membre.php?mb=278
https://www.lri.fr/membre.php?mb=278
https://www.lri.fr/membre.php?mb=278
https://www.lri.fr/membre.php?mb=278
https://www.lri.fr/membre.php?mb=278
https://www.lri.fr/membre.php?mb=278

 3827 39024 a 3827 39024 a

mailto:jean-marc.jezequel@irisa.fr
https://people.irisa.fr/Jean-Marc.Jezequel/
https://people.irisa.fr/Jean-Marc.Jezequel/
https://people.irisa.fr/Jean-Marc.Jezequel/
https://people.irisa.fr/Jean-Marc.Jezequel/
https://people.irisa.fr/Jean-Marc.Jezequel/
https://people.irisa.fr/Jean-Marc.Jezequel/
https://people.irisa.fr/Jean-Marc.Jezequel/

xxii About the Authors

(Futatsugi, Goguen, Meseguer, Jouannaud) which developed the OBJ2 language in
1984 at SRI, under Joseph Goguen’s direction. He has published over 100 theory-
oriented papers which together totalize 9700 citations on Google Scholar.

During his career, he had a leading role in the creation of two conferences at the
heart to his interests: Rewriting Techniques and Applications (RTA, which became
FSCD, Formal Structures in Computation and Deduction) and Certified Programs
and Proofs (CPP, an ACM conference).

He served on editorial boards and steering/prize/scientific committees including
Information and Computation, Journal of Symbolic Computation, RTA, CSL, LICS,
CPP, the EATCS Award, the Gödel Prize (including as chair in 2010), the Kleene
Prize (as chair in 2010), the LICS “Test-of-Time Award,” the Ackermann Prize, the
Max Planck Institute at Saarbrücken, and Academia Sinica at Taipei.

Jean-Pierre Jouannaud received the SRI Award for the International Research
Fellow of the Year (1984), the Monpetit Prize from the French Academy of Sciences
(1997), and the Prize for International Cooperation between France and Taiwan
(2000).

Contact: jeanpierre.jouannaud@gmail.com; Web: http://www.lix.polytechnique.
fr/Labo/Jean-Pierre.Jouannaud/

Jean-Jacques Lévy is a senior researcher emeritus at Inria. He graduated from
École Polytechnique in 1968 and received a PhD in Computer Science at the
University of Paris 7 in 1978. He joined Inria in 1970 and served as a member
of the research staff at Digital Equipment (DEC-PRL, 1987–1988), a professor
of computer science at École Polytechnique (1992–2006), a director of the new
Inria-Microsoft Research Joint Center (2006–2013), and a visiting professor at the
Chinese Academy of Sciences (ISCAS, Beijing, 2013–2014).

He headed two Inria research teams (Para, Moscova) and two European projects
(Confer-1, Confer-2); he was Scientific Chairman at Inria Rocquencourt (1994–
1996) and Vice Chairman of Inria’s Evaluation Committee (1997–2000). He
supervised 20 PhD theses and was consultant at Xerox-PARC (1984) and DEC-SRC
(1989). He received the CNRS Médaille de Bronze (1979).

Jean-Jacques Lévy worked on compilers, lambda calculus, term rewriting sys-
tems, CAD for VLSI, system programming, programming languages for distributed
applications, and formal proofs of programs. He participated to the debugging of the
embedded software for the Ariane 5 rocket (after its explosion), and he headed the
on-board code review for the ISS European module Columbus. He is a (co-)author
of 50 publications and 1 US patent.

Contact: jean-jacques.levy@inria.fr; Web: http://pauillac.inria.fr/~levy/

Bertrand Meyer’s career has been partly in industry and partly in academia. He is
currently Professor of Software Engineering and Provost at Constructor Institute in
Schaffhausen, Switzerland, and CTO of Eiffel Software, a company he cofounded
in Santa Barbara, California. He was previously a professor and chair of the
Computer Science department at ETH Zurich. He has held visiting positions at
the University of California, Santa Barbara, the University of Technology Sydney,
Monash University, Politecnico di Milano, and the University of Toulouse. He

 3355 21027 a 3355 21027 a

mailto:jeanpierre.jouannaud@gmail.com
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/

 3341 48358 a 3341 48358
a

mailto:jean-jacques.levy@inria.fr
http://pauillac.inria.fr/{~}levy/
http://pauillac.inria.fr/{~}levy/
http://pauillac.inria.fr/{~}levy/
http://pauillac.inria.fr/{~}levy/
http://pauillac.inria.fr/{~}levy/

About the Authors xxiii

holds degrees from École Polytechnique, Stanford (MSc), the Sorbonne, and the
Université Henri Poincaré in Nancy (Dr. Sc.).

He has made contributions to a wide range of topics in software engineering,
including design and programming methodology, with the introduction of the
design by contract approach; object technology, through books and articles and
the design of the Eiffel language; formal specification and verification; concurrent
programming; computer science and software engineering education; software
tools and development environments; software processes and agile methods; and
requirements engineering. He has published numerous articles on these topics and
supervised 29 PhD theses, including 25 at ETH Zurich from 2003 to 2016.

His 13 books include Object-Oriented Software Construction (2 editions, Jolt
Award, translated into over 15 languages) and, more recently, Touch of Class (an
introductory programming textbook borne out of teaching the “CS 1” class at ETH
Zurich 13 times in a row); Agile! The Good, the Hype and the Ugly (a tutorial and
critique of agile methods); and, from 2022, the Handbook of Requirements and
Business Analysis, all 3 from Springer. In addition to his academic and industry
activities, he is active as consultant, in particular for software-related legal issues.

He received the ACM Software System Award, the IEEE Harlan Mills Prize,
the Dahl-Nygaard Object Technology Prize (as its first recipient), the Jolt Award,
the ACM SIGSOFT Influential Software Engineering Award, and two honorary
doctorates. He was also the recipient of an ERC Advanced Investigator Grant. He
is an ACM Fellow and an IFIP Fellow and a member of the (French) Academy of
Technologies and Academia Europaæ.

Contact: Bertrand.Meyer@inf.ethz.ch; Web: https://se.ethz.ch/~meyer, https://
bertrandmeyer.com

Michel Raynal is an Emeritus Professor of Informatics, IRISA, University of
Rennes. He is an established authority in the domain of concurrent and distributed
algorithms and systems. The author of numerous papers on these topics, Michel
Raynal is a senior member of Institut Universitaire de France and a member
of Academia Europaæ. He is also Distinguished Chair Professor on Distributed
Algorithms at the Polytechnic University (PolyU) of Hong Kong.

He chaired the program committees of the major conferences on distributed
computing. He has also written 13 books on fault-tolerant concurrent (shared
memory and message-passing) distributed systems, among which the following
trilogy published by Springer: Concurrent Programming: Algorithms, Principles,
and Foundations (515 pages, 2013), Distributed Algorithms for Message-Passing
Systems (510 pages, 2013), and Fault-Tolerant Message-Passing Distributed Sys-
tems: An Algorithmic Approach (459 pages, 2018). His last book titled Concurrent
Crash-Prone Shared Memory Systems: A Few Theoretical Notions (115 pages) has
been published in 2022. Michel Raynal is also the Series Editor of the Synthesis
Lectures on Distributed Computing Theory published by Morgan & Claypool.

Michel Raynal was the recipient of several Best Paper awards of major con-
ferences (including ICDCS 1999, 2000, and 2001, SSS 2009 and 2011, Europar
2010, DISC 2010, and PODC 2014). He was the recipient of the 2015 Innovation in

 3561 30580 a 3561 30580 a

mailto:Bertrand.Meyer@inf.ethz.ch
https://se.ethz.ch/{~}meyer
https://se.ethz.ch/{~}meyer
https://se.ethz.ch/{~}meyer
https://se.ethz.ch/{~}meyer
https://se.ethz.ch/{~}meyer
https://bertrandmeyer.com
https://bertrandmeyer.com
https://bertrandmeyer.com

xxiv About the Authors

Distributed Computing Award (also known as SIROCCO Prize), of the 2018 IEEE
Outstanding Technical Achievement in Distributed Computing Award, and of an
Outstanding Career Award from the French chapter of ACM SIGOPS.

Contact: michel.raynal@irisa.fr; Web: https://team.inria.fr/wide/team/michel-
raynal/

Jim Woodcock is a Professor of Software Engineering at the University of
York (UK) and an award-winning researcher and teacher. He is the Director of
the York Centre for Autonomous Robotics for Laboratory Experiments and a
member of the RoboStar research group. He is a Professor of Digital Twins at
Aarhus University and Professor of Cyber-Physical Systems and a Distinguished
Researcher at Southwest University, Chongqing, China.

He has dedicated his research career to searching for the mathematical principles
that are essential to the practice of software engineering. He has over 40 years of
experience in formal methods. His research interests are in unifying theories of
programming (UTP), robotic digital twins, and industrial applications.

He leads the team developing extensive UTP theories and the Isabelle/UTP
theorem prover. He worked on applying the Z notation to the IBM CICS project,
helping to gain a Queen’s Award for Technological Achievement. He created the
theory and practical verification for NatWest Bank’s Mondex smart-card system,
the first commercial product to achieve ITSEC Level E6 (Common Criteria EAL 7).

For the last decade, he has researched the theory and practice of cyber-physical
systems and robotics and recently their probabilistic semantics.

Jim Woodcock is Fellow of the Royal Academy of Engineering and a consulting
chartered engineer. He received the Rudolf Christian Karl Diesel Prize for work
on railway signaling. He is Editor-in-Chief of the ACM journal Formal Aspects of
Computing and of the CUP journal Research Directions: Cyber-Physical Systems.

Contact: jim.woodcock@york.ac.uk; Web: https://www.cs.york.ac.uk/people/
jim

 3713 3693 a 3713 3693
a

mailto:michel.raynal@irisa.fr
https://team.inria.fr/wide/team/michel-raynal/
https://team.inria.fr/wide/team/michel-raynal/
https://team.inria.fr/wide/team/michel-raynal/
https://team.inria.fr/wide/team/michel-raynal/
https://team.inria.fr/wide/team/michel-raynal/
https://team.inria.fr/wide/team/michel-raynal/
https://team.inria.fr/wide/team/michel-raynal/
https://team.inria.fr/wide/team/michel-raynal/

 3748 35024 a 3748 35024
a

mailto:jim.woodcock@york.ac.uk
https://www.cs.york.ac.uk/people/jim
https://www.cs.york.ac.uk/people/jim
https://www.cs.york.ac.uk/people/jim
https://www.cs.york.ac.uk/people/jim
https://www.cs.york.ac.uk/people/jim
https://www.cs.york.ac.uk/people/jim
https://www.cs.york.ac.uk/people/jim
https://www.cs.york.ac.uk/people/jim

Chapter 1
The French School of Programming:
A Personal View

Gérard Berry

Abstract Although France has never been a world leader in the software industry,
Computer science research has traditionally been at a worldwide level there, thanks
to the Universities, the CNRS and Inria and to some researchers abroad. This book is
devoted to important parts of the French field of programming languages, essential
since program texts are the only way to drive computers. That research almost
always tried to link mathematical rigor with practical concerns—an old French
tradition. This has been particularly true for the development and linking of new
and clean programming languages and formal verification systems, often created
and linked together with the solid base of their mathematical semantics and their
theorems. Such formal semantics served and still serve as a consistency guide during
the design and implementation development, instead of being only addons by other
people after the fact, as too often done with much less efficiency. This introductory
chapter surveys the 12 subsequent chapters, each dedicated to a particular technical
approach or language and written by their team leaders. It ends by myself telling
in a nontechnical way how my own 50-years career dealt with the creation of a
few original and mathematically well-studied theoretical frameworks and practical
languages. Named Esterel, the last one has led to the creation in 2000 of a successful
company that has become a world-leader in the field of certified software for safety-
critical reactive systems (it also led to some success in industrial hardware design
and verification, a successful application domain unfortunately killed by the 2008
financial crisis). Of course, this is not a single-man story, by far, and I also try to tell
the associated social story with some humor because it was a lot of fun for me, and
for my groups I hope.

I first thank Bertrand Meyer, who had the idea of this book about some important
successes of French research in Computer Science, and more precisely on pro-
gramming and reasoning about programs and applications: programming languages

G. Berry (�)
Université de Paris-Sud and CNRS, Paris
e-mail: gerard.berry@college-de-france.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Meyer (ed.), The French School of Programming,
https://doi.org/10.1007/978-3-031-34518-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34518-0protect T1	extunderscore 1&domain=pdf

 885 56845
a 885 56845 a

mailto:gerard.berry@college-de-france.fr
mailto:gerard.berry@college-de-france.fr
mailto:gerard.berry@college-de-france.fr
mailto:gerard.berry@college-de-france.fr
mailto:gerard.berry@college-de-france.fr

2 G. Berry

and their semantics, type systems, program analysis and verification, software
architecture and engineering, up to human-computer interaction. France has been
at the forefront of research and at the highest level of creativity and relevance in this
field, and I had the immense pleasure to be part of the game. Bertrand asked me to
write an overview, and I feel honored and happy to do it here.

I will build this long overview in two parts. First, a quick survey of the book
authors, chapters, and topics, which are very varied and quite complementary—I
read them carefully. Then a bit of personal history, justified by the fact that It has
involved many of the chapter authors, especially those with whom I worked for a
long time.

Warning I must say I know very well several contributors to the book and their
work, especially when I was part of it or directly connected to it. This may show
in this overview, although I have no intention to consider other authors as less
interesting because I know them less. But I am unable to resist following my heart.

1.1 Parts, Chapters, and Authors

The book is composed of four successive parts: Part I deals with Software Engineer-
ing, Part II with Programming language mechanisms and type systems, Part III with
Theory, and Part IV with language design and programming methodology.

1.1.1 Part I: Software Engineering

In Chap. 2, Marie-Claude Gaudel, Professor Emeritus at Université de Paris-Sud
and CNRS, Paris, discusses formal algebraic testing. Testing is of course a primary
concern both in Computer Science and in Industry since nasty program errors are
so easy to make even for careful scientists and engineers. But, in practice, testing
is still often done in too limited and non-systematic ways. The chapter presents a
formal framework aimed at making testing scientific and systematic, while keeping
it much simpler and lighter than formal verification, the only real alternative that
will not easily reach common practice. To make the testing phase implementation-
independent, the system under test is supposed to give access to a given set of
visible values but not to its internals (black box testing vs. white box or gray
box testing). There, the tests are formally defined as sets of ground instances of
algebraic equations whose satisfaction can be verified by feeding the program with
the corresponding inputs and observing its outputs. The important question is how
to design the test suite to apply, either in an exhaustive way if finiteness is possible
or by determining a well-chosen subtest of test values if a full test set would be
infinite or simply too big to be practical. All these questions and acting steps are
rigorously defined in the chapter.

 2169 36319 a 2169 36319
a

http://doi.org/10.1007/978-3-031-34518-0_2

1 The French School of Programming: A Personal View 3

Then, the chapter studies successes in application cases by many researchers.
Here, they concern three languages: LOTOS for telecom, with also deadlock
detection that is of course essential for such a concurrent formalism; Hoare’s
CSP, also a concurrent language, assuming divergence freeness, and with a formal
completeness result; and Cirrus, a complex specification language for which a test
generator has been built using the HOL higher-order logic verification systems. The
chapter then cites several successful experiments on real applications: an automatic
subway, a nuclear plant safety system, a communication protocol, and a Transit
Node that served as a comparison point between formal techniques. It contains no
concrete examples but cites many other researchers and provides the user with a
large number of useful references.

In Chap. 3, Michel Raynal, Honorary Professor at Rennes University, outlines
his work on distributed algorithms, i.e., algorithms to coordinate the activities of
separate programs run on geographically distinct locations. The problems are not
new, but their importance has considerably grown in the last 20 years with the advent
of the internet as a huge worldwide network that makes new kinds of applications
possible and even mandatory: distributed data bases, cloud computing, blockchains,
etc. The required distributed algorithms are more and more numerous and often
(but not always) quite small in their description, but subtle and very prone to hardly
visible errors that can have large consequences in terms of safety and security: they
are employed to handle sensible data or dangerous machines, with computers and
computation links that can fail.

In distributed computing, not everything is possible. For instance, a major result
shows the impossibility of consensus between distant parties as soon as an arbitrary
number of them may fail. This has led researchers to find solutions modulo a variety
of limitations, for instance on the number and kinds of failures, as for blockchains
techniques that are a way to implement consensus in a practically solid way. Michel
Raynal is an expert of such algorithms. In the chapter, he presents a good selection
of core distributed algorithms in a very understandable way. His numerous results
are characterized by the two qualities he always did put forward, generality and
simplicity, He has worked with almost all the field’s specialists, including Leslie
Lamport, Turing Award 2013, Maurice Herlihy, Rachid Guerraoui (who held the
Inria yearly chair at Collège de France in 2018–2019), etc., and has improved many
algorithms.

In Chap. 4, Jean-Marc Jézéquel, Professor at Rennes University, discusses
several levels for the engineering road to large software endeavors, analyzing the
pros and cons of the considered methods at each level. He starts with dedicated
CASE tools, taking the examples of specialized ones in the telecom industry,
namely SDL and LOTOS. The pros are rigor, higher level of abstraction, and
existence of code generators and automatic verification systems. The cons are the
difficulties of such abstraction levels for standard engineers and the sometimes-
insufficient performance of generated codes that may have to be tweaked by hand.
Then, Jézéquel studies Model Driven Architectures, as promoted by the Object
Management Group (OMG). The pros are the higher abstraction levels and the
clear separation between design logic and implementation, the cons the quality

 3532 14360 a 3532 14360
a

http://doi.org/10.1007/978-3-031-34518-0_3

 3848 45027 a 3848 45027
a

http://doi.org/10.1007/978-3-031-34518-0_4

4 G. Berry

of the generated codes and again the often-difficult adoption by the engineers.
Jézéquel then studies separations of concerns, with pros the more precise dedicated
analyses that reduce confusions provoked by a single global one, but as cons the
risk that separate analyses may become hard to reconcile, with the added difficulty
to instrument the process. Finally, he analyzes the use of domain-specific languages
whose specificity often makes programming simpler and clearer, but with the risk of
too many limitations and of difficulties in maintaining the compilers and debugging
environments in the long run.

In Chap. 5, Joëlle Coutaz, Professor Emeritus at Grenoble University, is a
pioneer on HMI in France—HMI meaning Human Machine Interaction, not just
Human-Machine Interface as many people still wrongly say and think. Interfaces are
obviously important as shown by the evolution of computers inputs and outputs from
input/outputs on punched cards to the modern finger/screen/sound-based interfaces
and soon 3D ones. But an interface is only one way to physically achieve an
interaction, while there are many other aspects involved in the interaction seen
globally, often related to psychological questions. Personally, I learned a lot by
working with Jean-Marie Hullot, later creator of the ergonomic interaction of the
main Apple products, and I kept trying to make my colleagues and engineers
stop to claim about their realizations “my ergonomics are nice because I like
them”. Interaction should be user-centric, and you absolutely need to check with
many people from different horizons, not just yourself! Sadly enough, HMI is
still a weakness of many open-source software applications, because it requires
specific competencies that are not enough taught and put in practice in too many
communities.

Joëlle Coutaz describes and analyzes many aspects of HMI in her chapter,
illustrating then with many prototypes. She details Norman’s “Seven stages of
actions from perception to execution”, a fundamental model of interaction involving
both physiology and psychology. She then digs into human-centered interaction
using a classification into interaction flexibility and interaction robustness, before
detailing how to build software architectures and giving many examples of new
tangible HMI devices while explaining how they make interaction more tangible,
intuitive, and efficient.

1.1.2 Part II: Programming Language Mechanisms and Type
Systems

In Chap. 6, Jean-Pierre Briot, Research Director at CNRS, discusses a quite recent
software engineering question that one can place one step above modularity in
programming languages, itself one step above the instruction level: the organization
of large-scale and evolutive applications possibly made of heterogeneous compo-
nents, some of which even dynamically discovered. The vocabulary becomes quite
different from the usual one in computing, with often sources in social enterprise

 3875 10360 a 3875 10360
a

http://doi.org/10.1007/978-3-031-34518-0_5

 2021 50563 a 2021 50563
a

http://doi.org/10.1007/978-3-031-34518-0_6

1 The French School of Programming: A Personal View 5

organization: multi-agent systems, proactive agents, cognitive agents, capability
description languages, structural vs. non-structural, or temporal coupling, etc. For
a basic scientist, these terms may look strange, but they do recover a reality in
large systems design: for a similar three-level case, think of urbanism vs. building
architecture vs. interior architecture. But how can one classify these terms and study
their precise interaction? Briot proposes a tentative classification and organization
structure based on three orthogonal axes: abstraction, way to select actions from
early to late binding, and coupling flexibility of the considered concepts.

Chapter 7 is written by Pierre-Louis Curien, Honorary researcher at IRIF
CRNS-University Paris Cité and former director of an ancestor of this lab. He was
my first PhD student in 1977, when I moved to Sophia-Antipolis. His chapter has
two parts: the first one about our common work when preparing his PhD, the second
one when he turned to more logical questions, often following Jean-Yves Girard’s
creation of new logics—a domain where I am incompetent and which I won’t
comment here. The key question for the first part is called the Full Abstraction
problem for PCF (Programming Computable Functions), a simply typed lambda-
calculus plus recursion and basic Boolean and arithmetic functions. Plotkin had
shown that Scott’s model was not fully abstract, and Milner had proved that there
exists a unique fully abstract model where all (finite) first-order and higher-order
functions are definable by lambda-terms, building that model from syntax. The hot
question was to uncover the semantic nature of the fully abstract model. In my thesis,
I had made notable progress with my notion of stable functions invented before for
other reasons. But we had to deal with sequentiality, a stricter constraint intrinsic to
PCF’s evaluation mechanism. The key was a nice definition of sequentiality by Kahn
and Plotkin, which led us to a model of sequential algorithms, no more based on
functions. Thus, we had to abandon the classical view of lambda-calculus models as
necessarily functional and replace them by categorical ones, with adequate quotients
to recover functions when needed. Our model was not yet fully abstract, but Curien
made it so by adding a simple catch statement classical in functional languages.
In parallel, Abramsky, Jagadeesan and Malacaria built the fully abstract model
using sequential games instead of algorithms, but with a final quotient that loses
the semantic intuition. Curien then switched to other problems linked to the various
logics later introduced by Girard, see his chapter for details.

Chapter 8 is written by Thierry Coquand, Professor at Chalmers University in
Göteborg, Sweden. With Gérard Huet, his PhD advisor, he developed the Calculus
of Constructions or CoC, a landmark in formal logic that gathers and enriches
previous work by the logicians Jean-Yves Girard on the second-order lambda-
calculus and by Per Martin-Löf on higher-order intuitionistic logic, together with
the fundamental Curry-Howard correspondence between proofs and computations.
CoC is the mathematical basis of the Coq verification system, now well-known for
its successes in mathematics and program verifications. Coq was used by Gonthier
and his teams to formally machine-check important mathematical theorems such
as the four-color theorem and the famous Feit-Thompson theorem on odd-order
group classification, whose original proof occupies more than 250 pages of heavy
mathematics. Coq has made possible the full formal verification of the CompCert

 3343 10360 a 3343 10360 a

http://doi.org/10.1007/978-3-031-34518-0_7

 3129 43693 a 3129 43693 a

http://doi.org/10.1007/978-3-031-34518-0_8

6 G. Berry

industrial-class C compiler by Xavier Leroy and his team, the executable OCaml
code of this compiler being automatically extracted from the proof. CompCert is a
famous landmark in the field that triggered many other experiments, for instance in
the DeepSpec collaborative program in the US. Coquand’s paper nicely details the
ideas behind CoC and how they were gathered and extended to build this beautiful
and efficient theory.

1.1.3 Part III: Theory

Chapter 9 is due to Patrick Cousot, Professor Emeritus at Ecole Normale
Supérieure Paris. He discusses the theory and practice of Abstract Interpretation,
a major automatic program analysis technique he introduced in the 1970s with
his late wife Radhia Cousot. It is based on smart finite computations to validate
logical assertions attached to program instructions, according to the doctrine
systematized in the 1960s by Dijkstra (the idea had been introduced by von
Neumann and Goldstine in 1947 and applied by Turing in a beautiful note of
1949 where he showed how to prove correct a machine-language factorial program,
despite having no multiplier in the hardware!). Abstract Interpretation performs
symbolic execution using sets of values instead of single values at each program
position. An automatically driven iterative bottom-up/top-down or chaotic iterations
progressively refine these sets, until they become small enough to make assertions
true or provide counterexamples (the process may also fail to conclude for some
assertions, and the art is to avoid that case). It subsumes most ad-hoc static analysis
techniques developed elsewhere.

The chapter details the evolution of theory and practice of Abstract Interpretation
over time. Introduced in the early 1970s, it has been continuously developed by
the Cousot’s and their successive strong teams, first at Nancy University and then
at Ecole Polytechnique and Ecole Normale Supérieure Paris. For practical use, it
is well-served by very efficient verification software systems that have become
industrial, all initially developed within the teams. The Polyspace older version
is still commercialized and improved by Mathworks, with important use in the
automotive industry for instance. The newer and much more powerful Astrée
software, now commercialized by the AbsInt German company (guess where the
name comes from), has an important use in the critical software industry. For
example, Airbus uses it to prove the absence of run-time errors or other safety
properties in actual flight-control software, and it is used for other large and critical
industrial applications.

Chapter 10 is due to Jean-Jacques Lévy, with whom I worked at IRIA in
the 1970s. He is Honorary Director of Research at Inria and a grandmaster in
lambda-calculus. This calculus was created in 1926 by Alonzo Church to formalize
logic and calculability in a simple but precise language, with which he proved the
fundamental termination undecidability theorem. It is still the core of most higher-
order functional languages such as Scheme, ML, Ocaml, F#, JavaScript, etc. (despite

 2137 14341 a 2137 14341 a

http://doi.org/10.1007/978-3-031-34518-0_9

 3314 51674 a 3314 51674 a

http://doi.org/10.1007/978-3-031-34518-0_10

1 The French School of Programming: A Personal View 7

using the LAMBDA identifier for functions, LISP used dynamic binding instead of
static binding, which is technically and practically quite different). Its definition
fits in a few lines and looks simple at first glance, but its consequences are not,
and each syntactic theorem about it is hard. It was common to build a particular
proof for each of them (Church-Rosser, also called confluence, standardization,
etc.). Lévy’s creation, detailed in Chap. 3, is a term labelling system that completely
captures the deep structure of the reduction space of a term, precisely unraveling the
reduction and creation of redexes (reducible expressions) by categorizing them into
cleverly labelled families along all possible reductions. This makes it possible to
relate cousin redexes between different reductions, even if their syntactic form has
changed. The main consequence is that an infinite reduction must reduce redexes
with infinitely many distinct families, or, differently said, that reductions limited to
a finite set of families are necessarily finite. By using a single ordinal instead of
ad-hoc ones, this makes it possible to unify the proofs of most syntactic theorems.
And most (but not all) typed systems that ensure reduction finiteness can be viewed
as morphisms from Lévy’s labels.

Chapter 11 is written by Jean-Pierre Jouannaud, whom I know from our
scholarship at Ecole Polytechnique at the end of the 1960s. He is Professor Emeritus
at Université Paris-Sud. His chapter is about the theory of term rewriting systems
with pattern-matching, which come in two flavors: first-order, i.e., with function
symbols never applied to other non-applied function symbols, or higher-order,
where this operation is possible. While confluence is automatic for the lambda-
calculus as seen just before, it is not for rewriting systems. Very interesting
work has been devoted to this problem, first in the first-order case with the
characterization of the key source of non-confluence: well-defined critical pairs of
terms of subterms that can be efficiently analyzed to check for confluence. Later
was added work for dealing with associativity and commutativity of infix operators,
indispensable for many mathematical and programming structures. For higher-order
rewriting systems, quite useful for formal mathematics and program verification, the
techniques and results become more complex, but they are marvelously explained
and illustrated in the text. Jouannaud played a major role in this endeavor.

1.1.4 Part IV: Language Design and Programming
Methodology

Giuseppe Castagna discusses set-theoretic typing in Chap. 12. Polymorphic typing
and type-checking really started with the Hindley-Longo type system introduced in
1973 for Milner’s ML language and later enriched in many modern typed functional
languages (Ocaml, Scala, F*, etc.). But there is another major track in the field,
the set-theoretic typing analyzed here. It accepts the classical union, intersection,
negation, and complementation operators on sets of values, not available with
classic polymorphic typing. Such richer types have many advantages, since they

 15534 6360 a 15534
6360 a

http://doi.org/10.1007/978-3-031-34518-0_3

 3334 21027 a 3334 21027 a

http://doi.org/10.1007/978-3-031-34518-0_11

 24421 49230 a 24421 49230 a

http://doi.org/10.1007/978-3-031-34518-0_12

8 G. Berry

may be used to encompass heterogenous sets of values. For instance, they can type
heterogeneous lists where each element may be of a different type, say integer,
strings, function, etc. Set-theoretic types also accept overloaded operators and
functions, which makes it possible to use the same symbol or function name for
different sets of argument types; think of + for both integers and floats, disallowed
for instance in OCaml. Another major practical advantage is that set-theoretic types
can be added to originally untyped languages to make them safer by detecting type-
related bugs at compile time instead of runtime. Good examples are TypeScript vs.
JavaScript (now the language of the web and currently the second most popular
language overall albeit a fragile one) and Typed Racket vs. Racket.

The first part of the chapter, well organized and easy to read, introduces set-
theoretic types by many examples that show how to use them in practice and
what are their advantages and difficulties. The mostly used language in examples
is CDuce of the author’s team, but there are also references to other set-theoretic
languages. The second part, longer and much more technical but written with great
care, analyzes the questions related to type-checking algorithms, not fully solved by
now. It also explains the compromises used by existing languages when no perfect
solutions exist.

Finally, Bertrand Meyer, the editor of this book, wrote the Chap. 13 about the
design of the Eiffel object-oriented language, explicitly dedicated to high-safety
applications where bugs cannot be tolerated, for instance in banking. He wrote it
with a careful and detailed analysis of all the global and local decisions that had to
be taken to keep the language solid and consistent. Meyer rightly notices that there
are two ways to design a new object-oriented language.

The first and frequent way is to start from an already established base language
such as C and to extend it by new constructs such as classes, inheritance, etc.: typical
examples are C++ (1982), Objective C (1986), and Java (1996). This apparently
natural process however most often led to having to keep some old design decisions
that were thought acceptable at the time, for instance because speed and memory
size limitations (C was first designed for a PDP-7 computer with 1.75 μs cycle time
and 144 KB memory!). But, when programs became larger and more complex, and
when bugs really started to matter, several of these decisions became problematic in
terms of programming coherence and safety—I can testify, having developed large
applications in C++ with my academic and industrial teams, which demanded us a
very strong discipline to avoid pitfalls.

The second way, central to Eiffel and also to other language developments
(including by myself, see below) is to start afresh with a careful analysis of what
should be accepted or rejected, adopting the guideline to encourage to write good
programs easy to validate instead of writing them fast and putting them into service
after some testing—as still too often done. Note that the Synopsys company has
evaluated the cost of poor-quality software in the USA to be $2.41 trillion in 2022!1

1 https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-
software.html?intcmp=sig-blog-cisq22

 29281 23693 a 29281 23693 a

http://doi.org/10.1007/978-3-031-34518-0_13
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22
https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html?intcmp=sig-blog-cisq22

1 The French School of Programming: A Personal View 9

Such a process requires introducing explicit constructs that stress without ambiguity
what is exactly meant instead of letting the task to dangerously implicit rules.

The chapter analyses in details the main Eiffel decisions and their reasons:
uniform access to object properties; structured programming; the design of classes
and multiple inheritance between them; explicit ways to solve conflicts by name
redefinitions; design by contracts, one of the main components of Eiffel’s pro-
gramming safety, much richer and actually simpler that classical spread-out local
assertions; the explicit handling of exceptions; elaborate mechanisms for thread
concurrency; removing null pointer dereferencing, etc. Comparisons with other
object-oriented languages are given on the fly. There is yet no real comparison with
functional object-enriched languages such as OCaml (1996) and Scala (2004) that
rely on quite different viewpoints and techniques to achieve the same goals. But this
would require another full article, yet to be written!

1.2 A Bit of Personal History

I have been an active actor of several of the fields discussed in this book and I know
well many of the Chapter’s authors. From 1972 to 1977, I worked with Jean-Jacques
Lévy and others on the syntactic aspects and semantic models of the lambda-
calculus and of the recursive algebraic definitions introduced by Kleene in the
1950s. I introduced the theory of stable functions, a refinement of Scott’s continuous
functions that leads to new and more precise models of sequential programming
languages, including the lambda-calculus based ones. Stable function then became
unexpectedly important in formal logic after their independent reinvention by Jean-
Yves Girard. In 1977, having just moved to Ecole des Mines Sophia-Antipolis on
the French Riviera (= windsurfing + mountaineering), I hired Pierre-Louis Curien
as my first PhD student to work on the full abstraction problem for sequential
languages raised by Milner and Plotkin, which was considered as one of the most
important open one in semantics; see Curien’s Chap. 7 for the results we got.

From 1983 to 2001, when we could at last put our hands on real computers
supporting Unix as well as on Z80-like embedded microprocessors, it was time for
me to go for more applied work. I started working on real-time process control in
a direct collaboration with control-theory and concurrency researchers, this within
a new joint project between Ecole des Mines and the just created Inria Sophia-
Antipolis lab. We invented a new notion of synchronous concurrency that reconciled
concurrency and determinism, the latter being absolutely required in that field, and
we made this notion alive in a concurrent, deterministic and control-flow oriented
language called Esterel for which we developed an original semantics based on
Plotkin’s brand-new SOS semantics style. The key idea of Esterel was simple but
iconoclastic: to avoid being bothered by the potentially complex interaction between
environment time and program execution time, simply assume that your programs
run on an infinitely fast processor! The same synchrony idea was independently
invented in a different form by two French groups that also gathered control

 21628 39674 a 21628
39674 a

http://doi.org/10.1007/978-3-031-34518-0_7

