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We dedicate this book to the memory of

Gilles Kahn (1946–2006),

a pioneer of programming research in France
and onetime director of INRIA, who exerted
a profound influence on an entire generation
of researchers.



Foreword

An email from BertrandMeyer in November 2022 surprised me. He asked if I would
write a foreword for this collective volume on programming written by French
researchers. I was flattered, of course. But the surprise was what Bertrand said next.
In spite of the book’s title, The French School of Programming, Bertrand said, “As
a matter of fact no such ‘school’ exists in the strict sense.” But I believe that it does
exist. I know this because I learned a lot of my computer science directly from its
members.

I learned the foundations of distributed algorithms from Michel Raynal’s books,
particularly Synchronization and Control of Distributed Systems and Programs
(with Jean-Michel Hélary). The books gave me the background for industrial
distributed and concurrent systems, where I applied formal methods for assurance.
These projects include nuclear secondary protection systems (the final line of
defense with voting implemented using Laddic magnetic devices); railway signaling
systems (with minimum headways between trains guaranteed by automatic synchro-
nization control); and smart cards for financial transactions (a massively distributed
system with no centralized control).

I learned abstract interpretation from Patrick and Radhia Cousot. I discovered the
beauty and utility of Galois connections. This led me to appreciate the elegance of
Hoare and He’sUnifying Theories of Programming, which has formed the backbone
of my research in the semantics of heterogeneous systems over the last two decades.

Marie-Claude Gaudel introduced me to her theoretical framework for under-
standing the relationship between testing and proof. She showed that testing could
tell us more than whether an implementation conforms to a specification on a given
test set. Her framework describes a landscape with two extremes. At one end, we
prove nothing, but we need an infinite amount of testing. At the other, we test
nothing, but we need a complete proof of a system and its context. We can move
across this landscape, positioning ourselves between the two extremes. We need
to make assumptions about the system under test that support selecting bounded
test sets. Marie-Claude showed that testing can be based on strong principles. I
am currently applying her ideas to a testing theory for probabilistic behaviors.
Our systems under test are artificial neural networks, robotics, and cyber-physical
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viii Foreword

systems. They solve decision and control tasks under uncertainty. A route to greater
resilience for these systems is through a rigorous testing theory. As Marie-Claude
might have said, probabilistic testing can be formal too.

In the late 1980s, I read Bertrand Meyer’s book Object-Oriented Software
Construction. I learned Eiffel and strengthened my knowledge of design by contract
in a programming language. I used the book to teach a course on object-oriented
programming twice a year to Oxford’s part-time masters students from industry.
The use of assertions as test oracles was well received and became standard practice
in several partner companies.

This book contains contributions by other members of the French School. Jean-
Marc Jézéquel has made significant contributions to the foundations of the theory
of model-driven architecture. Giuseppe Castagna has established the foundations of
session types. Pierre-Louis Curien has made fundamental contributions to research
in theoretical computer science, including programming languages and proof theory.
Jöelle Coutaz has been influential in human-computer interaction, including user
interface plasticity and multimodal interaction. Jean-Pierre Jouannaud has helped
establish the theory and practice of term rewriting. Jean-Jacques Ĺevy has made
fundamental contributions to our understanding of concurrency and mobility,
particularly through the join-calculus. Jean-Pierre Briot has helped us to understand
the fundamentals of actors and agents. Thierry Coquand has made important
contributions in constructive mathematics, especially the calculus of constructions.

Finally, the French computer scientist Jean-Raymond Abrial influenced me. (He
has not made a contribution to this book.) Abrial’s work on the Z notation inspired
my entire career. I attended a course he gave at Wolfson College in Oxford in the
early 1980s. I was working in industry and immediately saw how to apply his
ideas to practical projects. I wrote specifications for the storage manager and the
call processing subsystems for the operating system in GEC’s System X telephone
exchanges. I started teaching Z to others in the industry. I even wrote a couple
of books on software specification using Z. Abrial’s insights are responsible for
my reputation as a computer scientist. He taught me how to use mathematics
for software specification and development. I helped apply Z to IBM’s Customer
Information Control System. It is a family of mixed-language servers that provide
online transaction processing. The project won a Queen’s Award. I used a refinement
theory based on Z to prove the correctness of theMondex smart-card protocol. It was
the first product certified to the very highest level of information security (ITSEC
level 6). I taught Z to thousands of students around the world and in the global south
in particular.

So yes, there is a French School of Programming. Rigor and mathematics
underpins its research and has led to many remarkable breakthroughs in computer
science. Somewhat fancifully, I see the school as a modern computer science version
of the Bourbaki collective. Forty years ago, I made the trip from theWolfson College
workshop to look at the shelves in Oxford’s Whitehead Library full of books by
the prolific and elusive mathematician that never was. But the French School of
Programming has real computer scientists who have made a huge contribution to
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our discipline and influenced all computer scientists everywhere over the last 50
years. I know, because I am one of them.

University of York
York, UK

Jim Woodcock

December 2022



Preface: The French School of
Programming

Is there one? Not in the physical sense of a school building featuring a big
“FRENCH SCHOOL OF PROGRAMMING” sign above the door, classrooms, and
students. (Not even in the Rue des Écoles in Paris, the Street of Schools, including
among others the famous Collège de France where Gérard Berry, one of the authors
of this book, teaches.) Also not in the virtual sense of a formal association of
like-minded colleagues, such as the School of Nancy in glassmaking or the School
of Barbizon in painting. The French computer science and software engineering
community is in tune with the rest of the international science and technology world
and has always participated enthusiastically in all its main currents, from the most
academic and formal to the most industrial and practical. The contributions to this
volume are representative of this vibrant diversity of interests and trends.

And yet there is a common spirit. A quest for elegance and simplicity; insistence
on a sound mathematical basis, supported by the great tradition of French math-
ematics and its influence on the teaching of mathematics in lycées, universities,
and grandes écoles; a focus on the truly important problems: these are some of
the distinctive traits of the best work carried out by French researchers and by
researchers in French institutions.

Starting from this observation, we contacted in December 2020 some of the most
prestigious names in the field with a request to contribute. Most of those approached
responded positively; the present volume, with its 13 contributions, is the result,
produced after a mutual review process and many discussions. While no restriction
had been stated regarding the possible involvement of coauthors, the contributions
turned out all to be single-author, showing how seriously the contributors took the
request to provide an original chapter reflecting some of their best work.

The book is divided into four parts, reflecting the diversity of interests in the
French community and each of them corresponding to an area in which it has made
major contributions over several decades:

• Software engineering (Part I)
• Programming language mechanism and type systems (Part II)

xi



xii Preface: The French School of Programming

• Theory (Part III)
• Language design and programming methodology (Part IV)

They are preceded by a Preface and an Overview chapter. To reflect how
intricately the community is bound to its international counterparts, it was important
to start the volume by providing the perspective of a foreign colleague. Jim
Woodcock, long involved in collaborations with some of the authors of this book
and other members of the community, was kind enough to provide the insightful
Foreword. The Overview chapter was written by Gérard Berry; it is not only a
personal scientific history (of both the author and the French School, of which he
has been a prominent member) but also an introduction to the rest of the volume.

Part I, Software Engineering, starts (Chap. 2) with an appraisal by Marie-
Claude Gaudel of her own pioneering work on software testing, which played a
major role in providing a sound theoretical basis for testing, now accepted as a full
part of the verification process with its own mathematical basis, and extended here
with new perspectives. Another critical area which today enjoys solid theoretical
foundations is distributed computing, in no small part thanks to the books and
articles by Michel Raynal; Chap. 3 gives an excellent overview of both the field and
his work, with simplicity as its core concept. Jean-Marc Jézéquel was for many years
Director of IRISA, the Brittany branch of Inria (the legendary national research
center in computer science and digital technologies), the source of numerous major
contributions; he is also a top researcher in software engineering and has been active
in developing one of the principal trends in the field, model-driven engineering.
Chapter 4 is, like several others in the book, a combination of a survey of this
field and a description of the author’s individual journey through it. Again in the
same spirit of a personal appraisal of a field to which the author has made prime
contributions, Joëlle Coutaz describes in her richly illustrated Chap. 5 the stunning
evolution of software engineering for human-computer interaction.

Part II has three chapters devoted to programming language mechanisms and
type systems, with a mix of theoretical and practical contributions, reflecting the
unique richness of French work in this field and the lack of a strict separation
between formal and informal approaches. In Chap. 6, Jean-Pierre Briot discusses an
important abstraction, agents, providing a unifying generalization of classical pro-
gramming language concepts of procedure, object, actor, component, and service.
He shows the power of this concept and, as in other chapters, describes it in part by
telling the story of his own personal itinerary. Chapter 7 by Pierre-Louis Curien is
perhaps the most personal of all, describing his discovery of denotational (Scott-
Strachey) semantics, all the way to sequential algorithms, “categorical abstract
machines,” and the Caml and OCaml languages—another set of widely influential
French developments—as well as the Curry-Howard correspondence and other
fundamental dualities in proofs, logic, and programming languages. Chapter 8
by Thierry Coquand (whose work has profoundly marked the field of logic for
computer science, in particular through the Coq proof assistant, one of the most
widely used frameworks for software verification) ponders dependent system theory,
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Preface: The French School of Programming xiii

an opportunity to provide a sweeping review of ideas in the field since the days of
the first AUTOMATH system.

Part III is devoted to theory. Chapter 9 continues the practice of telling
the personal story of important discoveries; Patrick Cousot describes the initial
insights that led him, together with Radhia Cousot, to invent the theory for which
they are famous, abstract interpretation, and takes us through its advances and
developments through the years. Abstract interpretation is an outstanding example
of a theory that is both mathematically elegant and rich with practical applications to
industrial software verification. In Chap. 10, Jean-Jacques Lévy, another prestigious
representative of the French school of programming languages and logic, explores
the notion of redex in lambda calculus and its many ramifications. Jean-Pierre
Jouannaud, author of Chap. 11, is a pioneer in an important theoretical approach
to computing and programming, rewriting systems; in his chapter, he provides
a sweeping survey of the field and many insights into the nature of functional
programming and functional languages.

The two chapters of Part IV, Language Design and Programming Methodol-
ogy, are longer than the others and may be viewed as small monographs. Chapter
12 by Giuseppe Castagna is a comprehensive presentation of a wide range of topics
in type theory and develops an extensive unifying theory. This chapter reflects the
broad scope of the “French School” concept, as the authors of this book include both
French researchers working abroad and foreigners having pursued their careers in
France; the latter category has among others included Italians, particularly in type
theory and semantics where the French and Italian schools have enjoyed close links.
In the final Chap. 13, I take the reader through a number of fundamental decisions
in the design of Eiffel and contrast them with the corresponding choices in such
languages as Java, C++, and C#, which the chapter argues are based on a flawed
understanding of object-oriented ideas, damaging to the quality of the resulting
software.

Heartfelt thanks are due to the authors who responded to the call and provided not
pièces de circonstance but, in all cases, highly personal, substantial, and insightful
contributions. The preparation of the volume provided a pleasant experience of
collaborative work.

In no way is this collection exhaustive; even as it was being completed, some
participants already commented about who else could have participated and what
a second volume might include. No such plans currently exist, but this book as it
stands, with each chapter written by a major contributor to the field, often on a topic
that he or she created, offers countless insights into both decisive past advances and
promising ideas for the future. It provides a fascinating look into some of the most
burning concepts of modern programming.

Zurich Bertrand Meyer
April 2024
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Chapter 1
The French School of Programming:
A Personal View

Gérard Berry

Abstract Although France has never been a world leader in the software industry,
Computer science research has traditionally been at a worldwide level there, thanks
to the Universities, the CNRS and Inria and to some researchers abroad. This book is
devoted to important parts of the French field of programming languages, essential
since program texts are the only way to drive computers. That research almost
always tried to link mathematical rigor with practical concerns—an old French
tradition. This has been particularly true for the development and linking of new
and clean programming languages and formal verification systems, often created
and linked together with the solid base of their mathematical semantics and their
theorems. Such formal semantics served and still serve as a consistency guide during
the design and implementation development, instead of being only addons by other
people after the fact, as too often done with much less efficiency. This introductory
chapter surveys the 12 subsequent chapters, each dedicated to a particular technical
approach or language and written by their team leaders. It ends by myself telling
in a nontechnical way how my own 50-years career dealt with the creation of a
few original and mathematically well-studied theoretical frameworks and practical
languages. Named Esterel, the last one has led to the creation in 2000 of a successful
company that has become a world-leader in the field of certified software for safety-
critical reactive systems (it also led to some success in industrial hardware design
and verification, a successful application domain unfortunately killed by the 2008
financial crisis). Of course, this is not a single-man story, by far, and I also try to tell
the associated social story with some humor because it was a lot of fun for me, and
for my groups I hope.

I first thank Bertrand Meyer, who had the idea of this book about some important
successes of French research in Computer Science, and more precisely on pro-
gramming and reasoning about programs and applications: programming languages

G. Berry (�)
Université de Paris-Sud and CNRS, Paris
e-mail: gerard.berry@college-de-france.fr
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2 G. Berry

and their semantics, type systems, program analysis and verification, software
architecture and engineering, up to human-computer interaction. France has been
at the forefront of research and at the highest level of creativity and relevance in this
field, and I had the immense pleasure to be part of the game. Bertrand asked me to
write an overview, and I feel honored and happy to do it here.

I will build this long overview in two parts. First, a quick survey of the book
authors, chapters, and topics, which are very varied and quite complementary—I
read them carefully. Then a bit of personal history, justified by the fact that It has
involved many of the chapter authors, especially those with whom I worked for a
long time.

Warning I must say I know very well several contributors to the book and their
work, especially when I was part of it or directly connected to it. This may show
in this overview, although I have no intention to consider other authors as less
interesting because I know them less. But I am unable to resist following my heart.

1.1 Parts, Chapters, and Authors

The book is composed of four successive parts: Part I deals with Software Engineer-
ing, Part II with Programming language mechanisms and type systems, Part III with
Theory, and Part IV with language design and programming methodology.

1.1.1 Part I: Software Engineering

In Chap. 2, Marie-Claude Gaudel, Professor Emeritus at Université de Paris-Sud
and CNRS, Paris, discusses formal algebraic testing. Testing is of course a primary
concern both in Computer Science and in Industry since nasty program errors are
so easy to make even for careful scientists and engineers. But, in practice, testing
is still often done in too limited and non-systematic ways. The chapter presents a
formal framework aimed at making testing scientific and systematic, while keeping
it much simpler and lighter than formal verification, the only real alternative that
will not easily reach common practice. To make the testing phase implementation-
independent, the system under test is supposed to give access to a given set of
visible values but not to its internals (black box testing vs. white box or gray
box testing). There, the tests are formally defined as sets of ground instances of
algebraic equations whose satisfaction can be verified by feeding the program with
the corresponding inputs and observing its outputs. The important question is how
to design the test suite to apply, either in an exhaustive way if finiteness is possible
or by determining a well-chosen subtest of test values if a full test set would be
infinite or simply too big to be practical. All these questions and acting steps are
rigorously defined in the chapter.
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Then, the chapter studies successes in application cases by many researchers.
Here, they concern three languages: LOTOS for telecom, with also deadlock
detection that is of course essential for such a concurrent formalism; Hoare’s
CSP, also a concurrent language, assuming divergence freeness, and with a formal
completeness result; and Cirrus, a complex specification language for which a test
generator has been built using the HOL higher-order logic verification systems. The
chapter then cites several successful experiments on real applications: an automatic
subway, a nuclear plant safety system, a communication protocol, and a Transit
Node that served as a comparison point between formal techniques. It contains no
concrete examples but cites many other researchers and provides the user with a
large number of useful references.

In Chap. 3, Michel Raynal, Honorary Professor at Rennes University, outlines
his work on distributed algorithms, i.e., algorithms to coordinate the activities of
separate programs run on geographically distinct locations. The problems are not
new, but their importance has considerably grown in the last 20 years with the advent
of the internet as a huge worldwide network that makes new kinds of applications
possible and even mandatory: distributed data bases, cloud computing, blockchains,
etc. The required distributed algorithms are more and more numerous and often
(but not always) quite small in their description, but subtle and very prone to hardly
visible errors that can have large consequences in terms of safety and security: they
are employed to handle sensible data or dangerous machines, with computers and
computation links that can fail.

In distributed computing, not everything is possible. For instance, a major result
shows the impossibility of consensus between distant parties as soon as an arbitrary
number of them may fail. This has led researchers to find solutions modulo a variety
of limitations, for instance on the number and kinds of failures, as for blockchains
techniques that are a way to implement consensus in a practically solid way. Michel
Raynal is an expert of such algorithms. In the chapter, he presents a good selection
of core distributed algorithms in a very understandable way. His numerous results
are characterized by the two qualities he always did put forward, generality and
simplicity, He has worked with almost all the field’s specialists, including Leslie
Lamport, Turing Award 2013, Maurice Herlihy, Rachid Guerraoui (who held the
Inria yearly chair at Collège de France in 2018–2019), etc., and has improved many
algorithms.

In Chap. 4, Jean-Marc Jézéquel, Professor at Rennes University, discusses
several levels for the engineering road to large software endeavors, analyzing the
pros and cons of the considered methods at each level. He starts with dedicated
CASE tools, taking the examples of specialized ones in the telecom industry,
namely SDL and LOTOS. The pros are rigor, higher level of abstraction, and
existence of code generators and automatic verification systems. The cons are the
difficulties of such abstraction levels for standard engineers and the sometimes-
insufficient performance of generated codes that may have to be tweaked by hand.
Then, Jézéquel studies Model Driven Architectures, as promoted by the Object
Management Group (OMG). The pros are the higher abstraction levels and the
clear separation between design logic and implementation, the cons the quality
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4 G. Berry

of the generated codes and again the often-difficult adoption by the engineers.
Jézéquel then studies separations of concerns, with pros the more precise dedicated
analyses that reduce confusions provoked by a single global one, but as cons the
risk that separate analyses may become hard to reconcile, with the added difficulty
to instrument the process. Finally, he analyzes the use of domain-specific languages
whose specificity often makes programming simpler and clearer, but with the risk of
too many limitations and of difficulties in maintaining the compilers and debugging
environments in the long run.

In Chap. 5, Joëlle Coutaz, Professor Emeritus at Grenoble University, is a
pioneer on HMI in France—HMI meaning Human Machine Interaction, not just
Human-Machine Interface as many people still wrongly say and think. Interfaces are
obviously important as shown by the evolution of computers inputs and outputs from
input/outputs on punched cards to the modern finger/screen/sound-based interfaces
and soon 3D ones. But an interface is only one way to physically achieve an
interaction, while there are many other aspects involved in the interaction seen
globally, often related to psychological questions. Personally, I learned a lot by
working with Jean-Marie Hullot, later creator of the ergonomic interaction of the
main Apple products, and I kept trying to make my colleagues and engineers
stop to claim about their realizations “my ergonomics are nice because I like
them”. Interaction should be user-centric, and you absolutely need to check with
many people from different horizons, not just yourself! Sadly enough, HMI is
still a weakness of many open-source software applications, because it requires
specific competencies that are not enough taught and put in practice in too many
communities.

Joëlle Coutaz describes and analyzes many aspects of HMI in her chapter,
illustrating then with many prototypes. She details Norman’s “Seven stages of
actions from perception to execution”, a fundamental model of interaction involving
both physiology and psychology. She then digs into human-centered interaction
using a classification into interaction flexibility and interaction robustness, before
detailing how to build software architectures and giving many examples of new
tangible HMI devices while explaining how they make interaction more tangible,
intuitive, and efficient.

1.1.2 Part II: Programming Language Mechanisms and Type
Systems

In Chap. 6, Jean-Pierre Briot, Research Director at CNRS, discusses a quite recent
software engineering question that one can place one step above modularity in
programming languages, itself one step above the instruction level: the organization
of large-scale and evolutive applications possibly made of heterogeneous compo-
nents, some of which even dynamically discovered. The vocabulary becomes quite
different from the usual one in computing, with often sources in social enterprise
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organization: multi-agent systems, proactive agents, cognitive agents, capability
description languages, structural vs. non-structural, or temporal coupling, etc. For
a basic scientist, these terms may look strange, but they do recover a reality in
large systems design: for a similar three-level case, think of urbanism vs. building
architecture vs. interior architecture. But how can one classify these terms and study
their precise interaction? Briot proposes a tentative classification and organization
structure based on three orthogonal axes: abstraction, way to select actions from
early to late binding, and coupling flexibility of the considered concepts.

Chapter 7 is written by Pierre-Louis Curien, Honorary researcher at IRIF
CRNS-University Paris Cité and former director of an ancestor of this lab. He was
my first PhD student in 1977, when I moved to Sophia-Antipolis. His chapter has
two parts: the first one about our common work when preparing his PhD, the second
one when he turned to more logical questions, often following Jean-Yves Girard’s
creation of new logics—a domain where I am incompetent and which I won’t
comment here. The key question for the first part is called the Full Abstraction
problem for PCF (Programming Computable Functions), a simply typed lambda-
calculus plus recursion and basic Boolean and arithmetic functions. Plotkin had
shown that Scott’s model was not fully abstract, and Milner had proved that there
exists a unique fully abstract model where all (finite) first-order and higher-order
functions are definable by lambda-terms, building that model from syntax. The hot
question was to uncover the semantic nature of the fully abstract model. In my thesis,
I had made notable progress with my notion of stable functions invented before for
other reasons. But we had to deal with sequentiality, a stricter constraint intrinsic to
PCF’s evaluation mechanism. The key was a nice definition of sequentiality by Kahn
and Plotkin, which led us to a model of sequential algorithms, no more based on
functions. Thus, we had to abandon the classical view of lambda-calculus models as
necessarily functional and replace them by categorical ones, with adequate quotients
to recover functions when needed. Our model was not yet fully abstract, but Curien
made it so by adding a simple catch statement classical in functional languages.
In parallel, Abramsky, Jagadeesan and Malacaria built the fully abstract model
using sequential games instead of algorithms, but with a final quotient that loses
the semantic intuition. Curien then switched to other problems linked to the various
logics later introduced by Girard, see his chapter for details.

Chapter 8 is written by Thierry Coquand, Professor at Chalmers University in
Göteborg, Sweden. With Gérard Huet, his PhD advisor, he developed the Calculus
of Constructions or CoC, a landmark in formal logic that gathers and enriches
previous work by the logicians Jean-Yves Girard on the second-order lambda-
calculus and by Per Martin-Löf on higher-order intuitionistic logic, together with
the fundamental Curry-Howard correspondence between proofs and computations.
CoC is the mathematical basis of the Coq verification system, now well-known for
its successes in mathematics and program verifications. Coq was used by Gonthier
and his teams to formally machine-check important mathematical theorems such
as the four-color theorem and the famous Feit-Thompson theorem on odd-order
group classification, whose original proof occupies more than 250 pages of heavy
mathematics. Coq has made possible the full formal verification of the CompCert
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industrial-class C compiler by Xavier Leroy and his team, the executable OCaml
code of this compiler being automatically extracted from the proof. CompCert is a
famous landmark in the field that triggered many other experiments, for instance in
the DeepSpec collaborative program in the US. Coquand’s paper nicely details the
ideas behind CoC and how they were gathered and extended to build this beautiful
and efficient theory.

1.1.3 Part III: Theory

Chapter 9 is due to Patrick Cousot, Professor Emeritus at Ecole Normale
Supérieure Paris. He discusses the theory and practice of Abstract Interpretation,
a major automatic program analysis technique he introduced in the 1970s with
his late wife Radhia Cousot. It is based on smart finite computations to validate
logical assertions attached to program instructions, according to the doctrine
systematized in the 1960s by Dijkstra (the idea had been introduced by von
Neumann and Goldstine in 1947 and applied by Turing in a beautiful note of
1949 where he showed how to prove correct a machine-language factorial program,
despite having no multiplier in the hardware!). Abstract Interpretation performs
symbolic execution using sets of values instead of single values at each program
position. An automatically driven iterative bottom-up/top-down or chaotic iterations
progressively refine these sets, until they become small enough to make assertions
true or provide counterexamples (the process may also fail to conclude for some
assertions, and the art is to avoid that case). It subsumes most ad-hoc static analysis
techniques developed elsewhere.

The chapter details the evolution of theory and practice of Abstract Interpretation
over time. Introduced in the early 1970s, it has been continuously developed by
the Cousot’s and their successive strong teams, first at Nancy University and then
at Ecole Polytechnique and Ecole Normale Supérieure Paris. For practical use, it
is well-served by very efficient verification software systems that have become
industrial, all initially developed within the teams. The Polyspace older version
is still commercialized and improved by Mathworks, with important use in the
automotive industry for instance. The newer and much more powerful Astrée
software, now commercialized by the AbsInt German company (guess where the
name comes from), has an important use in the critical software industry. For
example, Airbus uses it to prove the absence of run-time errors or other safety
properties in actual flight-control software, and it is used for other large and critical
industrial applications.

Chapter 10 is due to Jean-Jacques Lévy, with whom I worked at IRIA in
the 1970s. He is Honorary Director of Research at Inria and a grandmaster in
lambda-calculus. This calculus was created in 1926 by Alonzo Church to formalize
logic and calculability in a simple but precise language, with which he proved the
fundamental termination undecidability theorem. It is still the core of most higher-
order functional languages such as Scheme, ML, Ocaml, F#, JavaScript, etc. (despite
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using the LAMBDA identifier for functions, LISP used dynamic binding instead of
static binding, which is technically and practically quite different). Its definition
fits in a few lines and looks simple at first glance, but its consequences are not,
and each syntactic theorem about it is hard. It was common to build a particular
proof for each of them (Church-Rosser, also called confluence, standardization,
etc.). Lévy’s creation, detailed in Chap. 3, is a term labelling system that completely
captures the deep structure of the reduction space of a term, precisely unraveling the
reduction and creation of redexes (reducible expressions) by categorizing them into
cleverly labelled families along all possible reductions. This makes it possible to
relate cousin redexes between different reductions, even if their syntactic form has
changed. The main consequence is that an infinite reduction must reduce redexes
with infinitely many distinct families, or, differently said, that reductions limited to
a finite set of families are necessarily finite. By using a single ordinal instead of
ad-hoc ones, this makes it possible to unify the proofs of most syntactic theorems.
And most (but not all) typed systems that ensure reduction finiteness can be viewed
as morphisms from Lévy’s labels.

Chapter 11 is written by Jean-Pierre Jouannaud, whom I know from our
scholarship at Ecole Polytechnique at the end of the 1960s. He is Professor Emeritus
at Université Paris-Sud. His chapter is about the theory of term rewriting systems
with pattern-matching, which come in two flavors: first-order, i.e., with function
symbols never applied to other non-applied function symbols, or higher-order,
where this operation is possible. While confluence is automatic for the lambda-
calculus as seen just before, it is not for rewriting systems. Very interesting
work has been devoted to this problem, first in the first-order case with the
characterization of the key source of non-confluence: well-defined critical pairs of
terms of subterms that can be efficiently analyzed to check for confluence. Later
was added work for dealing with associativity and commutativity of infix operators,
indispensable for many mathematical and programming structures. For higher-order
rewriting systems, quite useful for formal mathematics and program verification, the
techniques and results become more complex, but they are marvelously explained
and illustrated in the text. Jouannaud played a major role in this endeavor.

1.1.4 Part IV: Language Design and Programming
Methodology

Giuseppe Castagna discusses set-theoretic typing in Chap. 12. Polymorphic typing
and type-checking really started with the Hindley-Longo type system introduced in
1973 for Milner’s ML language and later enriched in many modern typed functional
languages (Ocaml, Scala, F*, etc.). But there is another major track in the field,
the set-theoretic typing analyzed here. It accepts the classical union, intersection,
negation, and complementation operators on sets of values, not available with
classic polymorphic typing. Such richer types have many advantages, since they
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may be used to encompass heterogenous sets of values. For instance, they can type
heterogeneous lists where each element may be of a different type, say integer,
strings, function, etc. Set-theoretic types also accept overloaded operators and
functions, which makes it possible to use the same symbol or function name for
different sets of argument types; think of + for both integers and floats, disallowed
for instance in OCaml. Another major practical advantage is that set-theoretic types
can be added to originally untyped languages to make them safer by detecting type-
related bugs at compile time instead of runtime. Good examples are TypeScript vs.
JavaScript (now the language of the web and currently the second most popular
language overall albeit a fragile one) and Typed Racket vs. Racket.

The first part of the chapter, well organized and easy to read, introduces set-
theoretic types by many examples that show how to use them in practice and
what are their advantages and difficulties. The mostly used language in examples
is CDuce of the author’s team, but there are also references to other set-theoretic
languages. The second part, longer and much more technical but written with great
care, analyzes the questions related to type-checking algorithms, not fully solved by
now. It also explains the compromises used by existing languages when no perfect
solutions exist.

Finally, Bertrand Meyer, the editor of this book, wrote the Chap. 13 about the
design of the Eiffel object-oriented language, explicitly dedicated to high-safety
applications where bugs cannot be tolerated, for instance in banking. He wrote it
with a careful and detailed analysis of all the global and local decisions that had to
be taken to keep the language solid and consistent. Meyer rightly notices that there
are two ways to design a new object-oriented language.

The first and frequent way is to start from an already established base language
such as C and to extend it by new constructs such as classes, inheritance, etc.: typical
examples are C++ (1982), Objective C (1986), and Java (1996). This apparently
natural process however most often led to having to keep some old design decisions
that were thought acceptable at the time, for instance because speed and memory
size limitations (C was first designed for a PDP-7 computer with 1.75 μs cycle time
and 144 KB memory!). But, when programs became larger and more complex, and
when bugs really started to matter, several of these decisions became problematic in
terms of programming coherence and safety—I can testify, having developed large
applications in C++ with my academic and industrial teams, which demanded us a
very strong discipline to avoid pitfalls.

The second way, central to Eiffel and also to other language developments
(including by myself, see below) is to start afresh with a careful analysis of what
should be accepted or rejected, adopting the guideline to encourage to write good
programs easy to validate instead of writing them fast and putting them into service
after some testing—as still too often done. Note that the Synopsys company has
evaluated the cost of poor-quality software in the USA to be $2.41 trillion in 2022!1

1 https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-
software.html?intcmp=sig-blog-cisq22
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Such a process requires introducing explicit constructs that stress without ambiguity
what is exactly meant instead of letting the task to dangerously implicit rules.

The chapter analyses in details the main Eiffel decisions and their reasons:
uniform access to object properties; structured programming; the design of classes
and multiple inheritance between them; explicit ways to solve conflicts by name
redefinitions; design by contracts, one of the main components of Eiffel’s pro-
gramming safety, much richer and actually simpler that classical spread-out local
assertions; the explicit handling of exceptions; elaborate mechanisms for thread
concurrency; removing null pointer dereferencing, etc. Comparisons with other
object-oriented languages are given on the fly. There is yet no real comparison with
functional object-enriched languages such as OCaml (1996) and Scala (2004) that
rely on quite different viewpoints and techniques to achieve the same goals. But this
would require another full article, yet to be written!

1.2 A Bit of Personal History

I have been an active actor of several of the fields discussed in this book and I know
well many of the Chapter’s authors. From 1972 to 1977, I worked with Jean-Jacques
Lévy and others on the syntactic aspects and semantic models of the lambda-
calculus and of the recursive algebraic definitions introduced by Kleene in the
1950s. I introduced the theory of stable functions, a refinement of Scott’s continuous
functions that leads to new and more precise models of sequential programming
languages, including the lambda-calculus based ones. Stable function then became
unexpectedly important in formal logic after their independent reinvention by Jean-
Yves Girard. In 1977, having just moved to Ecole des Mines Sophia-Antipolis on
the French Riviera (= windsurfing + mountaineering), I hired Pierre-Louis Curien
as my first PhD student to work on the full abstraction problem for sequential
languages raised by Milner and Plotkin, which was considered as one of the most
important open one in semantics; see Curien’s Chap. 7 for the results we got.

From 1983 to 2001, when we could at last put our hands on real computers
supporting Unix as well as on Z80-like embedded microprocessors, it was time for
me to go for more applied work. I started working on real-time process control in
a direct collaboration with control-theory and concurrency researchers, this within
a new joint project between Ecole des Mines and the just created Inria Sophia-
Antipolis lab. We invented a new notion of synchronous concurrency that reconciled
concurrency and determinism, the latter being absolutely required in that field, and
we made this notion alive in a concurrent, deterministic and control-flow oriented
language called Esterel for which we developed an original semantics based on
Plotkin’s brand-new SOS semantics style. The key idea of Esterel was simple but
iconoclastic: to avoid being bothered by the potentially complex interaction between
environment time and program execution time, simply assume that your programs
run on an infinitely fast processor! The same synchrony idea was independently
invented in a different form by two French groups that also gathered control
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