BIOFUEL EXTRACTION TECHNIQUES

Edited by Lalit Prasad, Subhalaxmi Pradhan, and S.N. Naik

Biofuel Extraction Techniques

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Biofuel Extraction Techniques

Edited by Lalit Prasad Subhalaxmi Pradhan

and S.N. Naik

This edition first published 2023 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2023 Scrivener Publishing LLC For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 97811199829324

Background image: Green Algae; Somprasong Wittayanuakorn | Dreamstime.com Biofuel Plant Storage: Patchamon Thainmanee | Dreamstime.com Research Scientist: One Photo | Dreamstime.com Biodiesel Production: Piyapong Thongdumhyu | Dreamstime.com Cover design by Kris Hackerott

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pre	eface			xix
1			l Oils and Their Potential for Biofuel Production	_
		ndia		1
			er and S. N. Naik	
			duction	1
			ground	2
	1.3	Non-	Edible Oil as Feedstock for Biodiesel	4
		1.3.1	Jatropha	7
			Pongamia	10
			Mahua	12
		1.3.4	Nahor	14
		1.3.5	Rubber	16
		1.3.6	Lesser Explored Non-Edible Oils for Biodiesel	
			Feedstock in India	17
	1.4	Fuel (Qualities	17
		1.4.1	Cetane Number	18
		1.4.2	Acid Value	18
		1.4.3	Ester Content, Glycerides, and Glycerol	18
		1.4.4	Phosphorus Content	18
		1.4.5	Iodine Value	19
		1.4.6	Oxidation Stability	19
		1.4.7	Linolenic Acid Methyl Esters	20
		1.4.8	· · · · · · · · · · · · · · · · · · ·	20
	1.5	Conc	lusion	20
		Autho	or Contributions	21
		Refer	ences	21
2	Pro	cessing	g of Feedstock in Context of Biodiesel Production	25
	Dur	gawati	i and Rama Chandra Pradhan	
	2.1	Intro	duction	26

vi Contents

3

2.2	Feedstock in Context of Biodiesel					
2.3	Proce	essing of Oilseeds	29			
	2.3.1	Pretreatment	30			
	2.3.2	Decortication	31			
		2.3.2.1 Characteristics of Oilseeds Required				
		for Decortication	31			
		2.3.2.2 Decortication Method	32			
2.4	Oil E	xtraction Methods	34			
	2.4.1	Aqueous Method	34			
	2.4.2	Hydraulic Press	34			
	2.4.3	Ghani (Animal or Power-Driven)	35			
	2.4.4	Solvent Extraction Method	35			
	2.4.5	Mechanical Extraction Method	37			
	2.4.6	Microwave Assisted Oil Extraction	38			
	2.4.7	Ultrasonic Assisted Oil Extraction	39			
	2.4.8	Supercritical Assisted Oil Extraction	39			
2.5	Catal	yst	40			
	2.5.1	Homogeneous Catalyst	40			
	2.5.2	Heterogeneous Catalyst	41			
	2.5.3	Biocatalyst	42			
2.6	Produ	action Process of Biodiesel	42			
2.7	Techr	niques for Biodiesel Production	44			
	2.7.1	Catalytic Transesterification Technique	44			
	2.7.2	Pyrolysis	44			
	2.7.3	Microwave Assisted	45			
	2.7.4	Ultrasonic Assisted	46			
	2.7.5	Supercritical Assisted	46			
2.8	Adva	ntages & Disadvantages of Using Biodiesel	47			
2.9	Curre	ent Challenges and Future Perspectives				
	of Bic	odiesel	48			
2.10	Sumn	nary	48			
	Refer	ences	49			
Extr	action	Techniques for Biodiesel Production	51			
		arida and Subhalaxmi Pradhan				
3.1		duction	51			
3.2		t Use and Blending	53			
3.3		bemulsion	54			
3.4	Pyrol	ysis	56			

	3.5	Transesterification	57
		3.5.1 Homogeneous Catalyzed Transesterification	59
		3.5.2 Heterogeneous Catalyzed Transesterification	64
		3.5.3 Enzyme Catalyzed Transesterification	69
		3.5.4 Supercritical Alcohol Transesterification	70
	3.6	Intensification Methods for Biodiesel Production	73
		3.6.1 Ultrasonic Method	73
		3.6.2 Microwave Method	75
		3.6.3 Cosolvent Method	77
		3.6.4 Membrane Technology	78
		3.6.5 Reactive Distillation	80
	3.7	Conclusions	82
		References	82
4	Rol	e of Additives on Anaerobic Digestion, Biomethane	
		eration, and Stabilization of Process Parameters	101
	Ady	a Isha, Bhaskar Jha, Tinku Casper D' Silva, Subodh Kumar,	
	San	ieer Ahmed Khan, Dushyant Kumar, Ram Chandra	
	and	Virendra Kumar Vijay	
		Introduction	102
	4.2	Anaerobic Digestion Process	103
		Metallic Additives	105
		Alkali Additives	106
	4.5	Biological Additives	106
		4.5.1 Microorganisms	107
		4.5.2 Enzymes	107
	4.6		108
		4.6.1 Graphene	108
		4.6.2 Carbon Nanotubes	109
		4.6.3 Activated Carbon	109
		4.6.4 Biochar	110
	4.7	Nanoparticles	113
		4.7.1 Fe Nanoparticles	113
		4.7.2 Nanoparticles of Ag and ZnO	114
		4.7.3 Nanoparticles of Fe2O4	114
	4.8	Other Natural Additives	115
	4.9	Conclusions	115
		Acknowledgment	116
		References	116

viii Contents

5	An	Overvi	ew on Established and Emerging Biogas						
	Upg	gradati	on Systems for Improving Biomethane Quality	125					
	Tin	Tinku Casper D' Silva, Adya Isha, Subodh Kumar,							
	San	neer Ah	mad Khan, Dushyant Kumar, Ram Chandra						
	and Virendra Kumar Vijay								
	5.1	Intro	duction	125					
	5.2	Availa	able Biogas Upgradation Techniques	126					
	5.3	Micro	bial Methane Enrichment	128					
	5.4	Bioele	ectrochemical System	134					
	5.5	Photo	synthetic Biogas Upgradation	137					
	5.6	Techr	no-Economics of Biological Biogas Upgradation						
		Techr	nologies	140					
	5.7	Conc	lusion	141					
		Ackno	owledgement	142					
		Refere	ences	142					
6	Ren	ewable	Feedstocks for Biofuels	151					
	Mo	nika Ch	auhan, Vanshika, Ajay Kumar, Diwakar Chauhan						
			d Kumar Jain						
	6.1	Intro	luction	152					
	6.2	Sugar	Containing Plant Crops	153					
		6.2.1	Sugar Cane (Saccharum officinarum)	154					
		6.2.2	Sugarbeet (Beta vulgaris L.)	155					
		6.2.3	Sweet Sorghum (Sorghum bicolor (L.) Moench)	155					
	6.3	Crops	3	156					
		6.3.1	Corn (Zea mays)	156					
		6.3.2	CASSAVA (Manihot esculenta)	158					
	6.4	Oilsee	ed	159					
		6.4.1	Soybean (<i>Glycine max</i>)	159					
		6.4.2	Palm (<i>Elaeis guineensis</i>)	160					
		6.4.3	Canola Oil	161					
		6.4.4	Sunflower Oil	162					
		6.4.5	Castor Oil	162					
		6.4.6	Cottonseed Oil	163					
		6.4.7	Jatropha Oil (<i>Jatropha curcas</i>)	164					
		6.4.8	Jojoba Oil	165					
		6.4.9	NEEM (Azadirachta indica)	166					
	6.5	Ligno	cellulosic Waste	166					
		6.5.1	Sugarcane Bagasse	167					
		6.5.2	Rice Husk	168					
		6.5.3	Corn Stover	168					

 6.6 Sea Waste 6.6.1 Algae Biomass and Oil 6.7 Liquid Waste 6.7.1 Vinasse 6.7.2 Glycerol 6.7.3 POME (Palm Oil Mill Effluent) 	170 170 171 171 171 172 173 174 177
6.7 Liquid Waste6.7.1 Vinasse6.7.2 Glycerol	171 171 171 172 173 174
6.7 Liquid Waste6.7.1 Vinasse6.7.2 Glycerol	171 171 172 173 174
6.7.1 Vinasse 6.7.2 Glycerol	171 172 173 174
*	172 173 174
*	173 174
	174
6.8 Conclusion	
References	177
7 Extraction Techniques of Gas-to-Liquids (GtL) Fuels	
Sonali Kesarwani, Divya Bajpai Tripathy and Pooja Bhadana	
7.1 Introduction	178
7.2 History and Origin of Gas to Liquid Technology	178
7.3 What is Gas to Liquids (GtL) Fuel?	179
7.4 Need and Benefits from Gas to Liquid Technology	180
7.5 Extraction or Conversion Techniques of Gas	
to Liquid Fuels	182
7.5.1 Gas to Liquid by Direct Conversion	183
7.5.2 Gas to Liquid by Indirect Conversion	185
7.5.2.1 Natural Gas Reforming or Methane	
Reforming (Syngas)	185
7.5.2.2 Fischer-Tropsch (FT) Synthesis	188
7.5.2.3 Conversion	190
7.6 Advancements in Gas to Liquid Technology	196
7.7 Conclusions	197
References	198
1	207
Prashant Kumar, Praveen Kumar Sharma, Shreya Tripathi,	
Deepak Kumar, Ashween Deepak Nannaware, Shivani Chaturvedi and Prasant Kumar Rout	
List of Abbreviations	208
8.1 Introduction	208
8.2 Pre-Treatment of Lignocellulosic Biomasses	210
8.2.1 Physical Pre-Treatment Methods	211
8.2.2 Chemical Pre-Treatment Methods	212
8.2.3 Physico-Chemical Pre-Treatment Methods	214
8.2.4 Biological Pre-Treatment Methods	215
8.3 Extraction of Biofuel from Lignocellulosic Biomass	215
8.3.1 Pyrolysis	216
8.3.2 Hydrothermal Liquefaction	218

	8.4	Bioet	hanol		221
		8.4.1	Aromat	ic Lignocellulosic Biomass as Potential	
			Candida	ate for Bioethanol	222
		8.4.2	Enzyma	tic Saccharification	223
				Conversion Processes	224
		8.4.4	Process	for the Production of Ethanol from	
			Sugary (Crops	226
		8.4.5	•••	for the Production of Ethanol from	
			Starchy	Crops	226
		8.4.6	Process	for the Production of Bioethanol from	
			Cellulos	sic Biomass and Spent Aromatic Crops	226
		8.4.7		tion of Bioethanol	226
	8.5	Biodi	esel Prod	uction from Fatty Acids	227
		8.5.1		al Catalytic Process	227
				Homogeneous Base-Catalysed	
				Transesterification	227
			8.5.1.2	Homogeneous Acid-Catalysed	
				Transesterification	229
			8.5.1.3	Heterogeneous Catalysts	230
				Alkali Earth Metal Oxides	231
			8.5.1.5	Acid/Base Zeolites	231
				Heteropolyacids	232
				Waste Biomass Derived Heterogeneous	
				Catalysts	235
			8.5.1.8	Heterogeneous Nanocatalysts	236
		8.5.2		nical Catalysts	237
	8.6		inic Acid	•	240
				on of Levulinic Acid (LA) from Waste	
				nocellulosic Biomass	240
	8.7	Conc	lusions		244
		Refer	ences		245
9	Bio	Alcoh	al. Dradu	uction Durification and Analysis Using	
9			Techniq	iction, Purification, and Analysis Using	257
		•			257
			-	nta Roy, Lalit Prasad	
			duction	e Chauhan	250
	9.1			extraction	258
	9.2				259
				chemical Conversion Process	259
		9.2.2		nical Conversion Process	260
		9.2.3	Anaerol	bic Digestion	261

	9.3	Bioetl	hanol Extract	ion	266
		9.3.1	Extraction of	of Bioethanol from the Waste Flower	
			(Starchy Ma	terial)	266
		9.3.2	Analytical N	Aethods for Determination of Bioethanol	267
		9.3.3	Bioethanol	Extraction from Sugarcane	268
	9.4	Biopr	opanol Extra	ction	269
	9.5	Biogly	ycerol Extract	tion	271
	9.6	Bioetl	hylene Glycol	Extraction	271
	9.7	Branc	hed-Chain B	ioalcohols Extraction	271
	9.8		cation of Bioa	alcohol	272
			Distillation		272
			Adsorption		273
			Ozonation		274
			Gas Striping		275
			Pervaporati		275
			Vaccum Fer		276
			Solvent Extr		276
	9.9	-	tification of E		277
				atography (GC)	277
			-	mance Liquid Chromatography (HPLC)	278
			-	ectroscopy (IR)	279
		9.9.4	Olfactometr		279
			-	of Bioalcohol Production	280
	9.11			ture Trends of Bioalcohol	281
		Refere	ences		281
10	Stud	lies on	Extraction T	echniques of Bio-Hydrogen	291
	<i>C. S.</i>	Mada	ınkar, Priti B	orde and P. D. Meshram	
	10.1	Intro	oduction		292
	10.2	Bio-	Hydrogen Pro	oduction Process	293
		10.2.	.1 Fermenta	tion	293
			10.2.1.1	Dark Fermentation	293
			10.2.1.2	Photo Fermentation	295
			10.2.1.3	Sequential Dark and Photo	
				Fermentation	297
	10.3	Bio-	Photolysis		298
		10.3.		o-Photolysis	299
		10.3.		3io-Photolysis	300
	10.4	Microbial Electrolysis Cell			301
	10.5		clusion		303
		Refe	rences		304

11	Valorization of By-Products Produced During the Extraction and Purification of Biofuels					
	Subodh Kumar, Tinku Casper D' Silva, Dushyant Kumar, Adya Isha, Sameer Ahmad Khan, Ram Chandra,					
	-			rendra Kumar Vijay		
	11.1	Introduction			308	
	11.2	Biodiesel Production Process and Its Byproducts			308	
		11.2.1	Valorizat	ion of De-Oiled Seed Cakes	310	
			11.2.1.1	Valorization of De-Oiled Cake		
				via Anaerobic Digestion Route	310	
		11.2.2	Valorizat	ion of Glycerol	312	
			11.2.2.1	Valorization of Glycerol via Anaerobic		
				Digestion Route	312	
			11.2.2.2	, 0		
				Conversion Route	315	
			11.2.2.3	2		
				Conversion Route	316	
			11.2.2.4	Valorization of Glycerol via Catalytic		
				Conversion Route	317	
			11.2.2.5	,		
		D . 6		Thermochemical Conversion Route	318	
	11.3	.3 Biorefinery Concept Based on Utilization of Whole Oilseed Plant				
					319	
	11.4	11				
			ntation Pro		321	
	11.5			yproducts Obtained in Anaerobic	222	
		-	on Proces		322	
				tion of CO_2 Content in Biogas	323	
	116			ion of Digestate	324	
	11.6	Conclu		4	325	
		Referen	wledgmen	l	325	
		Referen	ices		325	
12	Valor	ization	of Byprod	lucts Produced During Extraction		
	and F	and Purification of Biodiesel: A Promising Biofuel				
	Gunj	an, Radi	hika Singh	and Subhalaxmi Pradhan		
	-	List of	Abbreviati	ons	334	
	12.1	Introdu	uction		334	
	12.2	Glycero	ol		336	
		12.2.1	-	es of Glycerol	336	
		12.2.2	Classifica	ations of Glycerol	338	

		12.2.3	Global G	lycerol Market	339
		12.2.4	Applicati	ions	340
			12.2.4.1	Conversion of Glycerol into Value-A	Added
				Product	340
			12.2.4.2	Oxidation	342
				Hydrogenolysis	343
			12.2.4.4	Pyrolysis/Gasification	343
			12.2.4.5	Dehydration	344
			12.2.4.6	0 1	344
				Etherification	344
			12.2.4.8	1	345
			12.2.4.9		345
	12.3		ol Carbona		346
				ions of Glycerol Carbonates	347
		12.3.2	Synthetic	c Routes of Glycerol Carbonate	348
			12.3.2.1	Direct Synthetic Routes	349
			12.3.2.2	Indirect Routes of Synthesis	350
		12.3.3	•	Production of Glycerol	
			Carbona		352
				Homogenous Catalysts	352
			12.3.3.2		354
			12.3.3.3	Heterogeneous Catalyst	355
	12.4	Conclu			357
		Referen	nces		358
13	Biofu	iel Appl	ications: (Quality Control and Assurance,	
				l Environmental Sustainability	367
				Dushyant Kumar, Subodh Kumar,	
				er D' Silva, Ram Chandra	
	-		ı Kumar V		
		Introdu			368
	13.2	Solid F	uel		369
		13.2.1	Applicat	ions of Briquettes	369
		13.2.2		Briquettes	369
				Ash Content	369
			13.2.2.2	Moisture Content	373
			13.2.2.3	Volatile Matter	373
			13.2.2.4	Ultimate Analysis	374
			13.2.2.5	Other Minor Elements	374
			13.2.2.6	Calorific Value	374
			13.2.2.7	Bulk Density	375

		13.2.2.8	Mechanical Durability	375
		13.2.2.9	Environmental Sustainability and	
			Techno-Economics of Biomass Briquettes	376
	13.2.3	Biochar B		376
			Calorific Value	378
		13.2.3.2	Moisture Content	379
		13.2.3.3	Volatile Matter	379
		13.2.3.4	Ash Content	379
		13.2.3.5	Fixed Carbon	380
		13.2.3.6	Granulation	380
		13.2.3.7	Binder	380
		13.2.3.8	Bulk Density	380
		13.2.3.9	Burning Rate	380
		13.2.3.10	Compressive Strength	381
		13.2.3.11	Environmental and Techno-Economics	
			of Biochar Briquettes	381
13.3	Liquid	and Gaseo	us Biofuel	382
	13.3.1	Application	on of Liquid and Gaseous Biofuel	384
		13.3.1.1	Combined Heat and Power (CHP)	
			Generation	384
		13.3.1.2	Heat Generation	385
		13.3.1.3	Transportation Fuel	385
	13.3.2	Bioethan	ol	386
		13.3.2.1	Water Content	389
		13.3.2.2	Ethanol and Methanol Content	389
		13.3.2.3	Gum Content	389
		13.3.2.4	Acidity	392
		13.3.2.5	рНе	392
		13.3.2.6	Appearance	392
		13.3.2.7	Vapor Pressure	392
		13.3.2.8	Relative Density/Specific Gravity	393
		13.3.2.9	Copper, Sulfur, Benzene, Aromatics,	
			and Olefins	393
		13.3.2.10	Environmental Sustainability	
			and Techno-Economics of Bioethanol	394
	13.3.3	Biodiesel		395
		13.3.3.1	Density and Viscosity	404
		13.3.3.2	Sulphated Ash, Flash Point, and Carbon	
			Residue	404

			13.3.3.3	Cold Flow Properties	405
			13.3.3.4	Water, Sediment, and Total	
				Contamination	406
			13.3.3.5	Copper-Strip Corrosion, Content	
				of Phosphorus and Metals	406
			13.3.3.6	Distillation, Iodine Value, Oxidation	
				Stability, and Acid Value	407
			13.3.3.7	Free Glycerine, Total Glycerine,	
				Cetane Number and Lubricity	407
			13.3.3.8	Environmental Sustainability	
				and Techno-Economics of Biodiesel	408
		13.3.4	Biogas		409
			13.3.4.1	Biogas Analysis	411
			13.3.4.2	Wobbe Index (WI)	412
			13.3.4.3	Environmental Sustainability	
				and Techno-Economics of Biogas	413
	13.4	Conclu	ision		414
		Acknow	wledgmen	t	414
		Referen	nces		414
14	Role	of CO, 7	Friggered	Switchable Polarity Solvents	
				ents During Biofuel Extraction	421
	Anup	ama Sha	arma, Pink	i Chakraborty, Karthikay Sankhyadhar,	
				onisha Singh	
	14.1	-		U	422
	14.2	Role of	f Solvent d	uring Bio-Fuel Extraction	423
	14.3			PS for Extraction of Bio-Fuels	424
				Production of Syngas	426
		14.3.2	SPS for t	he Production of Biodiesel	427
		14.3.3	SPS for t	he Production of Bio-Oil	428
		14.3.4	SPS for t	he Production of Bio-Oil from	
			Antarctio	c Krill	429
	14.4	Superc	ritical Solv	vents and Bio-Fuel Extraction	430
		14.4.1	SC-CO, i	in Extraction of Algal Bio-Oil	430
		14.4.2	Supercrit	tical Ethanol as Solvent in Extraction	
			of Bio-O	il from Sugarcane Bagasse	432
	14.5	Challer	nges and F	uture Considerations	433
	14.6	Conclu	ision		435
		Referei	nces		435

15	Effici	ency of	Catalysts	During Biofuel Extraction	441	
	Gajaı	nan Sah	u, Sudipta	Datta, Sujan Saha,		
	Praka	ish D. C	havan, De	eshal Yadav and Vishal Chauhan		
	15.1	Introdu	uction		442	
	15.2	Biofuel	S		444	
	15.3	Biodiesel				
	15.4	Transesterification Reaction				
	15.5	Catalys	st Used for	Biodiesel Extraction	450	
		15.5.1	Chemica	l Catalyst	451	
			15.5.1.1	Homogeneous Catalyst	451	
			15.5.1.2	Heterogeneous Catalyst	459	
		15.5.2	Biologica	l Catalyst/Enzyme Catalyst	470	
			15.5.2.1	Free Lipase	475	
			15.5.2.2	Traditionally Immobilized Lipase	477	
			15.5.2.3	· · · · · ·	478	
		15.5.3	Nanocata	alyst	479	
	15.6					
	15.7	Conclusion				
		Referen	nces		486	
16	Micro	oorgani	sms as Eff	ective CO, Assimilator		
			roduction		495	
	Chan	dreyee S	Saha and S	Subhalaxmi Pradhan		
	16.2	2 Microorganisms as Carbon Dioxide Assimilators				
		16.2.1	Algae		498	
			16.2.1.1	Mechanism of Carbon Capture by Algae	498	
			16.2.1.2		500	
			16.2.1.3	Biosynthesis of Lipids by Algae	501	
		16.2.2	Cyanoba	cteria	502	
			16.2.2.1	Carbon Capture and Sequestration		
				by Cyanobacteria	502	
	16.2.3 Clostridia				503	
			16.2.3.1	Carbon Capture and Sequestration		
				by Clostridia	503	
		16.2.4	Proteoba	<i>i</i>	504	
		16.2.5	Archaea		505	
	16.3					
			Carbon Ca		506	
		16.3.1	Biodiese		507	

		16.3.2	Bioethanol	509			
		16.3.3	Biobutanol	510			
		16.3.4	Biogas and Biohydrogen	511			
	16.4	Recent	Advancements in Biofuel Production	512			
		16.4.1	Nano-Additives	512			
		16.4.2	Genetic Engineering	513			
			UV Mutagenesis	513			
		16.4.4	Nuclear Radiation Mutagenesis	513			
		16.4.5	Adaptive Laboratory Evolution	514			
	16.5	Conclu	ision	514			
		Referen	nces	515			
17	Glob	al Aspec	cts of Biofuel Extraction	523			
	Shilp	Shilpi Bhatnagar and Shilpi Khurana					
	17.1	Introdu	uction	523			
	17.2	Biodies	sel	524			
	17.3	Biogas		529			
	17.4	anol	534				
	17.5 Bio-Oil from Biomass						
	17.6	Conclu	ision	537			
		Referei	nces	537			
18	New Advancements of Biofuel Extractions and Future Trends 54						
			, Kuldip Dwivedi, Bhavna Sharma				
	and S	Shashan	k Sharma				
	18.1	Introdu	uction	544			
		18.1.1	Major Advances in Production of Various				
			Generations of Biofuels	545			
		18.1.2	Conventional and Advanced Biofuels	545			
	18.2	Extract	tion and Purification of Biofuels	546			
		18.2.1	Sugar and Starch-Based Ethanol	546			
			Conventional Biodiesel	547			
		18.2.2	Conventional Biodiesel Biogas Production	547 548			
		18.2.2 18.2.3		÷ =/			
		18.2.2 18.2.3 18.2.4	Biogas Production	548			
		18.2.2 18.2.3 18.2.4 18.2.5	Biogas Production Cellulosic Ethanol	548 549			
	18.3	18.2.2 18.2.3 18.2.4 18.2.5 18.2.6	Biogas Production Cellulosic Ethanol Syngas	548 549 550			
	18.3	18.2.2 18.2.3 18.2.4 18.2.5 18.2.6 Applica	Biogas Production Cellulosic Ethanol Syngas Advanced Biodiesel	548 549 550 550			
	18.3	18.2.2 18.2.3 18.2.4 18.2.5 18.2.6 Applica 18.3.1	Biogas Production Cellulosic Ethanol Syngas Advanced Biodiesel ation of Biofuels	548 549 550 550 551			

	18.3.4	Charging Electronics	552
	18.3.5	Clean Oil Spills and Grease	552
	18.3.6	Cooking	552
	18.3.7	Remove Paint and Adhesive	552
18.4	Advant	tages Associated with Biofuels	553
	18.4.1	Fuel Efficiency	553
	18.4.2	Effective	553
	18.4.3	Durability of Vehicle Engine	553
	18.4.4	Availability of Source	553
	18.4.5	Renewable	553
	18.4.6	Reduce Greenhouse Gases	553
	18.4.7	Economic Security	554
	18.4.8	Reduced Pollution	554
18.5	Disadv	antages Associated with Biofuels	554
		High-Cost Production	554
	18.5.2	Monoculture	554
	18.5.3	Fertilizer Usage	554
	18.5.4	Industrial Pollution	555
	18.5.5	Future Rise in Price	555
18.6	Future	Trends	555
18.7	Conclu	ision	555
	Referen	nces	556
About th	559		
Index	561		

Preface

Biofuels are viable alternatives to petroleum-based fuel because they are produced from organic materials such as plants and their wastes, agricultural crops, and their by-products. The development of cutting-edge technology has increased the need for energy significantly, which has resulted in an overreliance on fossil fuels. Renewable fuels are the subject of research because of their biodegradability, eco-friendliness, decrease in greenhouse gas (GHG) emissions, and favorable socioeconomic consequences to counteract imitations of fossil fuels.

Depending upon their physical state, biofuels can be classified into solid, liquid, or gas. Examples of solid biofuels are briquettes of biomass and briquetted biochar. Liquid biofuels include bioethanol and biodiesel, and gaseous biofuels include biogas and biomethane, among others. These are only a few examples.

Different extraction techniques are used for the production of biofuels from renewable feedstocks. Biodiesel is a promising biofuel which is produced by the transesterification of plant-based oils. Extraction of oil includes older traditional methods, solvent extraction, mechanical extraction, microwave-assisted, and ultrasonic-assisted methods. The solvent extraction method is more efficient and produces good quality oil. The limitation of this method is time-consuming and very tedious. Many innovative techniques are also used to overcome the limitations of conventional methods. Microwave-assisted and ultrasonic-assisted are some of the new techniques which include the pre-treatment of the raw material using either ultrasonic waves or radio waves which helps in increasing the efficiency of the extraction of oil and improves the final quality of the oil.

This new book covers the prospects and processing of feedstocks for biofuels, extraction techniques, catalysts and solvents used during production of biofuel, optimization of reaction techniques, carbon capturing during biofuel extraction, value addition to biofuel wastes, and their techno-economic and environmental acceptability. A total of 18 chapters are included in this book. Chapter 1 is an introductory part which covers different plant seeds and their potential for biofuel production.

Chapters 2 and 3 cover the processing of feedstock in context of biodiesel production and extraction techniques for biodiesel production.

Chapters 4 and 5 include biomethane generation, stabilization of process parameters, upgradation systems for biogas and improving biomethane quality.

Chapters 6 and 7 cover renewable feedstocks for biofuels production and extraction techniques of gas to liquids (GtL) fuels respectively.

Chapters 8–10 incorporate bio-alcohol, bio-hydrogen extraction, purification, and analysis.

Chapters 11–13 include valorization of by-products produced during the extraction of biofuels, their purification, quality control, assurance, techno-economics and environmental sustainability.

Chapters 14 and 15 include the role of supercritical solvents and catalysts used during biofuel extraction and their efficiency.

Chapters 16 covers carbon capturing by microorganisms during the biofuel extraction process.

Chapters 17 and 18 include global aspects, new advancements of biofuel extractions and future trends.

It is expected that this book will spark the interest of numerous investigators in the academic universe towards biofuel research. It will provide new information about the recent advancements in the extraction techniques of biofuels, value addition to biofuel wastes and economic and environmental acceptability, sustainability and viability.

Plant Seed Oils and Their Potential for Biofuel Production in India

L. C. Meher^{1,2} and S. N. Naik^{1*}

¹Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India ²Defence Institute of Bio-Energy Research, DRDO, Haldwani, Nainital, Uttarakhand, India

Abstract

Many tree-borne oilseed plants are grown in India which produce non-food grade oil. Some of these have the potential to produce feedstock for biodiesel. Plants such as Pongamia and Jatropha are found throughout the country, whereas Mahua, Rubber, and Nahor are found in specific regions. The oilseeds are collected to a lesser extent by the local population for traditional uses as medicine, to fuel lamps, etc. and for the preparation of soap in industries. The National Mission on Biofuel has focused to grow Jatropha, whereas the existing tree born oilseeds are also potential sources for biodiesel feedstock. Non-edible oils with their potential as biodiesel feedstock in the country is discussed in this chapter. The oilseed plants less explored for biodiesel have also been discussed.

Keywords: Biodiesel, vegetable oil, non-edible oil, transesterification, methyl esters, jatropha, pongamia

1.1 Introduction

Presently, petroleum fractions are the preferred fuels for internal composition engines used for transport, as well as in the industrial and agricultural sectors. The global consumption of fossil based liquid fuels was above 100 million barrels per day during 2019 and forecasted to continue at the same rate during 2021 [1]. The contribution of CO₂ to the atmosphere is about

^{*}Corresponding author: snn@rdat.iitd.ac.in

Lalit Prasad, Subhalaxmi Pradhan, and S.N. Naik (eds.) Biofuel Extraction Techniques, (1–24) @ 2023 Scrivener Publishing LLC

3.1-3.2 times the consumption of fossil fuel. The exhaust emissions as a result of widespread use of fossil fuel are a global concern for the present time. The level of unburnt hydrocarbon and oxides of nitrogen, along with $\rm CO_2$, are gradually increasing in the atmosphere. The research and development activities have been focused for the last few decades in search of alternative fuel from renewable sources for the nations to be self-reliant for energy sources and much effort is being done by countries with no oil reserves.

Biodiesel is the fatty acid methyl esters derived from renewable lipid feedstocks, such as vegetable oils, as an alternative to diesel fuel. The invention of diesel engines and compression ignition engines dates back to the 19th century and the vegetable oils were used as fuel. The high viscosity and poor volatilities of vegetable oils, as well as the availability of middle distillate, i.e., diesel fuel, did not attract much interest for vegetable oil based fuel during those days.

The research and development activities on vegetable oil based biodiesel were initiated at the beginning of this century. The transesterification of vegetable oil reduces the viscosity by one-tenth, lower molecular weight of the triglyceride molecule by one-third, and improves the volatility along with the physical properties of the biodiesel. Worldwide biodiesel industries are set up and biodiesel blended diesel fuel is technically suitable for use in existing diesel engines with slight or no engine modifications. There is a scarcity of biodiesel feedstock for countries like India where the domestic demand of edible oil is met by import. The present article describes the potential non-food grade vegetable oil sources as feedstock for biodiesel in Indian context.

1.2 Background

India ranks third in terms of consumption of fossil fuels after China and the USA. Consumption grew by 2.3% in 2019 with a global share of 5.8%. Petroleum based fuel is the second largest energy source (239.1 million tons oil equivalent) after coal (452.2 million tons oil equivalent). The transportation fuel in India is mainly petroleum based diesel and the consumption is recorded at 83.5 million tons during 2018-19 [2].

The recent BS-VI in India, effective from 2020, is a stringent emission norm for diesel engines. The new pollution norm involves the reduction of NOx by 68% and particulate matter by 82-93% [3]. The fuel for diesel engines should burn clearly, which can be achieved by the inclusion of oxygenated fuel, i.e., biodiesel in petroleum based diesel fuel. In the global context, the surplus of edible oils such as Rapeseed in Europe, Canola in Canada, Soybean in the USA, and Palm oil in Malaysia and Indonesia are the available feedstocks for biodiesel. In the Indian scenario, the requirement of edible oil is met by import. India imports Palm oil from Malaysia and Indonesia, and Soybean from Argentina and Brazil, and Sunflower from Ukraine and Russia. The import of vegetable oil was 150.02 lakh tons during 2017-18, which increased to 155.49 lakh tons during 2018-19 [4]. The import of edible oils for the last five years is shown in Table 1.1 [5]. The non-food vegetable oils may be a potential source of biodiesel feedstock.

There are over 300 different species of oilseed plants grown in India. Various tree borne oilseed derived oils are not suitable for human consumption due to the presence of toxic components, for example karanjin and pongamol in Pongamia oil, azadirachtin in neem oil, ricin in Castor oil, and phorbol esters in Jatropha oil. These tree-borne oilseeds require agricultural inputs in the initial period and rarely require any expense associated with its maintenance once fully grown. It can also be a cost-effective way to produce oilseed. The production for tree borne oilseed is about 3.0-3.5 million metric tons whereas 0.5-0.6 million tons of seed are collected [6]. The potential non-edible oilseed plants are Jatropha (Jatropha curcas), Karanja (Pongamia pinnata), Mahua (Madhuca indica), Nahor (Mesua ferrea), Rubber (Hevea brasiliensis), Castor (Castor communis), Neem (Azadirachta indica), Sal (Shorea robusta), Undi (Calophyllum inophyllum), Simarouba (Simarouba glauca), etc. Oil derived from tree born oilseed plants such as Neem, Castor, and Sal find specific applications. Neem oil containing azadirachtin is a natural pesticide and emulsifier in the agricultural sectors. The Castor oil with ricinoleic acid in the triglyceride has

	Palm oil		Soybean		Sunflower	
Year	Crude	Refined	Crude	Refined	Crude	Refined
2015-16	71.1	25.7	39.6	0.0	14.9	0.0
2016-17	53.6	29.4	34.6	0.0	17.3	0.0
2017-18	67.5	27.7	31.5	0.0	22.5	0.0
2018-19	64.2	25.2	31.7	0.3	25.8	2.0
2019-2020 (April-Sept)	30.2	19.0	16.8	0.2	10.8	0.0

Table 1.1 Import of major edible oil by India (in Lakh Tons) [s].

4 BIOFUEL EXTRACTION TECHNIQUES

high viscosity and finds commercial application as a precursor for polyurethane, lubricant, binder, etc. Fat derived from the Sal tree is used as cocoa butter substitute for manufacturing of chocolates. With these exceptions, the rest of the oilseeds may be feedstock for biodiesel.

Various missions at national and state levels were made to promote the cultivation of oilseed crops. Pongamia and Jatropha were selected as suitable oilseed plants for plantation in the waste and degraded lands, avenue plantations, and perimeter fencing. Massive plantation of Jatropha has been carried out in the Chhattisgarh state and similarly, Pongamia in the Karnataka state of India. These are in addition to the existing potential of oilseed in the country.

1.3 Non-Edible Oil as Feedstock for Biodiesel

The biodiesel derived from vegetable oil should have properties as per EN 14214:2012 A1:2014 or IS 15607:2016 specifications. Properties such as iodine value, linolenic acid methyl ester, and oxidation stability are dependent upon the qualities of the feedstock. The physico-chemical properties of oils are listed in Table 1.2 [7, 8] and their fatty acid compositions in Table 1.3 [7, 9–12]. The saponification value (SV) and the iodine value (IV) are indicative of structures such as chain length of fatty acid and degree of unsaturation of fatty acids in the triglyceride. The cetane index (CI) is related to the saponification value and iodine value as per Equation (1.1) and the cetane number (CN) is related to the cetane index as per Equation (1.2) [9]. The MW_{oil} (weight average molecular weight of the oil) is calculated from the saponification value as per Equation (1.3) and the requirement of methanol for transesterification is calculated based on the MW_{oil}.

$$CI = 46.3 + \frac{5458}{SV} - 0.225 \times IV \tag{1.1}$$

$$CN = CI - 1.5 \ to + 2.6 \tag{1.2}$$

$$MW_{oil} = \frac{56100}{SV} \tag{1.3}$$

Unsaponifiable Physical appearance at Iodine Saponification Acid value value value matter (%) Sl. no. Oil room temperature 1. Jatropha Yellowish clear liquid 5-8 93-107 188-196 0.4-1.1 2. 1-11 85-90 185-195 Pongamia Dark yellow to orange 3.0 clear liquid Pale yellow with semi 3. Mahua Up to 20 58-70 187-196 1-3 solid fat 4. Nahor Dark brown or red 100 87 193-209 2.9 viscous liquid 5. Rubber Dark brown liquid 84 131-148 190-195 1.83

 Table 1.2 Physico-chemical characterisation of potential non-edible oils for biodiesel feedstock.

6 BIOFUEL EXTRACTION TECHNIQUES

	Percent fatty acid composition of oils						
Fatty acids	Jatropha	Pongamia	Mahua	Nahor	Rubber seed		
$\begin{array}{c} \text{Myristic acid} \\ (\text{C}_{_{14:0}}) \end{array}$	-	-	0.13	2.72	-		
Palmitic acid $(C_{16:0})$	13.4	11.65	19.6	9.76	9.3		
Palmitoleic acid (C _{16:1})	0.3	-	-	-	-		
Stearic acid $(C_{18:0})$	5.8	7.50	25.9	13.45	8.4		
Oleic acid (C _{18:1})	40.9	51.59	37.3	58.12	25.4		
Linoleic acid (C _{18:2})	39.6	16.64	15.8	12.64	41.1		
Linolenic acid (C _{18:3})	-	-	-	-	15.3		
Arachidic acid $(C_{20:0})$	-	1.35	0.21	3.14	-		
Eicosenoic acid (C _{20:1})	-	-	0.15	-	-		
Behenic acid (C _{22:0})	-	4.45	-	-	-		
Lignoceric acid (C _{24:0})	-	1.09	-	-	-		

Table 1.3 Fatty acid composition of potential non-edible oils for biodieselfeedstock.

The non-edible oils have been reported to have unsaponifiable matters and the lipid associates, as shown in Table 1.2, are required to remove these either by pretreatment or post-transesterification process.

The industrial scale of biodiesel production units set up worldwide employs homogeneous catalysts (methoxides or hydroxides of sodium or potassium) for transesterification, which is an efficient and cost-effective method for production of biodiesel in order to meet the fuel qualities as per biodiesel specifications. Among the homogeneous alkali catalytic process, sodium methoxide and potassium methoxide result in higher selectivity of the product with rare formation of byproducts [13]. The methoxide catalyzed transesterification of vegetable oils requires a low reaction temperature, about 60-65°C at atmospheric pressure, and the reaction is completed in a short reaction time. The methoxide catalyzed process results in complete conversion of the triglyceride oil in order to ascertain that produced biodiesel attains methyl ester content > 96.5% and the free glycerol and total glycerol within the limits specified by EN 14214 and IS 15607 biodiesel specifications. The catalytically active species is the methoxide ion, which is generated by dissolution of hydroxides in methanol [9]. The biodiesel feedstock, i.e., vegetable oil for the methoxide catalyzed transesterification mush, have free fatty acid less than 0.1%, moisture less than 0.1%, and phosphorus content less than 10 ppm as per the requirements specified by biodiesel manufacturers such as Lurgi and Desmet Ballestra [9]. The phosphorus content in biodiesel is permissible up to 4 ppm, as per revised specifications, and the pretreated oil should have the phosphorous content accordingly. The required specification of feedstocks may be achieved by pretreatment of the crude vegetable oil. The feedstock of the above mentioned specification, methanol, and catalyst sodium methoxide solution are allowed to act as the reaction vessel for transesterification. The required molar ration of methanol to triglyceride is 3:1, whereas 100% excess methanol is used during the process in order to ascertain the completion of reaction and the excess alcohol is recovered for further use. The completion of reaction is necessary to have methyl ester content above 96.5% and the triglycerides and partial glycerides within the maximum specified limit. The transesterification vessels are designed so that the reaction is accomplished in two or three steps. The glycerol formed in between the steps is removed and as a result, the reaction proceeds towards completion in a short time. The transesterification products are allowed to stand so that glycerol is separated due to high polarity and density and the biodiesel layer containing excel methanol and the residual catalyst is further washed and dried. The B-20 blend of biodiesel and diesel with a volume ratio of 20:80 is being used in the unmodified diesel engines and the targets are made to use B20 fuel as per the National Mission of Biofuels.

1.3.1 Jatropha

Jatropha (*Jatropha curcas*) is a shrub native to the tropical areas of Mexico and Central America and is presently being naturalized in the different parts

of the globe as a potential plant to produce biodiesel feedstock. Jatropha is a small tree that starts flowering after one year and the economic yield starts after the third year of plantation. The plant starts flowering (Figure 1.1a) during summer and monsoon and male and female flowers are produced on the same inflorescence. The green fruits ripen, changing to yellow and are dried to black, contain three seeds, and its shape resembles castor seeds (Figures 1.1b and 1.1c). As an initiative for biodiesel in India, Jatropha plantation was carried out in an area of about 0.5 million hectares of low-quality wasteland [14]. Commercial scale plantations of Jatropha were carried out in low-quality and degraded land in the state of Chhattisgarh and the produced oil is being utilized as feedstock for biodiesel. The oil content in the Jatropha seed varies from 24 to 40%. The major fatty acids are palmitic acid, stearic acid, oleic acid, and linolenic acid, with the last two accounting for more than 80% w/w. The physico-chemical qualities of Jatropha oil are listed in Table 1.2 and the fatty acid composition is shown in Table 1.3. The Jatropha oil contains phorbol esters generally known for tumor promoting activities, making the oil toxic.

The preparation of biodiesel involves pretreatment to remove the fatty acids. The homogeneous alkali-transesterification of pretreated Jatropha oil is conducted where the hydroxide or methoxide of sodium or potassium is used as catalyst. The post transesterification process involves the separation of excess methanol, catalyst, glycerol, and moisture to get the biodiesel. The fuel qualities of Jatropha based biodiesel have been reported to be as per IS 15607 specifications. The high cetane number, favorable fatty acid composition, and fuel qualities as per specifications make the Jatropha a potential candidate for biodiesel feedstock and therefore, massive cultivation has been initiated in the country. The vulnerable qualities of biodiesel are the oxidative stability and the acid value. Processes have been developed to prepare biodiesel with low acid value [15] and enhanced oxidative stability by suitable additives.

In India, the government initiated the National Mission on Biofuels in 2003 and selected Jatropha as a potential biofuel crop since the plant has a low gestation period, hardy nature, is resistant to draught and flood, is not browsed by cattle, and requires a small plant to collect seeds. It has been observed that Jatropha cultivation lead to improved soil fertility, contributed to the reduction of soil erosion, helped in the rehabilitation of lands through greening, and created jobs for the local population in the rural areas.