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Preface 

We have entered the Anthropocene, an era of unprecedented, human-induced changes in the 
biosphere, geosphere, and atmosphere. An understanding and appreciation of the animals 
with which we share the planet is important for esthetic, ethical, and practical reasons. A 
significant part of that understanding concerns the behavior of animals and how behavior 
changes in response to environmental change. 

In simplest terms, animal behavior can be defined as muscle movement. Muscle move-
ment occurs in response to internal stimuli such as hormone levels or nervous system ac-
tivity, and to external stimuli such as predator activity or changes in weather. The study 
of animal behavior is focused on patterns of animal movement, the internal and external 
stimuli that elicit these patterns, and the evolution of these patterns. Patterns of move-
ment include things like shifts from one habitat to another, migration, visual signaling, 
vocalization, courtship, copulation, and predation. 

Niko Tinbergen (1907–1988) shaped many of our contemporary concepts of animal 
behavior. He posited that every behavior should be examined within the context of four 
questions: How does it develop? How is it physiologically controlled? What is its function? 
What is its evolutionary origin? [19] Our studies on habitat selection and reproductive be-
havior in gulls, flightless cormorants, harbor seals, and marine iguanas address the third 
and fourth of these questions. We study how weather, food supplies, and other environ-
mental variables influence behaviors, and we make predictions about how those behaviors 
will change in response to changes in environmental parameters and in evolutionary time. 

Significant variation in behavior among individuals often thwarts attempts to make 
predictions about things like population dynamics, habitat occupancies, and the spread of 
behaviorally driven diseases. An understanding of the dynamics of behavior, however, can 
be achieved through the application of mathematical modeling, a powerful set of tools that 
allows not only the perception of how behavioral systems work in the present but also the 
prediction of how they will function in the future. Since the beginning of our collaboration 
in 2001, our Seabird Ecology Team has been among the first to use dynamical systems-
based models to successfully describe and predict the behavior of vertebrate animals in 
their natural habitats in response to environmental change. This book summarizes our 
research and highlights the techniques we used to achieve our goals. 

V
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Our research involves three main procedures: 

(1) The collection of large sets of temporally dense behavioral data on natural 
populations in the field 
(2) The construction of realistic mathematical models rigorously tied to data, 
which describe, explain, and predict behavioral dynamics in relation to envi-
ronmental variables 
(3) The construction of simplified, proof-of-concept models to probe dynamic 
mechanisms, to suggest testable hypotheses, and to study the consequences of 
environmental change and evolving traits 

Purpose and Structure of Book 
Results from our work have been published in several dozen papers scattered among di-
verse mathematical and biological journals. This monograph assembles our main ideas, 
techniques, and data sets into a coherent whole. By assembling this information within a 
single volume, we hope to facilitate researchers who wish to apply our modeling approach 
to their own systems of study, whatever the species. As this volume reveals, we have suc-
cessfully applied our approach to groups of non-avian reptiles, birds, and mammals, and it 
could be applied to any group of behaving organisms, from paramecia to humans. 

This is not a textbook. Each chapter is self-contained, although we have endeavored 
to arrange the chapters within each section in a somewhat logical sequence of increasing 
complexity of techniques. This was not always possible because the same modeling tech-
nique might be applied to different organisms in successive chapters, with each chapter 
describing a unique data gathering process on which the model was predicated. 

The book is organized into three parts. The first two parts are empirically based and 
connect models to data; the third part is theoretical but is motivated by the empirical 
studies in Part II. Topics are organized by the types of scientific questions being asked 
rather than by mathematical methods. 

Part I deals only with the dynamics of aggregate animal behavior as it occurs locally in 
time and space, without following population dynamics across generations. We use various 
methods, including logistic regression, differential equations, and a hybrid of regression 
and differential equations, to model the behaviors of glaucous-winged gulls, harbor seals, 
marine iguanas, and flightless cormorants. 

Part II focusses on two specific behaviors with major population and evolutionary 
import in gulls: egg cannibalism and the related adaptation consisting of egg-laying syn-
chrony, which are documented with statistical methods involving logistic regression and 
discrete-time models of synchrony. These studies are presented as a package because they 
motivate Part III. Part  II also contains a chapter on eagle-gull predator-prey dynamics, 
which employs a differential equation model of Lotka-Volterra type. 

Part III is a step-wise theoretical investigation of the population and evolutionary con-
sequences of cannibalism and reproductive synchrony from a bifurcation point of view
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using discrete-time matrix models for structured populations. We first consider a simple 
but general two-dimensional discrete-time model of adult-on-juvenile cannibalism and use 
a Darwinian dynamic extension to consider whether cannibalism can be an evolutionarily 
stable strategy. We then add a second adult class to the model in order to consider the 
interplay between cannibalism and reproductive synchrony. A crucial scientific problem is 
how to model the population dynamic consequences of these behaviors when they occur on 
a time scale shorter than the generational time scale. We conclude Part III by addressing 
this issue with a general framework based on nonlinear Leslie models that contain two 
time scales—daily and yearly—in which reproductive and feeding behaviors occur on a 
daily basis whereas generations are tracked from year to year. 

Data Collection 
To capture the dynamic patterns of animal behavior, time-series data must be collected 
on a finer temporal scale than behavioral and environmental fluctuations. For the marine 
organisms we study, behaviors often are driven by tidal and diurnal patterns, and we have 
found that data collected hourly over complete 2-week tidal cycles work best. Depending 
on the project, we typically collect data at the top of each hour for 16 or 17 hours per day 
for several weeks. This kind of dense data collection requires either assistants or continuous 
video or sound recordings from which data are later transcribed. 

We work with large aggregations of animals at seabird colonies, seal haul-out sites, and 
marine iguana haul-out sites. If the number of individuals is not too large, we count every 
individual in the study area; if the group is very large, we count only individuals within 
representative sample areas. If we are evaluating fluctuations in behavior, we determine 
the number of individuals exhibiting the behavior in proportion to the total number of 
individuals present. 

There is no substitute for thorough, temporally dense, long-term observation of the 
biological system to be modeled. This is time intensive and can be logistically difficult, 
but it yields two opportunities that cannot be realized in any other way. First, a thorough 
observation of a system, day in and day out, week after week, year after year, affords a 
deep understanding of the system that sometimes bears little resemblance to studies based 
on short-term samples. This is the kind of understanding that allows a scientist to pose 
realistic models that can be tied rigorously to data. Second, long and temporally dense 
time series are exactly what are needed to parameterize continuous-time models. 

Construction of Realistic Models 
Historically, behavior dynamics have been modeled using Markov chain analysis, game the-
ory, and individual-based models [4, 5, 15, 17]. In addition, ordinary differential equations 
(ODEs) with “motivational” dependent variables were developed in the 1970s as qualitative 
behavior models of individual animals [8, 14]. These qualitative models, however, were not 
tied rigorously to empirical data because motivational variables are not measurable [18].
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Our research relies on an interdisciplinary paradigm derived from the interface between 
population ecology and dynamical systems theory [3]. Models designed to quantitatively 
describe and predict animal behavior in field populations serve as testable scientific hy-
potheses, with measurable dependent and independent variables operating on scales at 
which deterministic trends emerge from variability among individuals. We use compart-
mental models (difference equations and ODEs) in which each compartment represents a 
specific behavioral state at a specific spatial location, and in which the state variables track 
the numbers of individuals in each compartment [9]. Applying these models to any particu-
lar behavioral system requires specifying the flow rates between compartments by means of 
modeling assumptions. In general, these flow rates depend on environmental factors. They 
also can be functions of population densities and/or time, in which case the models are 
nonlinear and/or nonautonomous. If the system recovers rapidly after disturbance, ODEs 
can be reduced to algebraic models on two time scales: one for disturbance dynamics and 
one for steady state dynamics [12]. 

Dynamic patterns depend, of course, on scale [13]. A seabird colony, for instance, is 
a complicated place at the scale of the individual. Single birds appear quite autonomous 
and exhibit a wide variety of complicated behavioral choices; yet we have shown that 
some behaviors at the aggregate level are highly deterministic and can be predicted as a 
function of environmental variables. For example, gulls leave colony and loafing areas in 
large numbers to feed when the tide is going out and the sun is high, and they return 
with an incoming tide in the evening [7, 10]; harbor seals leave the beach and move into 
the water with rising tides because the incoming current brings in food [2, 6]; Galápagos 
marine iguanas move from land to feeding sites in the sea primarily in response to changing 
patterns of solar radiation [16]. Some behaviors are more deterministic than others, and it 
is possible to rank them according to the degree of determinism. 

Some researchers feel that methods of modeling animal behavior at the aggregate level 
are too coarse and that modeling behavior must involve individual-based models. Although 
our approach is not the only way or always the best way to model animal behavior, our 
results show that ODEs and difference equations can indeed accurately predict the behav-
ior dynamics of animal groups [9, 10, 11]. 

Model Parameterization 
Estimating model parameters requires a stochastic version of the model that accounts for 
the noise structure [3]. For example, in many of the systems we have studied, stochastic 
perturbations are largely uncorrelated in the hourly sample times, and the stochastic model 
can be written 

. ϕ (N (τ + 1)) = ϕ (G (τ ,N (τ))) + E (τ) ,

where .N = (N1, N2, . . . , Nm) is the vector of state variables, E is a vector from a multivari-
ate normal random distribution with variance-covariance matrix .Σ = (σij), and  . G(τ ,N(τ))
is the deterministic model prediction at hour .τ + 1 based on the state of the system at
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hour . τ . Here  . ϕ is a variance-stabilizing transformation; the transformations . ϕ(x) = lnx
and .ϕ(x) =

√
x render environmental and demographic stochasticity, respectively, approx-

imately additive [3]. 
The one-step conditioned residual error vectors are 

. ρ(τ + 1) = ϕ(n(τ + 1))− ϕ(G(τ , n(τ))),

where n is the vector of observations. The likelihood function, which measures the likeli-
hood that the residuals arose from a joint normal distribution, is a function of the model 
parameters, and its maximizer is the vector of parameter estimates [3]. 

Alternative Models and Model Selection 
If models serve as testable hypotheses, then we can pose alternative models as a means 
to test alternative hypotheses. Information theoretic methods of model selection, such as 
the Akaike Information Criterion (AIC), take into account both the value of the likelihood 
function and the number of parameters, so that models with more parameters are penal-
ized for over-fitting. This criterion allows one to select the best model from a suite of 
alternatives [1]. 

Model Validation 
A good model not only describes and explains, but also predicts. Validating a model 
means testing its predictability on an independent data set that was not used to estimate 
its parameters. One can validate a model by estimating parameters from a “calibration” 
data set and computing the goodness-of-fit of the fitted model on that data set, and then 
comparing that to the goodness-of-fit on an independent “validation” data set without 
re-estimating parameters. Goodness-of-fit can be computed with a generalized .R2 [3]. 
For example, when we modeled numbers of gulls loafing on a pier (Chap. 1), we obtained 
.R2 = 0.58 for the calibration data set and .R2 = 0.61 for the validation data set [10], 
which supported model validation. For our model of Galápagos marine iguana haulout 
(Chap. 3), .R2 = 0.77 for the calibration data set and .R2 = 0.80 for the validation data set 
[16], again supporting model validation. Close correspondence in goodness-of-fit between 
calibration and validation data sets, as in these cases, suggests that a model captures the 
major dynamics of a system. 

The most convincing models are those that make unexpected, a priori predictions that 
are borne out by new experiments. Most seabird biologists, for example, would have pre-
dicted that during high tides gulls, which are intertidal feeders, should be loafing near the 
breeding colony and not away feeding. Our model predictions, however, counterintuitively 
suggested that during high tides occurring at midday, gulls should be away feeding—which 
is exactly what we observed [10].
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Proof-of-Concept Models 
In addition to models tied rigorously to data, we also construct and analyze “proof-of-
concept” models. These are simplified models which focus on a small number of key 
mechanisms of interest. They are typically of low dimension (involve a small number of 
state variables) and are amenable to rigorous mathematical analysis. Our goal is to use 
such models to probe the dynamic consequences of the mechanisms under consideration, 
thereby not only suggesting hypotheses that can explain the observations we (and others) 
have made but also guide future observational protocols. In the process, these models also 
sharpen ideas and clarify definitions. 

Given the nature of the phenomena we investigate, we often use discrete-time models 
(difference equations or maps) of structured populations. This methodology distinguishes 
different categories of individuals and focuses on interactions among them. The methodol-
ogy is most appropriate when the stages have strongly discrete characteristics, such as juve-
nile and adult or larva-pupa-adult stages, and life history events occur at well-defined time 
intervals. A mathematical advantage of these discrete models is that unlike continuous-
time structured models, they pose no difficult problems with regard to basic questions 
concerning the definition and existence of solutions and their numerical simulation, and 
the validity of basic analytic methods (such as linearization, bifurcations, etc.). The unit 
of time in our discrete models is generally determined by either a basic time scale in the 
modeled population (e.g., a maturation period) or the census time interval. 

The predictions of a model, for example its equilibrium states and stability properties, 
are determined by the model coefficients or parameters which represent various vital rates 
(birth, survival, resource consumption, etc.). A significant change in a model prediction 
caused by a change in a model parameter is called a bifurcation. By “significant change” 
one typically means a change in the stability properties of an equilibrium (or some other 
attractor, such as a periodic state). A destabilization of equilibrium generally signals the 
creation of a new attractor. Such bifurcations can be of significant interest because the old 
and new attractors generally predict very different dynamic and long-term consequences for 
a population. For example, the most basic difference concerns survival versus extinction. 
Others include changes from equilibrium to cyclic fluctuations (crash and boom outbreaks) 
or other dramatic states such as chaos. The parameter values at which a bifurcation occurs 
is called a bifurcation point (or sometimes a tipping point). 

One compelling reason we are interested in bifurcation points in our models is that the 
location of most of our field studies, Protection Island, Washington in the Salish Sea, is ex-
periencing significant climate change (specifically, increased mean sea surface temperature 
in surrounding waters) which, in turn, effects certain vital rates of the populations we are 
modeling. Thus, climate change is represented in our models by a change in model param-
eters, which can cause bifurcations to occur. A basic question to ask of a model is, then, 
where are the bifurcation points that indicate a threat to the survival of the population? 
Which vital rates are involved and are most important? We can also inquire as to what 
counter changes in other parameters might mitigate the threat of extinction. We can use



PREFACE XI

a model to investigate whether observed behavioral changes in the population that highly 
correlate with climate change are likely to be adaptive in the long run. Using Darwinian 
dynamic (evolutionary game theory) modeling methodology, we also investigate conditions 
under which these adaptive changes can be attained by means of natural selection. 

Conclusion 
A burgeoning human population, propped up by synthetic fertilizers and energy from fossil 
fuels, is taking a decided toll on resource availability, climate, and biodiversity. Each of 
these ecosystem components plays a role in how animals and humans behave and thrive. 
There has never been a more opportune time for mathematicians and biologists to collabo-
rate to create a better understanding of the behavior of animals—from the honeybees that 
pollinate our crops, to the birds that bring us pleasure but interfere with jet engines, to 
the vast herds of wildlife that provide esthetic enjoyment and crucial ecosystem services. 
We believe the techniques highlighted in the following chapters will play a positive role in 
the understanding and health of the animal components of our planet. 

Jim M. Cushing, Tucson, AZ, USA 
Shandelle M. Henson, Berrien Springs, MI, USA 

James L. Hayward, Berrien Springs, MI, USA 

References 
1. Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a 

practical information-theoretic approach, 2nd edn. Springer, New York 

2. Cowles JD, Henson SM, Hayward JL, Chacko MW (2013) A method for predict-
ing harbor seal (Phoca vitulina) haulout and monitoring long-term population trends 
without telemetry. Nat Resour Model 26:605–627 

3. Cushing JM, Costantino RF, Dennis B, Desharnais RA, Henson SM (2003) Chaos in 
ecology: experimental nonlinear dynamics. Academic Press, San Diego, CA 

4. Dugatkin LE, Reeve HK (1998) Game theory and animal behavior. Oxford University 
Press, Oxford, UK 

5. Gottman JM, Roy AK (1990) Sequential analysis: a guide for behavioral researchers. 
Cambridge University Press, New York 

6. Hayward JL, Henson SM, Logan CJ, Parris CR, Meyer MW, Dennis B (2005) Pre-
dicting numbers of hauled-out harbour seals: a mathematical model. J Appl Ecol 
42:108–117



XII PREFACE

7. Hayward JL, Henson SM, Tkachuck RD, Tkachuck CM, Payne BG, Boothby CK 
(2009) Predicting gull/human conflicts with mathematical models: a tool for manage-
ment. Nat Resour Model 22:544–563 

8. Hazlett BA, Bach CE (1977) Predicting behavioral relationships. In: Hazlett BA (ed) 
Quantitative methods in the study of animal behavior. Academic Press, New York, 
pp 121–144 

9. Henson SM, Dennis B, Hayward JL, Cushing JM, Galusha JG (2007) Predicting the 
dynamics of animal behavior in field populations. Anim Behav 74:103–110 

10. Henson SM, Hayward JL, Burden CM, Logan CJ, Galusha JG (2004) Predicting 
dynamics of aggregate loafing behavior in glaucous-winged gulls (Larus glaucescens) 
at a Washington colony. Auk 121:380–390 

11. Henson SM, Hayward JL, Cushing JM, Galusha JG (2010) Socially induced synchro-
nization of every-other-day egg laying in a seabird colony. Auk 127:571–580 

12. Henson SM, Hayward JL, Damania SP (2006) Identifying environmental determinants 
of diurnal distribution in marine birds and mammals. Bull Math Biol 68:467–482 

13. Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1947 

14. McFarland DJ (1971) Feedback mechanisms in animal behaviour. Academic Press, 
London, UK 

15. Mangel M, Clark CW (1988) Dynamic modeling in behavioral ecology. Princeton 
University Press, Princeton NJ 

16. Payne BG, Henson SM, Hayward JL, Megna LC, Velastegui Chá vez SR (2015) Envi-
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Part I 

Modeling Behavior in Space and 
Time 

1



3

The timing, spacing, and location of animal behaviors, along with transitions from 
one behavioral state to another, occupy the attention of biologists for both theoretical 
and practical reasons. Theoretically, information regarding these phenomena allows for 
interpretations concerning origin and function. Practically, this information can lead to 
better resource management, as well as to improved health and safety for humans with 
whom animals share Earth’s resources. 

The following six chapters describe how we applied principles of mathematical modeling 
and statistics toward a better understanding of the three groups of marine animals: birds, 
mammals, and non-avian reptiles. Previous attempts to relate mathematics to changes in 
behavior states in animals often have been purely theoretical, without direct connections to 
actual data. In contrast, we tie mathematical models of behavior directly to data obtained 
from free-living animals in their natural habitats. 

Chapters 1–3 use differential equation models to test predictions concerning specific 
behaviors engaged in by groups of glaucous-winged gulls, harbor seals, and marine iguanas, 
respectively. Chapter 4 illustrates how techniques developed in the previous three chapters 
can be used to make predictions concerning systems of multiple behaviors. In Chap. 5 
we use generalized linear models and multi-model inference to examine the responses of 
flightless cormorants to environmental variables. Chapter 6 applies logistic regression and 
Darwinian dynamics to explore how a behavior used for one function might evolve to 
perform an additional function.



Chapter 1 

Predicting the Dynamics of 
Aggregate Loafing Behavior 
in Gulls 

Research reported in this chapter was the initial project carried out by the Seabird Ecology 
Team. It provided one of the first rigorous demonstrations that a differential equation model 
using environmental variables can be used to describe, explain, and accurately predict the 
aggregate behavior of marine vertebrates. It also served as the impetus and conceptual basis 
for much of the work in the remaining chapters of this volume. Hypothesis formation, data 
collection, and analysis were carried out by senior researchers Shandelle Henson, James 
Hayward, and Joseph Galusha, with the assistance of undergraduate students Christina 
Burden and Clara Logan. The initial report of this work was published in The Auk in 2004 
[20]. 

1.1 Introduction 

Many animals enhance their fitness by moving selectively from habitat to habitat [5, 9, 
22, 38], and habitat selection is a central concern of ecologists, evolutionary biologists, 
and resource managers [36]. Ecologists examine relations between habitat and an animal’s 
morphology, physiological requirements, and behavior in an effort to understand the role 
of the animal in an ecological community; evolutionary biologists are concerned with these 
same variables, except that they are viewed in the context of fitness and adaptive processes; 
and resource managers attempt to identify and create optimal habitat features to provide 
attractive settings within which animals of interest can thrive and multiply. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
J. M. Cushing et al., Modeling Behavior and Population Dynamics, Interdisciplinary 
Applied Mathematics 57, https://doi.org/10.1007/978-3-031-34283-7 1 
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6 CHAPTER 1. PREDICTING THE DYNAMICS OF AGGREGATE LOAFING...

In ecology, the analysis of spatial distribution patterns of organisms is an important 
subdiscipline [34]. Many studies of spatial distribution involve statistical or stochastic 
analyses, as well as regression models. Moreover, theoretical studies commonly incorporate 
deterministic dynamic models (e.g., continuous-time differential equations or discrete-time 
difference equations), although typically these models have not been tested in the field nor 
are they well connected to data. Ideally, deterministic mathematical models function as 
testable hypotheses. Statistical techniques connect models with data, and laboratory or 
field experiments test model predictions. This ideal set of circumstances is often difficult 
to achieve given a paucity of data, difficulty of experimentation, or mobility of research 
subjects [6, 7]. 

A major challenge in modeling ecological dynamics is the determination of scales at 
which the asynchronous behavior of individuals forms patterns and the identification of 
mechanisms leading to these patterns [22, 23, 30]. Quantum-level randomness in matter 
self-assembles into deterministic rules for the properties and behavior of larger objects. 
Similarly, although individual animals may move relatively independently due to individual 
differences and social interactions, patterns in habitat utilization may emerge for animal 
groups [30]. 

In [20] we constructed and tested a differential equation model for the prediction of 
numbers of animals occupying a single habitat in relation to environmental variables. We 
used glaucous-winged gulls (Larus glaucescens, Fig. 1.1) as our model organisms. Gulls are 
among the most widespread and thoroughly studied birds on the planet. They make excel-
lent field study subjects because they are large, active during the day, and feed, nest, and 
“loaf” together in large aggregations [1, 11, 15, 28, 31, 33]. “Loaf” is a behavior category 
that refers to preening, defecating, standing, resting, sitting, or sleeping in nonfeeding and 
nonbreeding locations. Gulls typically favor loafing habitats with good visibility [5, 38], 
a propensity that often puts them at odds with human cleanliness, health, and safety 
[2, 32, 39]. 

Loafing behavior by gulls is correlated with tide height, most likely due to changes in 
food availability and/or time of day [10, 13, 26, 38]. Typically, the number of loafing gulls 
in a habitat rises with rising tides and decreases around midday. These correlations led us 
to pose four hypotheses upon which our mathematical model is based: 

(H1) Numbers of loafing gulls fluctuate in direct response to an environmental 
variable E(t), selected from the following set of alternative sub-hypotheses: 

(H1A) .E(t) = tide height 
(H1B) .E(t) = 1/solar elevation 
(H1C) .E(t) = tide height/solar elevation 

(H2) Numbers of loafing gulls during daytime can be described with a two-
compartment model, with one compartment being the loafing area and the 
other compartment encompassing everywhere else.
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Figure 1.1: Male (background) and female (foreground) glaucous-winged gulls on their 
breeding territory at Protection Island National Wildlife Refuge, Washington. Note the 
different head shapes of the two birds and the larger body size of the male (Photo by J. L. 
Hayward.) 

(H3) Gulls enter the loafing site at a per capita rate proportional to .E(t) and 
exit the site at a per capita rate inversely proportional to .E(t). 
(H4) The total number of gulls in the system is proportional to the weekly 
maximum number occupying the loafing site, which varies during the course of 
the year. 

Hypotheses H1–H4 are biological hypotheses. They are also modeling assumptions 
which we converted into mathematical equations in order to test them with empirical 
data. In the following sections, we describe how to rigorously connect this mathematical 
model to hourly time series data for numbers of gulls at a loafing site where individual birds 
enter and leave the site asynchronously throughout the day. We show how we validated 
the model on an independent data set and then predicted future numbers of loafing gulls 
during each daylight hour for 29 consecutive days during the next nesting season. 

1.2 Methods 

Our study was carried out with glaucous-winged gulls loafing on a pier (Fig. 1.2) adjacent 
to a breeding colony at Protection Island National Wildlife Refuge (48. ◦7’N, 122. ◦55’W) in 
the Salish Sea, Strait of Juan de Fuca, Washington, USA. During this study, the breeding 
colony contained more than 3,000 gulls.
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Figure 1.2: Glaucous-winged gulls used this pier in a small marina at Protection Island 
National Wildlife Refuge, Washington, for “loafing”. (a) Pier structure. (b) Close-up of 
gulls loafing on the pier (Photos by J. L. Hayward.) 

For an initial application of mathematical modeling to this field system, we chose to 
restrict our study area to the pier, a well-defined site that was easy to census. The pier was 
located at the west side of a small marina closed to the public, with limited use by humans. 
It was used during most daylight hours for loafing by both breeding and nonbreeding gulls. 

1.2.1 Historical Data 

Counts of loafing gulls on the pier were made each hour, from 05:00 to 20:00 hours (LST, 
here and below), May to August 1997, 1998, 1999, and 2001. Hourly sampling allowed 
us to track tidal and diurnal periodicities [22]. Tides in the water surrounding Protection 
Island are semidiurnal with strong diurnal inequalities in the lows. Approximately every 
14 days, tidal “nodes” with minimal amplitudes occur. 

We partitioned the historical data using stratified random sampling by dividing each 
14-day tidal period into approximately four quarters and, from each quarter, randomly 
selecting half the data for model calibration and the other half for independent model 
validation (Fig. 1.3). 

1.2.2 A General Mathematical Model 

At each point in time we classified individual gulls in the system into two compartments: 
those on the pier and those not on the pier. We used a rate balance equation, 

. 
dN

dt
= [inflow rate]− [outflow rate],

to account for the net rate of change of the number of gulls on the pier as the inflow rate 
minus the outflow rate. Here .N(t) is the number of birds on the pier at time t, and  t is the
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day of the year, including the decimal fraction of the specific time of day. The inflow rate 
is the per capita flow rate to the pier multiplied by the number of gulls elsewhere in the 
system. The outflow rate is the per capita flow rate away from the pier times the number 
of gulls loafing on the pier. The mathematical model incorporating hypotheses H1–H4 is 

.
dN

dt
= αE(t)(βKp(t)−N)− 1

αE(t)
N (1.1) 

. 0 < α < ∞, 1 ≤ β ≤ 80.

The expression .βKp(t) is the total number of gulls in this two compartment system at 
time t, where  .Kp(t) is an estimate of the maximal historical numbers of gulls at the pier 
throughout the year (hypothesis H4). The difference .βKp(t)−N(t) is the number of birds 
elsewhere in the system at time t. The proportionality constants . α,. β .> 0 are parameters 
to be estimated from the historical data. The maximal number of gulls nesting in the 
adjacent breeding colony was approximately 60 times the maximal value of .Kp(t), so we 
chose 80 as an ample upper bound for . β. Similar compartmental models have been used 
for waterfowl [29]. 

We estimated .Kp(t) from historical data sampled from January 1 to March 21 and 
May 23 to December 31, 1997–1999 and 2001 [19]. Using these data we estimated seasonal 
maxima for the fluctuating pier counts by fitting a modified lognormal curve through the 
averages, for each week of the year, of the maximal pier counts (Fig. 1.4): 

. Kp(t) = 76.36 exp

[
[ln (40.29− t/7)− 2.504]2

−0.7225

]
.

After October 2 and before March 6, the average maximal pier counts were zeros or ones, 
so we set .Kp(t) = 0 for those intervals (Fig. 1.4). 

We numerically integrated the differential equation model (1.1) using tidal and solar 
data obtained from the National Oceanic and Atmospheric Administration (NOAA) as 
described below. 

1.2.3 Alternative Models 

We normalized hourly tide data as follows: We first subtracted the minimal tide value 
from each tide height in order to set the minimum equal to zero, then divided each by the 
resulting maximum to set the new maximum equal to one, and finally added one to the 
quotient so that the result was between one and two: 

. T (t) =
tide−min (tide)

max (tide−min (tide))
+ 1.

This resulted in a nondimensional tide height function with .1 ≤ T (t) ≤ 2. For solar 
elevation, we set negative elevations to zero and then normalized solar elevation data as
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Figure 1.3: Tidal-solar model prediction (lower curve), historical data (circles), and tidal 
curve (upper curve). Each panel corresponds to 1 day. Tide height is graphed on a vertical 
scale of .−1 to 3 m. Initial condition for each day’s model prediction was taken to be the 
first data point collected that day. A typical tidal sequence for Protection Island is shown 
at the bottom; tidal nodes are indicated with arrows. Data from days occurring during 
the same quarter of the tidal sequence are stacked vertically. Data in a given column show 
similar diurnal patterns. Conditioned least-squares (CLS) parameters were estimated from 
the “calibration data.” The “reserved data” were used to independently validate model 
performance without re-estimated parameters. The CLS parameter estimates appear in 
Table 1.1. Following are dates for days in each of the six columns, left to right, top to 
bottom: first column, July 21, 1999; August 18, 1999; July 7, 1999; August 4, 1999; 
second column, July 2, 1997; July 16, 1997; August 13, 1997; July 30, 1997; August 5, 1998; 


