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Preface

In networked control systems (NCSs), wired or wireless communication channels
are used to link components among plants, sensors, and controllers to achieve con-
trol objectives. While there are many advantages, NCSs also introduce a series of
challenging problems that arise from the limited resources and unreliability of the
communication networks used for information transmission. For example, due to
congestion, data losses and transmission delays may occur in digital communi-
cation channels. Besides, in wireless communication networks, which are widely
used in sensor networks and multi-agent systems (MASs), communication chan-
nels naturally suffer from inference, fading, and transmission noises. Since control
is often used in safety or mission-critical applications, we must take the uncertain-
ties in communication networks into consideration and investigate how they affect
the stability and performance of NCSs and MASs.

The book gives a systematical and self-contained description for the analysis and
design of NCSs and MASs over imperfect communication networks. Specifically,
the book considers fading channels and delayed channels and includes two main
parts. In the first part, the stabilization, optimal control, and remote state esti-
mation of linear systems over channels with fading, signal-to-noise constraints,
or intermittent measurements are considered. The channel requirements for the
mean-square stabilization and optimal control are characterized and the optimal
estimator designs and performance analysis are conducted. In the second part, the
joint impact of communication channels and network topology on the consensus-
ability of MASs is analyzed. By integrating communication and control theory, we
present several fundamental results on the stabilization, optimal control, and esti-
mation of NCSs and the consensus of MASs over imperfect channels. The book
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intends to provide a unified platform for introducing the analysis and design of
NCSs and MASs for researchers working in related areas.

January 2023 Jianying Zheng
Liang Xu
Qinglei Hu
Lihua Xie
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1

Introduction

1.1 Introduction and Motivation

1.1.1 Networked Control Systems

Due to the flexible architecture and ease of installation and maintenance, commu-
nication networks are widely used in control systems, which result in networked
control systems (NCSs), where the plants, actuators, sensors, and controllers are
spatially distributed and interconnected by communication channels [Schenato
et al., 2007, Hespanha et al.]. NCSs are ubiquitous in industry and daily life, such
as teleoperation [Arcara and Melchiorri, 2002], power systems [Wang et al., 2012],
and transportation systems [Seiler and Sengupta, 2001].

Even though NCSs have the advantages of low cost, easy implementation, and
expansion to large-scale applications, they also introduce new challenging prob-
lems arising from the limited resources and unreliability of the communication
networks used for information transmission (see Figure 1.1). For example, the
time delay may occur in digital communication channels due to data processing
and transmission [Tse and Viswanath, 2005, Goldsmith, 2005]. Notably, in wireless
communication networks, communication channels naturally suffer from inter-
ference, fading, and transmission noises [Tse and Viswanath, 2005, Goldsmith,
2005]. There into, fading is the time variation of channel strengths and is usually
caused by two factors: one is the shadowing from obstacles; the other one is the
multipath propagation [Tse and Viswanath, 2005, Goldsmith, 2005]. Packet drops
can also be modeled as a special case of channel fading. Take Figure 1.2 as an
illustration. The wireless signal may transmit through the car and undergo sev-
eral paths before arriving at the receiver. If the phases of the received signals from
different paths are the same, the signal strength is enhanced. Otherwise, the sig-
nal strength is reduced as a result of the cancellation of radio waves. Besides, the
signal strength at the receiver side might be reduced due to the shadowing from

Control over Communication Networks: Modeling, Analysis, and Design of Networked Control Systems and
Multi-Agent Systems over Imperfect Communication Channels, First Edition.
Jianying Zheng, Liang Xu, Qinglei Hu, and Lihua Xie.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
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the car. Since control is often used in safety- or mission-critical applications, we
must take the uncertainties in communication networks into consideration and
investigate how they affect the stability and performance of control systems.

The classical control theory mainly deals with the systems with nearly perfect
point-to-point connections and focuses on the design of control laws to achieve
the given control performance. It can’t be applied directly to the NCSs when the
uncertainties in the communication network must be considered. A new control
paradigm is required to deal with the interplay between control and communi-
cation. In this book, one of the main objectives is to study the stabilization, esti-
mation, and optimal control of NCSs over channels with fading, packet drops, or
delay.

1.1.2 Multi-Agent Systems

Motivated by the collective behavior in nature, such as schooling fish, flock-
ing birds, and marching locusts, multi-agent systems (MASs) have attracted
considerable research interest from the control community [Jadbabaie et al.,
2003, Olfati-Saber and Murray, 2004, Olfati-Saber et al., 2007, Bliman and
Ferrari-Trecate, 2008, Cao et al., 2008, Ren and Beard, 2008, You and Xie, 2010,
Cao et al., 2012, Trentelman et al., 2013, Qi et al., 2016, Qiu et al., 2017, Xu et al.,
2018, Zheng et al., 2018]. With the rapid development of wireless communication
networks, MASs have been applied in many industrial and military applica-
tions. Such systems usually involve large numbers of autonomous agents (e.g.
robots, unmanned aerial vehicles, satellites), which share information via local
interactions and work together to achieve collective objectives.

For MASs, each agent can have the same or different system dynamics, resulting
in different types of MASs, e.g. first- and second-order MASs, linear and nonlin-
ear MASs, homogeneous and heterogeneous MASs. The interactions among the
agents form the interaction topology, which can be fixed or time-varying. Then
the cooperative control of MASs is based on the system dynamics and the interac-
tion topology to design the control laws, which can be centralized or distributed,
to fulfill a task. Typical cooperative control tasks include consensus, formation,
swarming/flocking, rendezvous, etc. There into, the consensus problem, which
requires all agents to agree on a certain quantity of common interests, builds the
foundation of other cooperative tasks.

Existing research on consensus assumes that the communication networks
among agents are perfect. However, as mentioned earlier, in practical applica-
tions, communication channels naturally suffer from fading, signal-to-noise ratio
(SNR) constraints, time delay, etc. Hence, it is of great significance to study how
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Plant SensorController
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Figure 1.1 Networked control systems.

Figure 1.2 Fading phenomenon in wireless communications.
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the uncertainties in communication networks influence the consensus of MASs.
The other main objective of this book is to analyze the consensus problem of
MASs over channels with fading, packet drops, and delay.

1.2 Literature Review

Control over communication channels/networks has been a hot research topic in
the past decades [Matveev and Savkin, 2009, Como et al., 2014, You et al., 2015],
motivated by the rapid developments of wireless communication technologies that
enable the wide connection of geographically distributed devices and systems.
However, the inclusion of wireless communication channels/networks also intro-
duces challenges in the analysis and design of control systems due to constraints
and uncertainties in wireless communications. We must take the communication
channels/networks into consideration and study their impact on the stability and
performance of control systems. This section briefly reviews existing results on the
analysis and design of NCSs and MASs over imperfect communication channels.

1.2.1 Basics of Communication Theory

One of the main focuses of this book is to characterize the critical channel require-
ment such that the NCS can be mean-square stabilized. Since the communication
channel is used to transmit information about the system state, as illustrated in
Figure 1.1, it is expected that if the channel capacity is large enough, the feedback
connected system can be mean-square stable. From this perspective, the commu-
nication channel capacity might be critical for the mean-square stabilization of
control systems.

The channel capacity problem is fundamental in communication theory since
it dictates the maximum data rates that can be transmitted over channels with
asymptotically small error probability [Tse and Viswanath, 2005, Goldsmith,
2005]. In this subsection, we briefly review the communication channel capacity
definitions and discuss why the communication theoretic channel capacity is
not the critical characterization of the capacity required for controls. We only
discuss discrete memoryless channels, and most of the definitions are borrowed
from Cover and Thomas [2006].

A discrete memoryless channel consists of three parts: an input alphabet  ,
an output alphabet  , and a probability transition matrix p( y|x) that describes
the probability of observing the output symbol y given the input symbol x. The
channel is memoryless if the probability distribution of the current channel out-
put conditioned on the current channel input is independent of previous channel
inputs or outputs. The configuration of the point-to-point communication system
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W
Encoder

Xn
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Ŵ

Channel p(y|x)
Y n

Figure 1.3 Point-to-point communication system.

is depicted in Figure 1.3. We want to transmit a message W reliably through
the communication channel with appropriately designed channel encoders and
decoders. The (M,n) code in a communication system is defined as follows.

Definition 1.1 ((M,n) code) An (M,n) code for the channel ( , p(y|x),)
consists of three parts:

1. A message index set {1, 2,… ,M}.
2. An encoding function Xn ∶ {1, 2,… ,M} → n, generating codewords xn(1),

xn(2), …, xn(M).
3. A decoding function g ∶ n → {1, 2,… ,M}, generating an estimate for the

transmitted message index.

The performance of the code is measured by the decoding error.

Definition 1.2 (Decoding error) The maximal probability of error for an
(M,n) code is defined as 𝜆(n) = max i∈{1,2,…,M} Pr (g(Y n) ≠ i|Xn = xn(i)).

The communication channel capacity which measures the maximal capacity for
reliably transmitting the information is defined below.

Definition 1.3 (Channel capacity) The rate R of the (M,n) code is defined as

R =
log M

n
bits per transmission.

A rate R is achievable if there exists a sequence of (⌈2nR⌉,n) codes such that 𝜆(n)
tends to 0 as n → ∞. The channel capacity C is then defined as the supremum of
all achievable rates.

The channel capacity in Definition 1.3 is called the Shannon channel capac-
ity since C. E. Shannon proved in the channel coding theorem that this channel
capacity equals the mutual information of the channel maximized over all possible
input distributions [Shannon, 2001, Cover and Thomas, 2006]:

C = max
p(x)

ℐ (X;Y ),


