MACHINE LEARNING FOR BUSINESS ANALYTICS

CONCEPTS, TECHNIQUES AND APPLICATIONS WITH JMP PRO®

SECOND EDITION

GALIT SHMUELI • PETER C. BRUCE • MIA L. STEPHENS MURALIDHARA ANANDAMURTHY • NITIN R. PATEL

MACHINE LEARNING FOR BUSINESS ANALYTICS

MACHINE LEARNING FOR BUSINESS ANALYTICS

Concepts, Techniques, and Applications with JMP Pro[®]

Second Edition

GALIT SHMUELI National Tsing Hua University Taipei, Taiwan

PETER C. BRUCE statistics.com Arlington, USA

MIA L. STEPHENS JMP Statistical Discovery LLC Cary, USA

MURALIDHARA ANANDAMURTHY SAS Institute Inc Mumbai, India

NITIN R. PATEL Cytel, Inc. Cambridge, USA

WILEY

Copyright 2023 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data Applied for:

Hardback: 9781119903833

Cover Design: Wiley Cover Image: © AdobeLibrary/Adobe Stock Photos

Set in 10/12pt TimesLTStd by Straive, Chennai, India

To our families

Boaz and Noa Liz, Lisa, and Allison Michael, Jade Ann, and Audrey L Seetha and Ananda Tehmi, Arjun, and in memory of Aneesh

CONTENTS

Foreword	xix
Preface	XX
Acknowledgments	xxiii

PART I PRELIMINARIES

1	Introd	luction	3
	1.1	What Is Business Analytics? 3	
	1.2	What Is Machine Learning? 5	
	1.3	Machine Learning, AI, and Related Terms 5	
		Statistical Modeling vs. Machine Learning 6	
	1.4	Big Data 6	
	1.5	Data Science 7	
	1.6	Why Are There So Many Different Methods? 8	
	1.7	Terminology and Notation 8	
	1.8	Road Maps to This Book 10	
		Order of Topics 12	
2	Overv	iew of the Machine Learning Process	17
	2.1	Introduction 17	
	2.2	Core Ideas in Machine Learning 18	
		Classification 18	
		Prediction 18	
		Association Rules and Recommendation Systems 18	

	Predictive Analytics 19
	Data Reduction and Dimension Reduction 19
	Data Exploration and Visualization 19
	Supervised and Unsupervised Learning 19
2.3	The Steps in A Machine Learning Project 21
2.4	Preliminary Steps 22
	Organization of Data 22
	Sampling from a Database 22
	Oversampling Rare Events in Classification Tasks 23
	Preprocessing and Cleaning the Data 23
2.5	Predictive Power and Overfitting 29
	Overfitting 29
	Creation and Use of Data Partitions 31
2.6	Building a Predictive Model with JMP Pro 34
	Predicting Home Values in a Boston Neighborhood 34
	Modeling Process 36
2.7	Using JMP Pro for Machine Learning 42
2.8	Automating Machine Learning Solutions 43
	Predicting Power Generator Failure 44
	Uber's Michelangelo 45
2.9	Ethical Practice in Machine Learning 47
	Machine Learning Software: The State of the Market by Herb
	Edelstein 47
	Problems 52

PART II DATA EXPLORATION AND DIMENSION REDUCTION

3 Data Visualization

3.1	Introduction 59
3.2	Data Examples 61
	Example 1: Boston Housing Data 61
	Example 2: Ridership on Amtrak Trains 62
3.3	Basic Charts: Bar Charts, Line Graphs, and Scatter Plots 62
	Distribution Plots: Boxplots and Histograms 64
	Heatmaps 67
3.4	Multidimensional Visualization 70
	Adding Variables: Color, Hue, Size, Shape, Multiple Panels,
	Animation 70
	Manipulations: Rescaling, Aggregation and Hierarchies, Zooming,
	Filtering 73
	Reference: Trend Line and Labels 77
	Scaling Up: Large Datasets 79
	Multivariate Plot: Parallel Coordinates Plot 80
	Interactive Visualization 80

91

117

3.5	Specialized Visualizations 82 Visualizing Networked Data 82
	Visualizing Hierarchical Data: More on Treemans 83
	Visualizing Geographical Data: Maps 84
36	Summary: Major Visualizations and Operations According to
5.0	Machine Learning Goal 87
	Prediction 87
	Classification 87
	Time Series Forecasting 87
	Unsupervised Learning 88
	Problems 89
Dimensio	on Reduction
4.1	Introduction 91
4.2	Curse of Dimensionality 92
4.3	Practical Considerations 92
	Example 1: House Prices in Boston 92
4.4	Data Summaries 93
	Summary Statistics 94
	Tabulating Data 96
4.5	Correlation Analysis 97
4.6	Reducing the Number of Categories in Categorical Variables 98
4.7	Converting a Categorical Variable to a Continuous Variable 100
4.8	Principal Component Analysis 100
	Example 2: Breakfast Cereals 101
	Principal Components 106
	Standardizing the Data 107
	Using Principal Components for Classification and Prediction 110
4.9	Dimension Reduction Using Regression Models 110
4.10	Dimension Reduction Using Classification and Regression Trees 111
	Problems 112

PART III PERFORMANCE EVALUATION

5 Evaluating Predictive Performance

5.1	Introduction 118
5.2	Evaluating Predictive Performance 118
	Naive Benchmark: The Average 118
	Prediction Accuracy Measures 119
	Comparing Training and Validation Performance 120
5.3	Judging Classifier Performance 121
	Benchmark: The Naive Rule 121
	Class Separation 121
	The Classification (Confusion) Matrix 122
	Using the Validation Data 123
	Accuracy Measures 123

	Propensities and Threshold for Classification 124
	Performance in Unequal Importance of Classes 127
	Asymmetric Misclassification Costs 130
	Generalization to More Than Two Classes 132
5.4	Judging Ranking Performance 133
	Lift Curves for Binary Data 133
	Beyond Two Classes 135
	Lift Curves Incorporating Costs and Benefits 136
5.5	Oversampling 137
	Creating an Over-sampled Training Set 139
	Evaluating Model Performance Using a Nonoversampled
	Validation Set 139
	Evaluating Model Performance If Only Oversampled Validation
	Set Exists 140
	Problems 142

PART IV PREDICTION AND CLASSIFICATION METHODS

6 Multiple Linear Regression

6.1 Introduction 147 6.2 Explanatory vs. Predictive Modeling 148 6.3 Estimating the Regression Equation and Prediction 149 Example: Predicting the Price of Used Toyota Corolla Automobiles 150 6.4 Variable Selection in Linear Regression 155 Reducing the Number of Predictors 155 How to Reduce the Number of Predictors 156 Manual Variable Selection 156 Automated Variable Selection 157 Regularization (Shriknage Models) 164 Problems 170

7 k-Nearest Neighbors (k-NN)

7.1	The <i>k</i> -NN Classifier (Categorical Outcome) 175
	Determining Neighbors 175
	Classification Rule 176
	Example: Riding Mowers 176
	Choosing Parameter k 178
	Setting the Threshold Value 179
	Weighted k-NN 181
	<i>k</i> -NN with More Than Two Classes 182
	Working with Categorical Predictors 182
7.2	k-NN for a Numerical Response 184
73	Advantages and Shortcomings of k-NN Algorithms

7.3 Advantages and Shortcomings of *k*-NN Algorithms 184 Problems 186

8 The Naive Bayes Classifier

8.1	Introduction 189
	Threshold Probability Method 190
	Conditional Probability 190
	Example 1: Predicting Fraudulent Financial Reporting 190
8.2	Applying the Full (Exact) Bayesian Classifier 191
	Using the "Assign to the Most Probable Class" Method 191
	Using the Threshold Probability Method 191
	Practical Difficulty with the Complete (Exact) Bayes Procedure 192
8.3	Solution: Naive Bayes 192
	The Naive Bayes Assumption of Conditional Independence 193
	Using the Threshold Probability Method 194
	Example 2: Predicting Fraudulent Financial Reports 194
	Example 3: Predicting Delayed Flights 195
	Evaluating the Performance of Naive Bayes Output from JMP 198
	Working with Continuous Predictors 199
8.4	Advantages and Shortcomings of the Naive Bayes Classifier 201
	Problems 203

9 Classification and Regression Trees

9.1	Introduction 206
<i></i>	Tree Structure 206
	Decision Rules 207
	Classifying a New Record 207
9.2	Classification Trees 207
	Recursive Partitioning 207
	Example 1: Riding Mowers 208
	Categorical Predictors 210
	Standardization 210
9.3	Growing a Tree for Riding Mowers Example 210
	Choice of First Split 211
	Choice of Second Split 212
	Final Tree 212
	Using a Tree to Classify New Records 213
9.4	Evaluating the Performance of a Classification Tree 215
	Example 2: Acceptance of Personal Loan 215
9.5	Avoiding Overfitting 219
	Stopping Tree Growth: CHAID 220
	Growing a Full Tree and Pruning It Back 220
	How JMP Pro Limits Tree Size 221
9.6	Classification Rules from Trees 222
9.7	Classification Trees for More Than Two Classes 224
9.8	Regression Trees 224
	Prediction 224
	Evaluating Performance 225
9.9	Advantages and Weaknesses of a Single Tree 227

9.10 Improving Prediction: Random Forests and Boosted Trees 229 Random Forests 229 Boosted Trees 230 Problems 233

10 Logistic Regression

- 10.1 Introduction 237
- 10.2 The Logistic Regression Model 239
- 10.3 Example: Acceptance of Personal Loan 240 Model with a Single Predictor 241 Estimating the Logistic Model from Data: Multiple Predictors 243 Interpreting Results in Terms of Odds (for a Profiling Goal) 246
 10.4 Evaluating Classification Performance 247
- 10.5 Variable Selection 249
- Logistic Regression for Multi-class Classification 250
 Logistic Regression for Nominal Classes 250
 Logistic Regression for Ordinal Classes 251
 Example: Accident Data 252
- 10.7 Example of Complete Analysis: Predicting Delayed Flights 253 Data Preprocessing 255 Model Fitting, Estimation, and Interpretation—A Simple Model 256 Model Fitting, Estimation and Interpretation—The Full Model 257 Model Performance 257 Problems 264

11 Neural Nets

- 11.1 Introduction 267
- 11.2 Concept and Structure of a Neural Network 268
- Fitting a Network to Data 269

 Example 1: Tiny Dataset 269
 Computing Output of Nodes 269
 Preprocessing the Data 272
 Training the Model 273
 Using the Output for Prediction and Classification 279
 - Example 2: Classifying Accident Severity 279
 - Avoiding Overfitting 281
- 11.4 User Input in JMP Pro 282
- 11.5 Exploring the Relationship Between Predictors and Outcome 284
- 11.6 Deep Learning 285 Convolutional Neural Networks (CNNs) 285 Local Feature Map 287 A Hierarchy of Features 287 The Learning Process 287 Unsupervised Learning 288 Conclusion 289
 11.7 Advantages and Weaknesses of Neural Networks 289
- 11.7 Advantages and Weaknesses of Neural Networks 289 Problems 290

237

12 Discriminant Analysis

13

12.1	Introduction 293 Example 1: Riding Mowers 294 Example 2: Personal Loan Acceptance 294	
12.2	Distance of an Observation from a Class 295	
12.3	From Distances to Propensities and Classifications 297	
12.4	Classification Performance of Discriminant Analysis 300	
12.5	Prior Probabilities 301	
12.6	Classifying More Than Two Classes 303	
	Example 3: Medical Dispatch to Accident Scenes 303	
12.7	Advantages and Weaknesses 306	
	Problems 307	
Generat	ing, Comparing, and Combining Multiple Models	311
13.1	Ensembles 311 Why Ensembles Can Improve Predictive Power 312 Simple Averaging or Voting 313 Bagging 314 Boosting 315 Stacking 316 Advantages and Weaknesses of Ensembles 317	
13.2	AutoML: Explore and Clean Data 317 AutoML: Explore and Clean Data 317 AutoML: Determine Machine Learning Task 318 AutoML: Choose Features and Machine Learning Methods 318 AutoML: Evaluate Model Performance 320 AutoML: Model Deployment 321 Advantages and Weaknesses of Automated Machine Learning 322	
13.3	Summary 322 Problems 323	

PART V INTERVENTION AND USER FEEDBACK

14 Interventions: Experiments, Uplift Models, and Reinforcement Learning 327

14.1	Introduction 327
14.2	A/B Testing 328
	Example: Testing a New Feature in a Photo Sharing App 329
	The Statistical Test for Comparing Two Groups (T-Test) 329
	Multiple Treatment Groups: A/B/n Tests 333
	Multiple A/B Tests and the Danger of Multiple Testing 333
14.3	Uplift (Persuasion) Modeling 333
	Getting the Data 334
	A Simple Model 336
	Modeling Individual Uplift 336
	Creating Uplift Models in JMP Pro 337
	Using the Results of an Uplift Model 338

14.4	Reinforcement Learning 340
	Explore-Exploit: Multi-armed Bandits 340
	Markov Decision Process (MDP) 341
14.5	Summary 344

Problems 345

PART VI MINING RELATIONSHIPS AMONG RECORDS

15 Association Rules and Collaborative Filtering

15.1	Association Rules 349
	Discovering Association Rules in Transaction Databases 350
	Example 1: Synthetic Data on Purchases of Phone Faceplates 350
	Data Format 350
	Generating Candidate Rules 352
	The Apriori Algorithm 353
	Selecting Strong Rules 353
	The Process of Rule Selection 356
	Interpreting the Results 358
	Rules and Chance 359
	Example 2: Rules for Similar Book Purchases 361
15.2	Collaborative Filtering 362
	Data Type and Format 363
	Example 3: Netflix Prize Contest 363
	User-Based Collaborative Filtering: "People Like You" 365
	Item-Based Collaborative Filtering 366
	Evaluating Performance 367
	Advantages and Weaknesses of Collaborative Filtering 368
	Collaborative Filtering vs. Association Rules 369
15.3	Summary 370
	Problems 372

16 Cluster Analysis

16.1	Introduction 375
	Example: Public Utilities 377
16.2	Measuring Distance Between Two Records 378
	Euclidean Distance 379
	Standardizing Numerical Measurements 379
	Other Distance Measures for Numerical Data 379
	Distance Measures for Categorical Data 382
	Distance Measures for Mixed Data 382
16.3	Measuring Distance Between Two Clusters 383
	Minimum Distance 383
	Maximum Distance 383

375

409

423

	Average Distance 383
	Centroid Distance 383
16.4	Hierarchical (Agglomerative) Clustering 385
	Single Linkage 385
	Complete Linkage 386
	Average Linkage 386
	Centroid Linkage 386
	Ward's Method 387
	Dendrograms: Displaying Clustering Process and Results 387
	Validating Clusters 391
	Two-Way Clustering 393
	Limitations of Hierarchical Clustering 393
16.5	Nonhierarchical Clustering: The K-Means Algorithm 394
	Choosing the Number of Clusters (k) 396
	Problems 403

PART VII FORECASTING TIME SERIES

17 Handling Time Series

17.1	Introduction 409
17.2	Descriptive vs. Predictive Modeling 410
17.3	Popular Forecasting Methods in Business 411
	Combining Methods 411
17.4	Time Series Components 411
	Example: Ridership on Amtrak Trains 412
17.5	Data Partitioning and Performance Evaluation 415
	Benchmark Performance: Naive Forecasts 417
	Generating Future Forecasts 417
	Problems 419

18 Regression-Based Forecasting

18.1	A Model with Trend 424
	Linear Trend 424
	Exponential Trend 427
	Polynomial Trend 429
18.2	A Model with Seasonality 430
	Additive vs. Multiplicative Seasonality 432
18.3	A Model with Trend and Seasonality 433
18.4	Autocorrelation and ARIMA Models 433
	Computing Autocorrelation 433
	Improving Forecasts by Integrating Autocorrelation Information 437
	Fitting AR Models to Residuals 439
	Evaluating Predictability 441
	Problems 444

19 Smoothing and Deep Learning Methods for Forecasting

19.1	Introduction 455
19.2	Moving Average 456
	Centered Moving Average for Visualization 456
	Trailing Moving Average for Forecasting 457
	Choosing Window Width (w) 460
19.3	Simple Exponential Smoothing 461
	Choosing Smoothing Parameter α 462
	Relation Between Moving Average and Simple Exponential
	Smoothing 465
19.4	Advanced Exponential Smoothing 465
	Series With a Trend 465
	Series With a Trend and Seasonality 466
19.5	Deep Learning for Forecasting 470
	Problems 472

PART VIII DATA ANALYTICS

20 Text Mining

20.1 Introduction 483 20.2 The Tabular Representation of Text: Document-Term Matrix and "Bag-of-Words" 484 Bag-of-Words vs. Meaning Extraction at Document Level 486 20.3 Preprocessing the Text 486 20.4 Tokenization 487 Text Reduction 488 Presence/Absence vs. Frequency (Occurrences) 489 Term Frequency-Inverse Document Frequency (TF-IDF) 489 From Terms to Topics: Latent Semantic Analysis and Topic Analysis 490 Extracting Meaning 491 From Terms to High Dimensional Word Vectors: Word2Vec 491 20.5 Implementing Machine Learning Methods 492 Example: Online Discussions on Autos and Electronics 492 20.6 Importing the Records 493 Text Preprocessing in JMP 494 Using Latent Semantic Analysis and Topic Analysis 496 Fitting a Predictive Model 499 Prediction 499 20.7 Example: Sentiment Analysis of Movie Reviews 500 Data Preparation 500 Latent Semantic Analysis and Fitting a Predictive Model 500 Summary 502 20.8 Problems 503

21 Responsible Data Science

21.1	Introduction 505
	Example: Predicting Recidivism 506
21.2	Unintentional Harm 506
21.3	Legal Considerations 508
	The General Data Protection Regulation (GDPR) 508
	Protected Groups 508
21.4	Principles of Responsible Data Science 508
	Non-maleficence 509
	Fairness 509
	Transparency 510
	Accountability 511
	Data Privacy and Security 511
21.5	A Responsible Data Science Framework 511
	Justification 511
	Assembly 512
	Data Preparation 513
	Modeling 513
	Auditing 513
21.6	Documentation Tools 514
	Impact Statements 514
	Model Cards 515
	Datasheets 516
	Audit Reports 516
21.7	Example: Applying the RDS Framework to the COMPAS Example 517
	Unanticipated Uses 518
	Ethical Concerns 518
	Protected Groups 518
	Data Issues 518
	Fitting the Model 519
	Auditing the Model 520
	Bias Mitigation 526
21.8	Summary 526
	Problems 528

PART IX CASES

22 Cases

22.1	Charles Book Club 533
	The Book Industry 533
	Database Marketing at Charles 534
	Machine Learning Techniques 535
	Assignment 537
22.2	German Credit 541
	Background 541
	Data 541
	Assignment 544

22.3	Tayko Software Cataloger 545	
	The Mailing Experiment 545	
	Data 545	
	Assignment 546	
22.4	Political Persuasion 548	
22.1	Background 548	
	Predictive Analytics Arrives in US Politics 548	
	Political Targeting 548	
	Unlift 549	
	Data 549	
	Assignment 550	
22.5	Taxi Cancellations 552	
	Business Situation 552	
	Assignment 552	
22.6	Segmenting Consumers of Bath Soap 554	
	Business Situation 554	
	Key Problems 554	
	Data 555	
	Measuring Brand Lovalty 556	
	Assignment 556	
22.7	Catalog Cross-Selling 557	
	Background 557	
	Assignment 557	
22.8	Direct-Mail Fundraising 559	
	Background 559	
	Data 559	
	Assignment 559	
22.9	Time Series Case: Forecasting Public Transportation Demand 562	
	Background 562	
	Problem Description 562	
	Available Data 562	
	Assignment Goal 562	
	Assignment 563	
	Tips and Suggested Steps 563	
22.10	Loan Approval 564	
	Background 564	
	Regulatory Requirements 564	
	Getting Started 564	
	Assignment 564	
References		567
Data Files Used in the Book		571
Index		573

FOREWORD

When I began my career back in the last century, most corporate computing took place on mainframe computers, data was scarce, organizations were far more hierarchical, and managerial decision-making was often driven by the loudest person in the room or the "golden gut" of an experienced executive. By contrast, today's business world features a wide variety of digitally connected professionals who interact with their customers and their colleagues through software applications (many of them web- and cloud-based), remarkably power-ful personal computers, and always-connected smart phones. Data is everywhere, though useful data is often still elusive. And more and more of the systems that companies and individuals rely upon are utilizing techniques from machine learning to deliver data-driven insights, make predictions, and drive decision making.

For the past decade, I have been teaching courses in machine learning and predictive analytics to business students at the University of San Francisco. My students have a wide variety of academic backgrounds and professional interests. My goal is to prepare them for careers in this rapidly evolving, digitally enabled, and increasingly data- and algorithmically-driven business world.

I was fortunate enough to find *Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro* several years ago. This book provides a clear roadmap to the fundamentals of machine learning as well as a number of pathways to explore a variety of specific machine learning methods for business analytics including prediction, classification, and clustering. In addition, this textbook and the JMP Pro software combine to provide a great platform for interactive learning. The textbook utilizes the JMP Pro software to illustrate machine learning fundamentals, exploratory data analysis methods, and data visualization concepts, and a broad range of supervised and unsupervised machine learning methods. The book also provides exercises that also enable you to utilize JMP Pro to learn and master machine learning techniques.

I was very excited when I learned that the next edition of this book was ready to be released. Now entitled *Machine Learning for Business Analytics: Concepts, Techniques, and Applications with JMP Pro*, this 2nd edition is based on the most recent version of the JMP Pro software, and both the text and the software have been significantly expanded and updated. This new edition includes all the first edition material (supervised learning, unsupervised methods, visualization, and time series), as well as a number of new topics: recommendation systems, text mining, ethical issues in data science, deep learning, and interventions and reinforcement learning.

Along with the JMP Pro software, this book will provide you with a foundation of knowledge about machine learning. Its lessons and insights will serve you well in today's dynamic and data-intensive business world. Welcome aboard!

> VIJAY MEHROTRA University of San Francisco

PREFACE

This textbook first appeared in early 2007 and has been used by numerous students and practitioners and in many courses, including our own experience teaching this material both online and in person for more than 15 years. The first edition, based on the Excel add-in Analytic Solver Data Mining (previously XLMiner), was followed by two more Analytic Solver editions, a JMP Pro[®] edition, two R editions, a Python edition, a RapidMiner edition, and now this second JMP Pro edition, with its companion website, www.jmp.com/dataminingbook. JMP Pro is a desktop statistical package from JMP Statistical Discovery that runs natively on Mac and Windows machines.¹

The first JMP Pro edition was the first edition to fully integrate JMP Pro. As in the previous JMP edition, the focus in this new edition is on machine learning concepts and how to implement the associated algorithms in JMP Pro. All examples, special topics boxes, instructions, and exercises presented in this book are based on JMP Pro 17, the professional version of JMP, which has a rich array of built-in tools for interactive data visualization, analysis, and modeling.²

For this new JMP Pro edition, a new co-author, Muralidhara Anandamurthy, comes on board bringing extensive experience in analytics and data science at Genpact, Target, and Danske, and as a member of the JMP Academic Team.

The new edition provides significant updates both in terms of JMP Pro and in terms of new topics and content. In addition to updating software routines and outputs that have changed or become available since the first edition, this edition also incorporates updates and new material based on feedback from instructors teaching MBA, MS, undergraduate, diploma, and executive courses, and from their students. Importantly, this edition includes several new topics:

- A new chapter on *Responsible Data Science* (Chapter 21) covering topics of fairness, transparency, model cards and datasheets, legal considerations, and more, with an illustrative example.
- A dedicated section on *deep learning* in Chapter 11.
- A new chapter on recommendations, covering association rules and collaborative filtering (Chapter 15).
- A new chapter on Text Mining covering main approaches to the analysis of text data (Chapter 20).
- The *Performance Evaluation* exposition in Chapter 5 was expanded to include further metrics (precision and recall, F1).

¹JMP Statistical Discovery LLC, 100 SAS Campus Drive Cary, NC 27513. ²See https://www.jmp.com/pro

- A new chapter on *Generating, Comparing, and Combining Multiple Models* (Chapter 13) that covers ensembles and AutoML.
- A new chapter dedicated to *Interventions and User Feedback* (Chapter 14) that covers A/B tests, uplift modeling, and reinforcement learning.
- A new case (Loan Approval) that touches on regulatory and ethical issues.

A note about the book's title: The first two editions of the book used the title *Data Mining for Business Intelligence*. Business intelligence today refers mainly to reporting and data visualization ("what is happening now"), while business analytics has taken over the "advanced analytics," which include predictive analytics and data mining. Later editions were therefore renamed Data Mining for Business Analytics. However, the recent AI transformation has made the term *machine learning* more popularly associated with the methods in this textbook. In this new edition, we therefore use the updated terms *Machine Learning* and *Business Analytics*.

Since the appearance of the first JMP Pro edition, the landscape of the courses using the textbook has greatly expanded: whereas initially the book was used mainly in semester-long elective MBA-level courses, it is now used in a variety of courses in business analytics degrees and certificate programs, ranging from undergraduate programs to postgraduate and executive education programs. Courses in such programs also vary in their duration and coverage. In many cases, this textbook is used across multiple courses. The book is designed to continue supporting the general "predictive analytics" or "data mining" course as well as supporting a set of courses in dedicated business analytics programs.

A general "business analytics," "predictive analytics," or "data mining" course, common in MBA and undergraduate programs as a one-semester elective, would cover Parts I–III, and choose a subset of methods from Parts IV and V. Instructors can choose to use cases as team assignments, class discussions, or projects. For a two-semester course, Part VII might be considered, and we recommend introducing the new Part VIII (Data Analytics).

For a set of courses in a dedicated business analytics program, here are a few courses that have been using our book:

- *Predictive Analytics—Supervised Learning*: In a dedicated business analytics program, the topic of predictive analytics is typically instructed across a set of courses. The first course would cover Parts I–III, and instructors typically choose a subset of methods from Part IV according to the course length. We recommend including "Part VIII: Data Analytics."
- *Predictive Analytics—Unsupervised Learning*: This course introduces data exploration and visualization, dimension reduction, mining relationships, and clustering (Parts II and VI). If this course follows the Predictive Analytics: Supervised Learning course, then it is useful to examine examples and approaches that integrate unsupervised and supervised learning, such as the new part on "Data Analytics."
- *Forecasting Analytics*: A dedicated course on time series forecasting would rely on Part VII.
- *Advanced Analytics*: A course that integrates the learnings from predictive analytics (supervised and unsupervised learning) can focus on Part VIII: Data Analytics, where social network analytics and text mining are introduced, and responsible data science is discussed. Such a course might also include Chapter 13, Generating, Comparing,

and Combining Multiple Models from Part IV, as well as Part V, which covers experiments, uplift, and reinforcement learning. Some instructors choose to use the cases (Chapter 22) in such a course.

In all courses, we strongly recommend including a project component, where data are either collected by students according to their interest or provided by the instructor (e.g., from the many machine learning competition datasets available). From our experience and other instructors' experience, such projects enhance the learning and provide students with an excellent opportunity to understand the strengths of machine learning and the challenges that arise in the process.

Galit Shmueli, Peter Bruce, Mia Stephens, Muralidhara Anandamurthy, and Nitin Patel $2022\,$

ACKNOWLEDGMENTS

We thank the many people who assisted us in improving the book from its inception as *Data Mining for Business Intelligence* in 2006 (using XLMiner, now Analytic Solver), its reincarnation as *Data Mining for Business Analytics*, and now *Machine Learning for Business Analytics*, including translations in Chinese and Korean and versions supporting Analytic Solver Data Mining, R, Python, RapidMiner, and JMP.

Anthony Babinec, who has been using earlier editions of this book for years in his data mining courses at Statistics.com, provided us with detailed and expert corrections. Dan Toy and John Elder IV greeted our project with early enthusiasm and provided detailed and useful comments on initial drafts. Ravi Bapna, who used an early draft in a data mining course at the Indian School of Business, and later at University of Minnesota, has provided invaluable comments and helpful suggestions since the book's start.

Many of the instructors, teaching assistants, and students using earlier editions of the book have contributed invaluable feedback both directly and indirectly, through fruitful discussions, learning journeys, and interesting data mining projects that have helped shape and improve the book. These include MBA students from the University of Maryland, MIT, the Indian School of Business, National Tsing Hua University, and Statistics.com. Instructors from many universities and teaching programs, too numerous to list, have supported and helped improve the book since its inception.

Kuber Deokar, instructional operations supervisor at Statistics.com, has been unstinting in his assistance, support, and detailed attention. We also thank Anuja Kulkarni, Poonam Tribhuwan, and Shweta Jadhav, assistant teachers. Valerie Troiano has shepherded many instructors and students through the Statistics.com courses that have helped nurture the development of these books.

Colleagues and family members have been providing ongoing feedback and assistance with this book project. Vijay Kamble at UIC and Travis Greene at NTHU have provided valuable help with the section on reinforcement learning. Boaz Shmueli and Raquelle Azran gave detailed editorial comments and suggestions on the first two editions; Bruce McCullough and Adam Hughes did the same for the first edition. Noa Shmueli provided careful proofs of the third edition. Ran Shenberger offered design tips. Ken Strasma, founder of the microtargeting firm HaystaqDNA and director of targeting for the 2004 Kerry campaign and the 2008 Obama campaign, provided the scenario and data for the section on uplift modeling.

Marietta Tretter at Texas A&M shared comments and thoughts on the time series chapters, and Stephen Few and Ben Shneiderman provided feedback and suggestions on the data visualization chapter and overall design tips.

Susan Palocsay and Margret Bjarnadottir have provided suggestions and feedback on numerous occasions. We also thank Catherine Plaisant at the University of Maryland's Human–Computer Interaction Lab, who helped out in a major way by contributing exercises

and illustrations to the data visualization chapter. Gregory Piatetsky-Shapiro, founder of KDNuggets.com, was generous with his time and counsel in the early years of this project.

We thank colleagues at the Sloan School of Management at MIT for their support during the formative stage of this book—Dimitris Bertsimas, James Orlin, Robert Freund, Roy Welsch, Gordon Kaufmann, and Gabriel Bitran. As teaching assistants for the data mining course at Sloan, Adam Mersereau gave detailed comments on the notes and cases that were the genesis of this book, Romy Shioda helped with the preparation of several cases and exercises used here, and Mahesh Kumar helped with the material on clustering.

Colleagues at the University of Maryland's Smith School of Business: Shrivardhan Lele, Wolfgang Jank, and Paul Zantek provided practical advice and comments. We thank Robert Windle and University of Maryland MBA students Timothy Roach, Pablo Macouzet, and Nathan Birckhead for invaluable datasets. We also thank MBA students Rob Whitener and Daniel Curtis for the heatmap and map charts.

Anand Bodapati provided both data and advice. Jake Hofman from Microsoft Research and Sharad Borle assisted with data access. Suresh Ankolekar and Mayank Shah helped develop several cases and provided valuable pedagogical comments. Vinni Bhandari helped write the Charles Book Club case.

We would like to thank Marvin Zelen, L. J. Wei, and Cyrus Mehta at Harvard, as well as Anil Gore at Pune University, for thought-provoking discussions on the relationship between statistics and data mining. Our thanks to Richard Larson of the Engineering Systems Division, MIT, for sparking many stimulating ideas on the role of data mining in modeling complex systems. Over two decades ago, they helped us develop a balanced philosophical perspective on the emerging field of machine learning.

We thank the folks at Wiley for this successful journey of nearly two decades. Steve Quigley at Wiley showed confidence in this book from the beginning, helped us navigate through the publishing process with great speed, and together with Curt Hinrichs's encouragement and support helped make this JMP Pro[®] edition possible. Jon Gurstelle, Kathleen Pagliaro, Allison McGinniss, Sari Friedman, and Katrina Maceda at Wiley, and Shikha Pahuja from Thomson Digital, were all helpful and responsive as we finalized the first JMP Pro edition. Brett Kurzman has taken over the reins and is now shepherding the project. Becky Cowan, Sarah Lemore, and Kavya Ramu greatly assisted us in pushing ahead and finalizing this new JMP Pro edition. We are also especially grateful to Amy Hendrickson, who assisted with typesetting and making this book beautiful.

Finally, we'd like to thank the reviewers of the first JMP Pro edition for their feedback and suggestions, and members of the JMP Documentation, Education and Development teams, for their support, patience, and responsiveness to our endless questions and requests. We thank L. Allison Jones-Farmer, Maria Weese, Ian Cox, Di Michelson, Marie Gaudard, Curt Hinrichs, Rob Carver, Jim Grayson, Brady Brady, Jian Cao, Elizabeth Claassen, Peng Liu, Chris Gotwalt, Russ Wolfinger, and Fang Chen. Most important, we thank John Sall, whose innovation, inspiration, and continued dedication to providing accessible and userfriendly desktop statistical software made JMP, and this book, possible.

PART I

PRELIMINARIES

1

INTRODUCTION

1.1 WHAT IS BUSINESS ANALYTICS?

Business analytics (BA) is the practice and art of bringing quantitative data to bear on decision-making. The term means different things to different organizations.

Consider the role of analytics in helping newspapers survive the transition to a digital world. One tabloid newspaper with a working-class readership in Britain had launched a web version of the paper, and did tests on its home page to determine which images produced more hits: cats, dogs, or monkeys. This simple application, for this company, was considered analytics. By contrast, the *Washington Post* has a highly influential audience that is of interest to big defense contractors: it is perhaps the only newspaper where you routinely see advertisements for aircraft carriers. In the digital environment, the *Post* can track readers by time of day, location, and user subscription information. In this fashion the display of the aircraft carrier advertisement in the online paper may be focused on a very small group of individuals—say, the members of the House and Senate Armed Services Committees who will be voting on the Pentagon's budget.

Business analytics, or more generically, *analytics*, includes a range of data analysis methods.

Many powerful applications involve little more than counting, rule checking, and basic arithmetic. For some organizations, this is what is meant by analytics.

The next level of business analytics, now termed *business intelligence* (BI), refers to the use of data visualization and reporting for becoming aware and understanding "what happened and what is happening." This is done by use of charts, tables, and dashboards to display, examine, and explore data. Business intelligence, which earlier consisted mainly of generating static reports, has evolved into more user-friendly and effective tools and practices, such as creating interactive dashboards that allow the user not only to access real-time data, but also to directly interact with it. Effective dashboards are those that tie directly to company data, and give managers a tool to see quickly what might not readily be apparent in a large complex database. One such tool for industrial operations managers

Machine Learning for Business Analytics: Concepts, Techniques, and Applications with JMP Pro[®],

Second Edition. Galit Shmueli, Peter C. Bruce, Mia L. Stephens, Muralidhara Anandamurthy, and Nitin R. Patel. © 2023 John Wiley & Sons, Inc. Published 2023 by John Wiley & Sons, Inc.

displays customer orders in one two-dimensional display using color and bubble size as added variables. The resulting 2 by 2 matrix shows customer name, type of product, size of order, and length of time to produce.

Business analytics now typically includes BI as well as sophisticated data analysis methods, such as statistical models and machine learning algorithms used for exploring data, quantifying and explaining relationships between measurements, and predicting new records. Methods like regression models are used to describe and quantify "on average" relationships (e.g., between advertising and sales), to predict new records (e.g., whether a new patient will react positively to a medication), and to forecast future values (e.g., next week's web traffic).

Readers familiar with the earlier edition of this book might have noticed that the book title changed from *Data Mining for Business Analytics* to *Machine Learning for Business Analytics*. The change reflects the more recent term BA, which overtook the earlier term BI to denote advanced analytics. Today, BI is used to refer to data visualization and reporting. The change from *data mining* to *machine learning* reflects today's common use of *machine learning* to refer to algorithms that learn from data. This book uses primarily the term *machine learning*.

WHO USES PREDICTIVE ANALYTICS?

The widespread adoption of predictive analytics, coupled with the accelerating availability of data, has increased organizations' capabilities throughout the economy. A few examples:

Credit scoring: One long-established use of predictive modeling techniques for business prediction is credit scoring. A credit score is not some arbitrary judgement of creditworthiness; it is based mainly on a predictive model that uses prior data to predict repayment behavior.

Future purchases: A more recent (and controversial) example is Target's use of predictive modeling to classify sales prospects as "pregnant" or "not-pregnant." Those classified as pregnant could then be sent sales promotions at an early stage of pregnancy, giving Target a head start on a significant purchase stream.

Tax evasion: The US Internal Revenue Service found it was 25 times more likely to find tax evasion when enforcement activity was based on predictive models, allowing agents to focus on the most likely tax cheats (Siegel, 2013).

The business analytics toolkit also includes statistical experiments, the most common of which is known to marketers as A/B testing. These are often used for pricing decisions:

- Orbitz, the travel site, has found that it could price hotel options higher for Mac users than Windows users.
- Staples online store found that it could charge more for staplers if a customer lived far from a Staples store.