
Gunther Wittstock

Lehrbuch der Elektrochemie

Grundlagen, Methoden, Materialien, Anwendungen

Lehrbuch der Elektrochemie

Lehrbuch der Elektrochemie

Grundlagen, Methoden, Materialien, Anwendungen

Gunther Wittstock unter Mitarbeit von Bernd Speiser und Julia Witt

Autor

Gunther Wittstock Carl von Ossietzky Universität Oldenburg Fakultät für Mathematik und Naturwissenschaften Institut für Chemie 26111 Oldenburg Germany

Titelbild Oleg Sklyar und Gunther Wittstock

Zusatzmaterial für Studierende und Dozierende finden Sie unter www.wiley-vch.de/ISBN9783527327843

Alle Bücher von WILEY-VCH werden sorgfältig erarbeitet. Dennoch übernehmen Autoren, Herausgeber und Verlag in keinem Fall, einschließlich des vorliegenden Werkes, für die Richtigkeit von Angaben, Hinweisen und Ratschlägen sowie für eventuelle Druckfehler irgendeine Haftung.

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche

Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de> abrufbar.

© 2023 Wiley-VCH GmbH, Boschstraße 12, 69469 Weinheim, Germany

Alle Rechte, insbesondere die der Übersetzung in andere Sprachen, vorbehalten. Kein Teil dieses Buches darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form – durch Photokopie, Mikroverfilmung oder irgendein anderes Verfahren – reproduziert oder in eine von Maschinen, insbesondere von Datenverarbeitungsmaschinen, verwendbare Sprache übertragen oder übersetzt werden. Die Wiedergabe von Warenbezeichnungen, Handelsnamen oder sonstigen Kennzeichen in diesem Buch berechtigt nicht zu der Annahme, dass diese von jedermann frei benutzt werden dürfen. Vielmehr kann es sich auch dann um eingetragene Warenzeichen oder sonstige gesetzlich geschützte Kennzeichen handeln, wenn sie nicht eigens als solche markiert sind.

Print ISBN: 978-3-527-32784-3 **ePDF ISBN:** 978-3-527-80454-2 **ePub ISBN:** 978-3-527-80451-1

Umschlaggestaltung: Formgeber, Mannheim **Satz:** Straive, Chennai, India

Druck und Bindung

Inhalt

	Abkürzungen in diesem Buch xxvii
	Noch ein Lehrbuch der Elektrochemie, muss das wirklich sein? 1 Elektrochemie – schon lange etabliert, aber immer noch kompliziert? 1 Was dürfen Sie nun von dem Fachgebiet und dem Buch erwarten? 2 Historische und aktuelle Lehrbücher 4 Danksagung 5 Bildquellen 6
	Teil I Grundlagen 9
1	Die Elektrodenreaktion – der Kern der Elektrochemie 11
1.1	Stromfluss und Stoffumsatz in elektrochemischen Zellen 11
1.2	Elektroden und Ionen 13
1.3	Welche quantitative Beziehung besteht zwischen Stoffumsatz und Ladung? 16
1.4	Welche Beziehung besteht zwischen Stromfluss und
	Reaktionsgeschwindigkeit? 17
1.5	Galvanische Zellen und Elektrolysezellen 20
	Zusammenfassung 22
	Kontroll- und Übungsaufgaben 22
	Weiterführende Literatur 23
2	Die Thermodynamik elektrochemischer Reaktionen 25
2.1	Von der Zellspannung zum Elektrodenpotential 25
2.1.1	Die Definition der Zellspannung 25
2.1.2	Elektrochemische Spannungsreihe 26
2.2	Welcher Zusammenhang besteht zwischen Zellspannung und
	thermodynamischen Potentialen? 28
2.2.1	Das elektrochemische Potential 28
2.2.2	Die Nernst'sche Gleichung 33
2.2.3	Aktivitäten sind effektive Gehaltsgrößen 39
2.2.4	Berechnung der Standardzellspannung 41
2.2.5	Abhängigkeit der Gleichgewichtszellspannung von Zustandsgrößen 43
2.3	Zellspannungen entstehen durch Ladungstrennungen an Grenzflächen – die
	Galvani-Spannung 47
2.3.1	Die Galvani-Spannung an Ionenelektroden 48
2.3.2	Die Galvani-Spannung an Redoxelektroden 49

Symbole für physikochemische Größen in diesem Buch xvii

2.3.3	Ladungstrennung und Galvani-Spannungen ohne Elektroden 50
2.3.4	Die Kombination von Galvani-Spannungen zur Zellspannung 54
2.3.5	Elektroden mit Mischpotentialbildung 57
2.4	Anwendung von Zellspannungsmessungen und die Nutzung galvanischer
	Zellen 57
2.4.1	Referenzelektroden 57
2.4.2	Ermittlung thermodynamischer Größen 66
2.4.3	Gehaltsbestimmungen mit Potentiometrie 68
2.4.4	Überblick über elektrochemische Energiewandlungssysteme 69
2.4.4	Zusammenfassung 80
	Kontroll- und Ubungsaufgaben 80 Weiterführende Literatur 82
	weiterfullfelide Eiteratur 82
3	Die elektrochemische Kinetik Hemogene und beterogene
)	Die elektrochemische Kinetik – Homogene und heterogene
. 1	Prozesse 85
3.1	Kopplung von Massentransfer und Grenzflächenreaktion 85
3.1.1	Welche Teilschritte treten bei Elektrodenreaktionen an Ionen- und
	Redoxelektroden auf? 86
3.1.2	Elektrodenreaktionen sind Mehrschrittreaktionen 88
3.2	Kinetik des Ladungstransferschrittes 90
3.2.1	Repetitorium: Homogene Gleichgewichtsreaktionen und
	Temperaturabhängigkeit der Reaktionsgeschwindigkeit 90
3.2.2	Ableitung der Butler-Volmer-Gleichung 92
3.2.3	Welche inhaltliche Bedeutung besitzen die Symbole in der
	Butler-Volmer-Gleichung? 97
3.2.4	Was bedeutet der Transferkoeffizient α ? 101
3.2.5	Welche Grenzfälle ergeben sich aus der Butler-Volmer-Gleichung? 102
3.2.6	Wie sieht die Butler-Volmer-Gleichung aus, wenn die Elektrodenreaktion
	selber aus mehreren Elementarschritten besteht? 106
3.2.7	Reagieren mehrere Redoxpaare an einer Elektrode, bildet sich ein
	Mischpotential aus 107
3.2.8	Wo stößt der Butler-Volmer-Formalismus an seine Grenzen? 108
	Zusammenfassung 110
	Kontroll- und Übungsaufgaben 111
	Weiterführende Literatur 113
4	Massentransport und Randschichten 115
4.1	Überblick und Begriffe 116
1.2	Migration 117
4.2.1	Struktur der Elektrolytphase und Ionenbeweglichkeit 117
4.2.2	Elektrische Größen zur Charakterisierung der
	Ladungsträgerbewegung 120
4.2.3	Zwischen Ionenbeweglichkeit und Leitfähigkeit besteht ein definierter
	Zusammenhang 124
1.2.4	Warum sind molare Leitfähigkeiten starker Elektrolyte
	konzentrationsabhängig? 126
4.2.5	Das Gesetz der unabhängigen Ionenbewegung 126
1.2.6	Warum ist die molare Leitfähigkeit von schwachen Elektrolyten so viel
	stärker von der Konzentration abhängig als bei starken Elektrolyten? 127
1.2.7	Überführungszahlen beschreiben den Anteil einer Ionensorte am
-	Gesamtstrom 131
4.2.8	Interionische Wechselwirkungen 136
-	5

4.2.9	Aktivitätskoeffizienten 140
4.2.10	Leitfähigkeitskoeffizienten 143
4.3	Die elektrische Doppelschicht 145
4.3.1	Die elektrischen Eigenschaften der Doppelschicht 145
4.3.2	Die molekulare Struktur der elektrischen Doppelschicht 147
4.3.3	Wie verändert die Adsorption von Ionen und Molekülen die Struktur und
	die Eigenschaften der elektrischen Doppelschicht? 149
4.4	Diffusion 154
4.4.1	Zufallsbewegung eines Teilchens 155
4.4.2	Massentransport durch Diffusion – das erste Fick'sche Gesetz 158
4.5	Diffusionsschichten 161
4.5.1	Zeitliche Veränderung von Konzentrationsprofilen – das zweite Fick'sche
	Gesetz 161
4.5.2	Stromverlauf und Konzentrationsprofile bei Potentialsprungexperimenten
	(Chronoamperometrie) 162
4.6	Kombinierte Transportprozesse bei der Elektrophorese 169
4.6.1	Grundprinzip 169
4.6.2	Varianten der Elektrophorese von Proteinen 171
4.6.3	Kapillarelektrophorese 175
4.7	Zusammenfassung der Transportmechanismen in der
	Nernst-Planck-Transportgleichung 182
	Kontroll- und Übungsaufgaben 185
	Weiterführende Literatur 186
	Teil II Untersuchungsmethoden der Elektrochemie 189
_	Flater and discha Mathaday and alakasahanisaha Canana 101
5	Elektroanalytische Methoden und elektrochemische Sensoren 191
5.1	Stammbaum elektroanalytischer Methoden 191
5.2	Potentiometrie 193
5.2.1	Wann ist eine Ruhezellspannung selektiv für eine Ionensorte? 193
5.2.2	Membranelektroden 194
5.2.3	Glaselektroden 196
5.2.4	Selektivität und Nachweisgrenzen von ISE 198
5.2.5	Festkörpermembran-Elektroden 201
5.2.6	Flüssigmembranelektroden 202
5.2.7	Potentiometrische Sensoren 205 Die Lambda-Sonde 207
5.2.8	
5.2.9	Zusammenfassung Potentiometrie 209
5.3	Dynamische elektrochemische Methoden 210
5.3.1	Potentiostaten und Galvanostaten 210
5.3.2	Elektroden für voltammetrische Untersuchungen 212
5.3.3	Elektrolytlösungen für voltammetrische Untersuchungen 217
5.3.4	Zellgefäße für voltammetrische Untersuchungen 218
5.3.5	Cyclovoltammetrie 219 Modowno Overkrijlhorelektroden und Pulenrogramme 222
5.3.6	Moderne Quecksilberelektroden und Pulsprogramme 232
5.3.7	Differenzpuls-Voltammetrie 233
5.3.8	Square Wave-Voltammetrie 235
5.3.9	Übersicht über weitere Signalformen und ihre Anwendung 238
5.3.10	Verfahren mit integrierter Anreicherung (Stripping-Verfahren) 242
5.3.11	Einsatz der Standardadditionstechnik zur Verringerung von
5.3.12	Matrixeffekten 245 Speziation mit voltammetrischen Verfahren 246
	Speziation mit voltammetrischen Verfahren 246

5.4	Amperometrische Sensoren 248
5.4.1	Amperometrische Detektion in Fließsystemen 249
5.4.2	Amperometrische Endpunktanzeige bei Titrationen 250
5.4.3	Die Clark-Elektrode 251
5.5	Voltammetrie bei besonderen
	Massentransportbedingungen – immobilisierte Redoxsysteme 252
5.6	Voltammetrie bei besonderen
5.0	Massentransportbedingungen – Mikroelektrode 256
5.6.1	Stationäre Ströme 256
5.6.2	Warum entstehen stationäre Ströme? 257
5.6.3	Wie ändert sich der Strom vor der Einstellung des stationären Stroms? 26.
5.6.4	Cyclovoltammetrie an Mikroscheibenelektroden 264
5.6.5	Analytische Eigenschaften und Einsatzgebiete von Mikroelektroden 269
5.6.6	Arrays aus Mikroelektroden 274
5.7	Instrumentelle Grundlagen von elektrochemischen Messgeräten 278
5.7.1	Aufbau moderner voltammetrischer Arbeitsplätze 278
5.7.2	Fehlersuche und Fehlerbeseitigung in potentiostatischen
3.7.2	Versuchsaufbauten 283
	Kontroll- und Übungsaufgaben 285
	Weiterführende Literatur 290
	Wolfortainolido Estatua 250
6	Aufklärung elektrochemischer Reaktionsmechanismen in flüssigen
	Elektrolyten 297
6.1	Kombination von Reaktionsschritten zur Elektrodenreaktion 298
6.1.1	Welche Fragen müssen wir untersuchen? 298
6.1.2	Nomenklatur für Mechanismen von Elektrodenreaktionen 300
6.2	Von der Messkurve zum Modellmechanismus 300
6.2.1	Wie sollten Experimente durchgeführt werden? 300
6.2.2	Wie läuft eine Messreihe ab? 302
6.2.3	Woran erkennen wir einen bestimmten Mechanismus? 303
6.2.4	Diagnostische Kriterien als Hinweis auf Bausteine elektrochemischer
	Modellmechanismen 306
6.2.5	Zonendiagramme 309
6.3	Wann ist ein Modellmechanismus plausibel? 312
6.3.1	Simulation (Modellierung) 312
6.3.2	Isolierung und Charakterisierung von Zwischenstufen und Produkten 319
6.4	Wichtige mechanistische Modelle in der molekularen Elektrochemie
	in flüssigen Phasen 319
6.4.1	Ein-Elektronen-Transferreaktionen ohne separate chemische Schritte 320
6.4.2	Mehr-Elektronen-Transferreaktionen ohne separate chemische
	Schritte 322
6.4.3	Gekoppelte chemische Reaktionen 325
6.4.4	ECE-Varianten 328
6.4.5	Das Quadratschema und seine Varianten 331
6.4.6	Katalyse durch Elektronentransfer 332
6.4.7	Spezielle Effekte 334
6.5	Wie bestimmen wir Reaktionsparameter? 336
6.5.1	Das Auswertungsproblem in der mechanistischen Elektrochemie 337
6.5.2	Direkte Auswertungsmethoden 337
6.5.3	Datentransformation: Linearisierung und Semiintegration 338
6.5.4	Nutzung von Arbeitskurven 340
6.5.5	Globale Anpassung an Messkurven 341
6.5.6	Wie optimieren wir die Qualität voltammetrischer Messungen? 344

6.5.7	Ausblenden und Modifizieren von Reaktionsschritten 347
6.6	Ergänzende Techniken 351
6.6.1	Elektrolyse und Coulometrie 351
6.6.2	Wie lassen sich die Reaktionsladungszahl n und der Diffusionskoeffizient D
	bestimmen? 354
6.6.3	Spektroelektrochemie 357
0.0.5	Zusammenfassung 362
	Kontroll- und Übungsaufgaben 362
	Weiterführende Literatur 363
	weiterfulliende Literatur 303
7	Elektrochemische Impedanzspektroskopie 371
7.1	Ohm'sche Widerstände und ideale Kondensatoren
7.1	im Wechselstromkreis 373
7.2	Impedanzmessung an elektrochemischen Zellen 375
	Instrumentierung 375
7.2.1	-
7.2.2	Vorgehen bei Impedanzmessungen 377
7.3	Ersatzschaltbilder typischer Elektroden und Zellen 378
7.3.1	Impedanz einer elektrochemischen Zelle ohne Stoffumsatz 378
7.3.2	Elektrode mit Stoffumsatz ohne Begrenzung durch Diffusion 380
7.3.3	Elektrode mit Stoffumsatz unter Berücksichtigung der Diffusion 382
7.4	Entwicklung von Ersatzschaltbildern 385
7.4.1	Partiell blockierte Elektrode 386
7.4.2	Elektrode mit poröser Deckschicht 387
7.4.3	Poröse Elektrode 387
7.4.4	Konstant-Phasen-Elemente (CPE, constant phase elements) 389
	Zusammenfassung 392
	Kontroll- und Übungsaufgaben 392
	Weiterführende Literatur 393
8	Untersuchung von Grenzflächenstrukturen 395
8.1	Überblick und Systematik 395
8.2	Schwingungsspektroskopie an Oberflächen 397
8.2.1	Infrarot-Reflexions-Absorptionsspektroskopie (IRRAS) 398
8.2.2	Raman-Spektroskopie 404
8.2.3	Ausnutzung nichtlinearer optischer Effekte 406
8.2.4	Elektronenenergie-Verlustspektroskopie (EELS) 407
8.3	Ellipsometrie 407
8.4	Oberflächenplasmonenresonanz 411
8.5	Spektroskopie innerer Elektronen 413
8.5.1	Primär- und Sekundärprozesse 413
8.5.2	Elektronenspektroskopie 415
8.5.3	Röntgenabsorptionsspektroskopie 428
8.6	Röntgendiffraktion 432
8.7	Massenspektrometrie 433
8.8	Elektrochemische Quarzkristall-Mikrowaage 433
8.8.1	Piezoelektrischer Effekt und Quarzmikrowaage 434
8.8.2	Beeinflussung der mechanischen Resonanzfrequenz 436
8.8.3	Typische Anwendungen 437
8.9	Einkristallelektroden 441
8.9.1	Struktur von Metallkristallen und ihre idealen Oberflächen 442
8.9.2	Was verstehen wir unter Oberflächenrekonstruktion? 445
8.9.3	Welche Defekte existieren an Oberflächen? 445
8.9.4	Wie lassen sich Einkristallelektroden präparieren? 446

8.9.5	Wie werden Einkristallelektroden charakterisiert? 448
8.9.6	Was sind Überstrukturen? 450
8.9.7	Überstrukturen aus spezifisch adsorbierten Anionen 453
8.9.8	Überstrukturen aus Metallatomen
	nach Unterpotential-Abscheidung 453
8.10	Ein zweiter Blick auf die elektrochemische Doppelschicht 455
8.10.1	Grenzphase und Exzessgrößen 457
8.10.2	Ladungsüberschuss an Elektroden 459
8.10.3	Das Nullladungspotential 462
8.10.4	Grenzflächenüberschuss und Adsorptionsisotherme 465
8.10.5	Vergleich experimenteller Daten mit den Doppelschichtmodellen 468
8.10.6	Wie beeinflusst die Struktur der elektrischen Doppelschicht die
	Reaktionsgeschwindigkeit? 471
8.11	Elektrochemische Rastertunnelmikroskopie (ECSTM) und
	elektrochemische Rasterkraftmikroskopie (ECSFM) 473
8.11.1	Mikroskopie jenseits des Beugungslimits 473
8.11.2	Prinzip der Rastertunnelmikroskopie 477
8.11.3	Elektrochemische Rastertunnelmikroskopie (ECSTM) 479
8.11.4	Grundprinzipien der Rasterkraftmikroskopie 482
8.11.5	Arbeitsmodi der Rasterkraftmikroskopie 484
8.11.6	Kraft-Abstandskurven 488
8.11.7	Anwendungen der ECSFM 489
8.11.8	Artefakte, Bildauflösung und Probenmanipulation in STM- und
	SFM-Experimenten 490
8.12	Elektrochemische Rastermikroskopie (SECM) 491
8.12.1	Instrumentierung und Überblick 491
8.12.2	Der Feedback-Modus 492
8.12.3	Oberflächentitrationsmodus 498
8.12.4	Generator-Kollektor-Modus 500
8.12.5	Redoxkonkurrenzmodus 501
8.12.6	Direktmodus 501
8.12.7	Nutzung homogener Reaktionen 502
8.12.8	Möglichkeiten zur Verbesserung der lateralen Auflösung 504
8.12.9	Anwendungen der elektrochemischen Rastermikroskopie 505
8.13	Weitere Rastersondenmikroskopien 507
8.13.1	Photoelektrochemische Rastermikroskopie 507
8.13.2	Raster-Ionenleitfähigkeits-Mikroskopie 508
8.13.3	Rasterzellmikroskopie 510
8.13.4	Raster-Referenz-Elektroden-Technik, vibrierende Rasterelektroden-Technik,
	lokalisierte Impedanzmessung und Ohm'sche Mikroskopie 512
8.13.5	Raster-Kelvin-Sonde 513
	Kontroll- und Übungsaufgaben 515
	Weiterführende Literatur 518
	Teil III Materialien von und für Elektrochemie 533

9	Elektrochemische Materialabscheidung 535
9.1	Mit welchen Methoden lassen sich Materialien elektrochemisch
	abscheiden? 536
9.1.1	Galvanische Abscheidung 536
9.1.2	Immersionsabscheidung 537

9.1.3 9.1.4 9.2 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5 9.2.6 9.3 9.3.1 9.3.2 9.3.3	Autokatalytische Metallabscheidung 537 Abscheidung von Halbleitern 538 Wachstumsformen bei Metallabscheidungen 539 Wachstum dünner Metallschichten auf Fremdunterlagen 539 Thermodynamik der Keimbildung 540 Kinetik der Keimbildung 542 Wachstum der Keime 544 Vom Keim zu geschlossenen Filmen 545 Die Entwicklung der Mikrostruktur 547 Wie beeinflusst die Stromdichte die Abscheidung? 549 Welcher Zusammenhang besteht zwischen Stromdichte und Mikrostruktur? 549 Wodurch entstehen Stromdichteverteilungen? 551 Die Wagner-Zahl – Welche Stromdichteverteilung ist die entscheidende? 552 Pulsabscheidungen 553
9.3.5	Einfluss der Badtemperatur 554
9.4 9.4.1	Welche Zusammensetzung weisen galvanische Bäder auf? 554 Grundtypen galvanischer Bäder 554
9.4.1	Welche Funktion erfüllen Komplexbildner? 555
9.4.3	Welche Funktionen erfüllen Glanzbildner, Einebner, Aktivatoren und
,,,,,	Netzmittel? 556
9.5	Abscheidung komplexer Materialien 560
9.5.1	Direkte Legierungsabscheidung 560
9.5.2	Unter welchen Bedingungen können Legierungen abgeschieden werden? 562
9.5.3	Abscheidung von Multischichten und Kompositen 563
9.6	Elektrochemie an bipolaren Elektroden 564
9.6.1	Grundlagen 564
9.6.2	Zellkonfigurationen mit bipolaren Elektroden und ihre Anwendung 565
	Kontroll- und Übungsaufgaben 567
	Weiterführende Literatur 568
10	Halbleiterelektrochemie 571
10.1	Struktur und Bindung in Halbleitern 571
10.1.1	Kristallstrukturen der Halbleiter 571
10.1.2 10.1.3	Elektronische Struktur der Halbleiter 572 Das Fermi-Niveau 580
10.1.3	Dotierung von Halbleitern 584
10.1.4	Die Quasi-Fermi-Niveaus 587
10.2	Halbleiterelektroden 587
10.2.1	Halbleitergrenzflächen und Raumladungszone 587
10.2.2	Das Flachband-Potential 593
10.2.3	Strom-Spannungskurven an Halbleiterelektroden im Dunkeln 595
10.2.4	Photoströme an Halbleiterelektroden 597
10.2.5	Experimentelle Besonderheiten 598
10.2.6	Spezielle Untersuchungsmethoden für photoelektrochemische Reaktionen an Halbleiterelektroden 600
10.3	Anwendungen der Halbleiterelektrochemie 602
10.3.1	Mineralisierung organischer Stoffe in Abwasser 603

10.3.2	Farbstoffsensibilisierte Solarzellen als Beispiel für photovoltaische Zellen 605
	Kontroll- und Übungsaufgaben 609
	Weiterführende Literatur 611
11	Festkörperelektrolyte und andere unkonventionelle
	Elektrolytsysteme 615
11.1	Warum enthalten kristalline Festkörper Defekte? 616
11.1.1	Bezeichnung der Punktdefekte 616
11.1.2	Defekte in Festkörpern als Verallgemeinerung der Chemie von
	Elektrolytlösungen und der Elektronenstruktur von Halbleitern 618
11.1.3	Wechselwirkungen mit Nachbarphasen 620
11.1.4	Komplexe Defektstrukturen 622
11.1.5	Thermodynamik der Punktdefekte 623
11.2	Ionenleitfähigkeit in Festkörpern 625
11.2.1	Mechanismen der Ionenleitung in Festkörpern 625
11.2.2	Messung der Leitfähigkeit in Festkörpern 627
11.2.3	Wichtige ionenleitende Festkörper 628
11.3	Randschichten in Festelektrolyten 632
11.3.1	Wie lassen sich die Erkenntnisse zur elektrischen Doppelschicht und
	Raumladungszone verallgemeinern? 632
11.3.2	Erhöhung der Leitfähigkeit in nanokristallinen Festkörpern 634
11.4	Elektrochemie in Salzschmelzen und ionischen Flüssigkeiten 635
11.4.1	Alkalimetall-halogenide 635
11.4.2	Ionische Flüssigkeiten 637
11.4.3	Stark eutektische Lösungsmittel 640
11.5	Leitfähigkeit in Gläsern 641
11.6	Leitfähigkeit in Polymeren 642
11.6.1	Polymerelektrolyte und Gel-Elektrolyte 642
11.6.2	Polyelektrolyte 643
	Kontroll- und Übungsaufgaben 645
	Weiterführende Literatur 647
12	Elektrokatalyse 651
12.1	Konzept und Definitionen 652
12.1.1	Katalyse und Elektrokatalyse 652
12.1.2	Aktivität und Selektivität 654
12.1.3	Wichtige Elementarschritte unter Beteiligung adsorbierter
	Intermediate 656
12.2	Theoretische Behandlung von Elektronentransferreaktionen 657
12.2.1	Tunnelprozesse von Elektronen 657
12.2.2	Elektronentransferreaktionen folgen dem Franck-Condon-Prinzip –
	Die Marcus-Theorie 658
12.2.3	Von der Reorganisationsenergie zu Geschwindigkeitskonstanten 661
12.2.4	Welche Vorhersagen macht die Marcus-Theorie? 662
12.2.5	Welche Rolle spielt das Elektrodenmaterial für die Geschwindigkeit der
	Elektrodenreaktion? 663
12.3	Die Rolle von Intermediaten für die Elektrokatalyse 664
12.3.1	Ein-Elektronen-Transfer ohne Intermediat 664
12.3.2	Zwei-Elektronen-Transfer mit einem Intermediat 664

12.3.3	Transfer von mehr als zwei Elektronen unter Beteiligung von mehr als
	einem adsorbierten Intermediat 667
12.3.4	Wie lassen sich die unterschiedlichen Adsorptionsenergien der Intermediate
	auf Übergangsmetallen erklären? 670
12.4	Messmethoden zur Untersuchung elektrokatalytischer Reaktionen 672
12.4.1	Wie bestimmen wir die wirksame Oberfläche? 672
12.4.2	Bestimmung der Aktivität mit der rotierenden Scheiben-Elektrode 675
12.4.3	Bestimmung der Selektivität mit der rotierenden
	Ring-Scheiben-Elektrode 679
12.4.4	Elektrochemische Charakterisierungsverfahren für Elektrokatalysatoren
	mit verbessertem Massentransfer 680
12.4.5	Wie arbeitet die differentielle elektrochemische Massenspektrometrie
	(DEMS)? 681
12.5	Wichtige elektrokatalytische Reaktionen 684
12.5.1	Die Sauerstoffreduktionsreaktion (ORR) und die
	Sauerstoffentwicklungsreaktion (OER) 684
12.5.2	Oxidation von Kohlenstoffmonoxid, Ameisensäure, Methanol und anderen
	Alkoholen 687
12.5.3	Kohlenstoffdioxid-Reduktionsreaktion 688
12.5.4	Chlorentwicklungsreaktion 688
	Kontroll- und Übungsaufgaben 689
	Weiterführende Literatur 690
13	Modifizierte Elektroden 697
13.1	Monolagensystem 698
13.1.1	Selbstassemblierte Monolagen 698
13.1.2	Alkanthiolate auf Au und Ag 699
13.1.3	Silane auf oxidischen Oberflächen 705
13.1.4	Reduktion von Aryldiazoniumsalzen 706
13.1.5	Einstellung von Oberflächeneigenschaften mit SAMs 706
13.1.6	Langmuir-Schichten 709
13.1.7	Filmtransfer-Techniken 713
13.2	Polymerschichten auf Elektroden 716
13.2.1	Schicht-um-Schicht-Abscheidung von Polyelektrolyten 716
13.2.2	Isolierende Polymere 717
13.2.3	Ionenaustauscher und Redoxpolymere 718
13.2.4	Intrinsisch leitfähige Polymere 718
13.3	Filme aus organisch-anorganischen Hybridmaterialien 725
13.3.1	Ionenaustauscher und Oxidfilme 725
13.3.2	Polyoxometallate, Polycyanometallate,
	leitfähige Koordinationsnetzwerkverbindungen 725
13.4	Voltammetrie modifizierter Elektroden 726
13.4.1	Überblick 726
13.4.2	Wie ändert sich die Thermodynamik der Redoxreaktionen,
	wenn Redoxzentren in einen Film eingebettet werden? 728
13.4.3	Elektrodenkinetik immobilisierter Redoxsysteme 730
13.4.4	Wie beeinflussen Adsorbat-Adsorbat-Wechselwirkungen
	die Voltammogramme? 733
13.4.5	Elektronentransport in dicken Filmen 734
13.4.6	Reaktionen an blockierten Elektroden 735
13.4.7	Reaktionen an einer Elektrode mit permeablem Film 736
13.4.8	Umsetzung an einer Elektrode mit einem katalytisch aktiven Film 737

13.4.9	Elektrochemisch ausgelöste Filmmodifikationen	738
	Kontroll- und Übungsaufgaben 739	
	Weiterführende Literatur 740	

Teil IV Anwendungen 747

14	Korrosion und Korrosionsschutz 749
14.1	Was ist Korrosion? 750
14.2	Das Pourbaix-Diagramm – Die Thermodynamik der Korrosion 75-
14.3	Kinetik von Korrosionsprozessen und Passivität 760
14.3.1	Evans-Diagramme für gleichmäßige Flächenkorrosion 760
14.3.2	Passivität 767
14.4	Grundsätzliche Möglichkeiten für den Korrosionsschutz 769
14.5	Wichtige und typische Korrosionsszenarien 771
14.5.1	Gleichmäßige Flächenkorrosion 772
14.5.2	Flächenkorrosion in Salzlösungen – ein Beispiel für den Übergang
	zu lokalen Korrosionsformen 774
14.5.3	Lochfraßkorrosion 776
14.5.4	Kontaktkorrosion 780
14.5.5	Mikrobiologisch induzierte Korrosion 780
14.5.6	Spannungsrisskorrosion 781
14.5.7	Korrosion von Legierungen und Entlegierung 781
14.6	Gezielte Metallauflösung 787
14.6.1	Herstellung nanoporöser Metalloxidschichten 787
14.6.2	Elektrochemisches Abtragen 791
	Kontroll- und Übungsaufgaben 795
	Weiterführende Literatur 796
15	Batterien 801
15.1	Überblick über elektrochemische Energiewandlungssysteme 802
15.2	Kenngrößen von Batterien 805
15.2.1	Kapazität und Energie 805
15.2.2	Leistung und Ragone-Diagramm 808
15.2.3	Effizienz von Energiespeichern 810
15.2.4	Weitere Kenngrößen 812
15.3	Klassifizierung von Batterien 814
15.3.1	Einteilung nach dem Typ des Aktivmaterials 814
15.3.2	Primäre und sekundäre Zellen 819
15.3.3	Einteilung nach Formfaktoren und Anschlussparametern 819
15.3.4	Verteilung der Stromdichte in Batterien 825
15.4	Zink-Mangan-Batterien als Beispiele für Primärzellen 825
15.5	Bleiakkumulator als wiederaufladbare Batterie
	mit wässrigem Elektrolyt 828
15.5.1	Überblick 828
15.5.2	Fluch und Segen der Nebenreaktionen 829
15.5.3	Ausgewählte Details der technischen Umsetzung 831
15.6	Lithium-Ionen-Batterien 834
15.6.1	Prinzipieller Aufbau 835
15.6.2	Die negative Elektrode 836
15.6.3	
10.0.0	Der Elektrolyt und die Solid-Electrolyte-Interphase 842 Positive Elektrodenmaterialien 848

15.6.5 15.7	Alterung von Lithium-Ionen-Batterien 851 Metall-Luft-Batterien 852
15.8	Vanadium-Redox-Flussbatterie 854
	Kontroll- und Übungsaufgaben 855
	Weiterführende Literatur 856
16	Brennstoffzellen 861
16.1	Überblick 861
16.2	Polymerelektrolyt-Membran-Brennstoffzelle (PEMFC) 863
16.2.1	Membran 863
16.2.2	Elektroden und Bipolarplatte 864
16.2.3	Arbeitskurve einer Brennstoffzelle 865
16.2.4	Alterung von Brennstoffzellen 869
16.3	Varianten der Polymermembran-Brennstoffzellen 871
16.3.1	Direktmethanol-Brennstoffzelle und Direktethanol-Brennstoffzelle 871
16.3.2	Hochtemperatur-Polymerelektrolyt-Membran-Brennstoffzelle 872
16.3.3	Edelmetallfreie PEMFC 873
16.4	Festoxid-Brennstoffzelle (SOFC) 873
16.4.1	Festkörperoxid-Membran 874
16.4.2	SOFC-Kathodenmaterialien 875
16.4.3	SOFC-Anodenmaterialien 876
16.4.4	Von Membran-Elektroden-Einheiten zu SOFC-Zellen und -Systemen $$
16.5	Schmelzcarbonat-Brennstoffzelle 879
16.6	Phosphorsäure-Brennstoffzelle (PAFC) 881
16.7	Alkalische Brennstoffzelle (AFC) 882
16.8	Wasserelektrolyse 886
16.8.1	Technische Realisierung der Wasserelektrolyse 887
16.8.2	Betriebsführung einer Wasserelektrolyse 888
	Kontroll- und Übungsaufgaben 889
	Weiterführende Literatur 890
17	Elektrosynthesen in Labor und Industrie 895
17.1	Was sind die Besonderheiten elektrosynthetischer Reaktionen? 896
17.1.1	Vergleich zu konventionellen chemischen Prozessen 896
17.1.2	Spannungsquelle und Reaktionsführung 898
17.1.3	Wie sind Laborzellen aufgebaut? 900
17.1.4	Mit welchen Reaktoren lassen sich industrielle Elektrolysen optimal
	durchführen? 903
17.1.5	Elektrodenmaterialien 905
17.1.6	Elektrolytlösungen 911
17.2	Überblick über organische Elektrosynthesen 913
17.3	Direkte Umsetzungen 915
17.3.1	Kolbe-Elektrolyse 915
17.3.2	Nicht-Kolbe-Elektrolysen 917
17.3.3	Reduktive Kupplungsreaktionen 919
17.4	Indirekte Umsetzungen 922
17.4.1	Welche Varianten gibt es für indirekte Elektrolysen? 922
17.4.2	Welche Mediatoren kommen zum Einsatz? 924
17.5	Beispiele für elektroorganische Synthesen mit komplexer
	Reaktionsführung 927
17.5.1	Kation-Pool-Methode 927
17.5.2	Gepaarte Elektrolyse 928

17.5.3	Redox-Tags und elektrochemisch initiierte Ringschlussreaktionen 930 Kontroll- und Übungsaufgaben 931 Weiterführende Literatur 932	
18	Bioelektrochemie 939	
18.1	Die Kopplung von Ionentransfer- und Elektronentransfer-Prozessen bei der Photosynthese und der Zellatmung 940	
18.1.1	Die Biomembranen – Abgrenzung, "Steckbrett" für Baueinheiten und Kurzzeitenergiespeicher in einem 940	
18.1.2	Wie wird die protonenmotorische Kraft bei der Zellatmung aufgebaut? 944	
18.1.3	Wie wird die protonenmotorische Kraft bei der Photosynthese aufgebaut? 945	
18.1.4	Wie wird der Gradient der Protonenaktivität zur ATP-Synthese genutzt? 947	
18.2	Die elektrochemische Charakterisierung von Biomolekülen 948	
18.2.1	Niedermolekulare Elektronenüberträger 948	
18.2.2	Metallhaltige Redoxzentren 950	
18.2.3	Schwierigkeiten bei der elektrochemischen Charakterisierung von Proteinen 951	
18.2.4	Bestimmung des Formalpotentials durch potentiometrische Redoxtitration an optisch transparenten Dünnschichtelektroden 954	
18.2.5	Mediierter Elektronentransfer mit katalytischem Umsatz an gelösten Enzymen 955	
18.2.6	Direkter Elektronentransfer zu immobilisierten Proteinen 957	
18.3	Elektrochemische Bioanalytik 959	
18.3.1	Elektrochemische Biosensoren, Biochips und Assays 960	
18.3.2	Immobilisierung der Enzyme oder der biologischen Erkennungselemente 961	
18.3.3	Amperometrische Enzymelektroden für die Detektion von Glucose 962	
18.3.4	Enzymatische Hemmstoffsensoren 969	
18.3.5	Biobrennstoffzellen 970	
18.3.6	Elektrochemische Immunoassays 971	
18.3.7	Elektrochemische DNA-Assays and DNA-Chips 976	
18.4	Untersuchung von Ionenströmen an Membranen 979	
18.4.1	Untersuchung von einzelnen Ionenkanälen mit der	
	Patch clamp-Technik 979	
18.4.2	Nutzung künstlicher Nanoporen in elektroanalytischen Methoden 983	
18.5	Rückblick und Ausblick 985	
	Kontroll- und Übungsaufgaben 985	
	Weiterführende Literatur 987	
	Anhang 995	
	Index 1019	

Symbole für physikochemische Größen in diesem Buch

Lateinische Symbole (Auswahl)

Eutenistic Symbole (Australia)			
A	Fläche der Elektroden [m², cm²] ohne Berücksichtigung der Elektrodenrauigkeit		
A	Relaxationskonstante [$L^{1/2}$ mol $^{-1/2}$]		
A	präexponentieller Faktor (Frequenzfaktor) in der Arrhenius-Gleichung $[s^{-1}]$		
$A_{ m ECSA}$	elektrochemisch aktive Oberfläche		
A'	Fläche der Elektroden [m², cm²] unter Berücksichtigung der Elektrodenrauigkeit		
A'	Flächenbedarf pro Molekül (Kap. 13) [m²]		
A'	modifizierter Frequenzfaktor [cm s ⁻¹]		
а	allgemeine Aktivität		
$a_{ m c}$	Konzentrationsaktivität [mol ${\rm L}^{-1}$], auch angegeben durch Summenformel in geschweiften Klammern		
a_m	Molalitätsaktivität [mol kg ⁻¹]		
a_x	Molenbruchaktivität [einheitenlos]		
a°	Standardaktivität, z. B. $a_c^{\circ} = 1 \text{ mol } L^{-1}, a_m^{\circ} = 1 \text{ mol } kg^{-1}, a_x = 1$		
$a_i^{\circ \alpha}, \ a_i^{\alpha}$	Standardaktivität/Aktivität des i -ten Stoffes in der Phase α		
a_{\pm}	mittlere Aktivität [einheitenlos]		
$a_{\rm XY}$	lateraler Wechselwirkungsparameter zwischen den Adsorbaten X und Y		
В	elektrophoretische Konstante [S cm 2 mol $^{-3/2}$ L $^{1/2}$]		
b_i	Molalität des Stoffes i [mol kg $^{-1}$]		
b_i	Adsorptionskoeffizient des Stoffes i [L cm $^{-2}$]		
C	Kapazität [C V^{-1} , As V^{-1}]		
$C_{ m dl}$	Doppelschichtkapazität [As V^{-1}]		
$C_{\mathrm{dl},A}$	flächenbezogene Doppelschichtkapazität [$\mu F \text{ cm}^{-2} = \text{As V}^{-1} \text{ cm}^{-2}$]		
$C_{\mathrm{dl},A}^{\mathrm{d}}$	differentielle, flächenbezogene Doppelschichtkapazität [μF cm $^{-2}$ = As V $^{-1}$ cm $^{-2}$]		
$C^{ m i}_{{ m dl},A}$	integrale, flächenbezogene Doppelschichtkapazität [μF cm $^{-2}$ = As V^{-1} cm $^{-2}$]		
$C_{\mathrm{N},m}$	spezifische Kapazität, 1 [As g^{-1}] = 0.278 [mAh g^{-1}] = 0.278 [Ah k g^{-1}]		
$C_{{ m N},V}$	volumenbezogene Kapazität ("Ladungsdichte") [As cm $^{-3}$], [mAh cm $^{-3}$] = [Ah L $^{-1}$]		
$C_{ m r}$	$C-Rate [A/Ah] = [h^{-1}]$		
$C_{{ m sc},A}$	flächenbezogene Kapazität der Raumladungszone [As $\rm V^{-1}~cm^{-2}]$		
C_{S}	Reihenkapazität [C] (serial)		

a	V
C_{s}	Kompressionsmodul [N m ⁻¹]
С	Lichtgeschwindigkeit im Vakuum (in der Spektroskopie), $c = 2.9979 \times 10^8 \text{ m s}^{-1}$
С	(Stoffmengen-)Konzentration [mol $\rm L^{-1}$, mol $\rm cm^{-3}$], auch angegeben durch Summenformel in eckigen Klammern
c^*	(Stoffmengen-) Konzentration [mol $\rm L^{-1}$, mol cm $^{-3}$] in der Volumenphase der Lösung, auch angegeben durch Summenformel in eckigen Klammern mit Asterisk
c_{\pm}	mittlere Konzentration [mol L ⁻¹ , mol cm ⁻³]
D	Diffusionskoeffizient [cm² s ⁻¹]
D(E)	Zustandsdichte, Zahl der Zustände in einem Energiebereich [cm $^{-3}$ eV $^{-1}$]
D_+, D	Diffusionskoeffizienten für Kationen und Anionen [cm² s ⁻¹]
$D_{ m f}$	Diffusionskoeffizient in einem Film [cm ² s ⁻¹]
$D_{\rm S}$	Zustandsdichte [cm ⁻³]
d	Durchmesser, Abstand [m]
E	Elektrodenpotential [V]
\dot{E}	momentanes Elektrodenpotential [V]
E	Feldstärke [V m ⁻¹]
\mathbf{E}_{p}	elektrische Feldkomponente eines Photons in der Einfallsebene (parallel) $[V \ m^{-1}]$
\mathbf{E}_{s}	elektrische Feldkomponente eines Photons senkrecht zur Einfallsebene $[Vm^{-1}]$
e	Elementarladung, Ladung eines Elektrons, $e = 1.6021892 \times 10^{-19} \text{ As}$
E°	Standardelektrodenpotential [V]
$E^{\circ\prime}$	Formalpotential der Elektrode/des Redoxpaares [V] (formal potential)
$E_{ m ads}^{f o\prime}$	Formalpotential eines immobilisierten/adsorbierten Redoxsystems [V]
$E_{ m A}$	Aktivierungsenergie
$E_{\rm cor}$	Korrosionspotential [V]
$E_{ m eff}$	Effektivwert [V]
$E_{ m F}$	Fermi-Energie, Fermi-Niveau [eV]
$E_{ m F,n}$	Quasi-Fermi-Niveau [eV]
$E_{ m fb}$	Flachbandpotential [V]
$E_{ m g}$	Bandlücke [V]
$E_{ m NF}^{ m g}$	Nernst-Faktor [V], $E_{NF} = RT/nF = 0.0257 \text{ V}$ (bei $T = 298 \text{ K}$)
$E_{ m OCP}$	Ruhepotential [V]
$E_{\rm p}$	elektrostatische Wechselwirkungsenergie [kJ mol ⁻¹]
$E_{\mathrm{p}}^{\mathrm{p}}, E_{\mathrm{pa}}, E_{\mathrm{pc}}$	Peakpotential in der Voltammetrie; anodisches, kathodisches Peakpotential [V]
$E_{ m p}$	Lochfraßpotential [V] (pitting)
$E_{ m P,n}$	Potential für stabile Nukleation von Lochfraßgruben [V]
$E_{ m P,I}$	Potential für Inhibition des Lochfraßes [V]
$E_{ m P,n}$	Potential für stabile Nukleation von Lochfraßgruben [V]
$E_{ m P,r}$	Potential für Repassivierung von Lochfraßgruben [V]
$E_{ m pas}$	Passivierungspotential [V]
$E_{ m pas}$	Potential ohne Gesamtladungsüberschuss [V] (point of zero total charge)
	Nullladungspotential [V] (point of zero charge)
$E_{ m pzc}$	ramadungspotential [v] (point of Leio charge)

$E_{ m start}$	Startpotential in der Voltammetrie [V]
$E_{\rm v}$	Schwingungsenergie des harmonischen Oszillators [eV]
E_{λ}	Umschaltpotential in der Voltammetrie [V]
F	Schwingungsterm, $F = E/hc$ [cm ⁻¹]
F	molare freie Energie (als intensive Größe) [kJ mol ⁻¹]
F	Faraday-Konstante, $F = N_A \cdot e = 96485 \text{ As mol}^{-1} \approx 100 \ 000 \text{ As mol}^{-1}$
F	mechanische Kraft (Betrag) [N]
\mathbf{F}_{E}	Beschleunigungskraft im elektrischen Feld [N]
\mathbf{F}_{R}	Reibungskraft [N]
f	freie Energie (als extensive Größe) [kJ]
f_{c}	(Konzentrations-)Aktivitätskoeffizient [einheitenlos]
f_{\pm}	mittlerer Aktivitätskoeffizient [einheitenlos]
$f_{ m m}$	Molalitätsaktivitätskoeffizient [einheitenlos]
$f_{\rm x}$	Molenbruchaktivitätskoeffizient [einheitenlos]
f_{λ}	Leitfähigkeitskoeffizient [einheitenlos]
G	Gewichtskraft [N]
G	molare freie Enthalpie (als intensive Größe) [kJ mol ⁻¹]
$G^{ eq}$	molare freie Aktivierungsenthalpie (als intensive Größe) [kJ $\mathrm{mol^{-1}}$]
g	freie Enthalpie (als extensive Größe) [kJ], (Gibbs-Enthalpie)
g	Fallbeschleunigung, $g = 9.81 \mathrm{m}^2 \mathrm{s}^{-1}$
g	kombinierter Wechselwirkungsparameter in der Frumkin-Isotherme
	[einheitenlos]
Н	molare Enthalpie (als intensive Größe) [kJ mol ⁻¹]
H^{\neq}	molare Aktivierungssenthalpie (als intensive Größe) [kJ mol ⁻¹]
h	Enthalpie (als extensive Größe) [kJ]
h	Plank'sches Wirkungsquantum, $h = 6.626176 \times 10^{-34} \mathrm{J}\mathrm{s}$
\hbar	modifiziertes Plank'sches Wirkungsquantum, $\hbar = h/2\pi$
i	komplexe Einheit
i	Index der Ionenart i
I	Strom(stärke) [A]
İ	momentane(r) Strom(stärke) [A]
I_0	Austauschstrom(stärke) [A]
$I_{\rm a},I_{\rm c}$	Strom(stärke) für die anodische und kathodische Teilreaktion [A]
$I_{ m AC}$	Wechselstrom(anteil) [A]
I_c	Ionenstärke auf der Basis von Konzentrationen [mol ${\bf L}^{-1}$]
I_{C}	kapazitiver Strom [A]
I_{cat}	katalytischer Strom [A]
$I_{ m d}$	mittlere Stromstärke [A]
$I_{ m D}$	Strom an der Scheibenelektrode einer RDE [A]
$I_{ m DC}$	Gleichstrom(anteil) [A]
$I_{\rm d}, I_{\rm c}$	Entlade- und Ladestrom [A]
$I_{ m F}$	Faraday'scher Strom [A]
$I_{ m f}$	Vorwärtsstrom in der SQWV [A]

$I_{ m K}$	kinetisch limitierter Strom [A]
$I_{\scriptscriptstyle \rm I}$	Levich-Strom, transportlimitierter Strom an einer RDE [A]
I_m	Ionenstärke auf der Basis von Molalitäten [mol kg ⁻¹]
$I_{\rm p}, I_{\rm pa}, I_{\rm pc}$	Peakstrom in der Voltammetrie; anodischer, kathodischer Peakstrom [A]
$I_{\rm p}$, $I_{\rm pa}$, $I_{\rm pc}$	Pulsstromstärke [A]
•	Passivierungsstromstärke [A]
$I_{ m pas}$	Strom am Punkt maximaler Leistungsabgabe
$I_{P,\mathrm{max}}$ I_{r}	Rückwärtsstrom in der SQWV [A]
_	Strom an der Ringelektrode einer RDE [A]
I_{R}	Kurzschlussstrom (short circuit) [A]
$I_{ m SC}$	Sondenstrom (SECM, ECSTM) [A]
I_{T}	
$I_{\mathrm{T},\infty}$	Sondenstrom in der Volumenphase der Lösung (SECM) [A]
$I_{ m tot}$	Gesamtstrom [A]
j	Index der Ionenart j
J	Stoffmengenfluss [mol cm ⁻² s ⁻¹]
J	Keimbildungsgeschwindigkeit (Kap. 9) [cm ⁻² s ⁻¹]
j	Stromdichte [A cm ⁻²]
j_0	Austauschstromdichte [A cm ⁻²]
$j_{\rm a},j_{\rm c}$	Stromdichte für die anodische bzw. kathodische Teilreaktion [A $\rm cm^{-2}]$
$j_{ m cor}$	Korrosionsstromdichte [A m ⁻²]
$j_{ m pas}$	Passivierungsstromdichte [A cm ⁻²]
k	Geschwindigkeitskonstante; die Einheit hängt von der Reaktionsordnung ab und davon, ob eine homogene oder heterogene Reaktion vorliegt, Indizes geben die Nummer der Reaktion an
K	Gleichgewichtskonstante; Einheit je nach Massenwirkungsgesetz verschieden
$K_{\rm a}$	Säurekonstante [mol L ⁻¹]
$K_{ m W}$	Gleichgewichtskonstante für die Autoprotolyse des Wassers $[\text{mol}^2 \text{ L}^{-2}]$
$K_{ m L}$	Löslichkeitsprodukt; Einheit hängt von Stöchiometrie ab, z. B. $[\text{mol}^2 L^{-2}]$
$K_{ m M}$	Michaelis-Menten-Konstante [mol L ⁻¹]
$K_{ m M}'$	scheinbare Michaelis-Menten-Konstante [mol L ⁻¹]
k_0	Kraftkonstante [N m ⁻¹]
k	Wellenzahlvektor [cm ⁻¹]
k°	heterogene Standardreaktionsgeschwindigkeitskonstante [cm s ⁻¹]
$k_{\rm a}, k_{\rm c}$	heterogene Geschwindigkeitskonstante für die anodische bzw. kathodische Teilreaktion [cm $\rm s^{-1}]$
k_{B}	Boltzmann-Konstante, $k_{\rm B}=R/N_{\rm A}=1.381\times 10^{-23}~{\rm J~K^{-1}}$
$k_{ m F}$	Kraftkonstante [N m ⁻¹]
$k_{\rm n}$	Geschwindigkeitskonstante für die Keimbildung [s ⁻¹] (nucleation)
k _s °	Standardgeschwindigkeitskonstante eines immobilisierten Redoxsystems [s $^{-1}$] ($surface$)
L	Leitfähigkeit [S, Ω^{-1}]
l	Länge/Abstand [cm, m]
$\Delta l_{ m p}$	Länge des Porensegments [cm]
r	

Massentransportkoeffizient m Masse des Elektrons in Ruhe [kg] $m_{\rm e}$ Molenbruch des *i*-ten Stoffes [mol kg⁻¹] m_i Masse des i-ten Stoffes m_{i} molare Masse des i-ten Stoffes M_i Masse des Lösungsmittels [kg] $m_{\rm solv}$ Masse der Lösung [kg] $m_{\rm lsp}$ reduzierte Masse (Schwingungsspektroskopie) [kg] m_r Massentransportkoeffizient [cm s⁻¹] m_{\star} n Reaktionsladungszahl, Zahl der bei einem Formelumsatz übertragenen Elektronen (Ladungen) Zahl der Metallatome in einem Keim kritischer Größe [einheitenlos] $n_{\rm crit}$ Zahl der wachstumsfähigen Keime [einheitenlos] $n_{\rm nucl}$ Zahl der durch ein Adsorbatmolekül von der Grenzfläche verdrängten $n_{\rm solv}$ Solvensmoleküle [einheitenlos] N Objektmenge [mol] Avogadro-Konstante, Anzahl in einem Mol, $N_A = 6.022045 \times 10^{23} \text{ mol}^{-1}$ $N_{\rm A}$ Zahl der chemischen Komponenten im Reaktionssystem $N_{\rm C}$ N_i Stoffmenge i-ten Stoffes [mol] Zahl der Elektronen als Objektmenge [mol] $N_{\scriptscriptstyle P}$ Zahl der Freiheitsgrade (p, T, U) $N_{\rm F}$ Porenzahl, Anzahl der Strompulse [einheitenlos] $N_{\mathfrak{p}}$ Zahl der Phasen [einheitenlos] $N_{\rm p}$ N^{α} Stoffmenge in der Phase a P Leistung $[W] = [J s^{-1}] = [VA]$ \mathcal{D}' flächenbezogene Leistung [W cm⁻²] P''volumenbezogene Leistung, Leistungsdichte [W cm⁻³, W L⁻¹) Druck [Pa = N m^{-2}] Impulsvektor p Standarddruck, 100 000 Pa; in älterer Literatur 101 325 Pa = 760 Torr Partialdruck des i-ten Gases [Pa] p_i negativer dekadischer Logarithmus der normierten Säurekonstante pK_a P/mspezifische Leistung [W kg⁻¹] protonenmotorische Kraft (proton-motive force) [V] pmf 0 Ladung [C] = [As]Q Q-Faktor eines Resonators (quality factor) [einheitenlos] Parameter des Konstant-Phasen-Elements (CPE) [s $^{\gamma}$ A V $^{-1}$], γ ist ein weiterer Q_{CPE} Parameter des CPE $Q_{\mathrm{CPE},A}$ flächenbezogener Parameter des Konstant-Phasen-Elements (CPE) $[s^{\gamma} A V^{-1} cm^{-2}]$, γ ist ein weiterer Parameter des CPE Ladung für das Entladen (Index d von discharge) bzw. das Laden (Index c für $Q_{\rm d}, Q_{\rm c}$ charge) [As], [Ah] Ladung der Doppelschicht [As] $Q_{\rm dl}$ flächenbezogene Ladung der Doppelschicht [As cm⁻²] $Q_{\mathrm{dl},A}$

Nennkapazität [As], [Ah]

 $Q_{\rm N}$

$Q_{ m stored}$	nach dem Laden gespeicherte Ladung [As], [Ah]
q stored	allgemeine innere Koordinate in der Schwingungsspektroskopie (Winkel
4	oder Bindungslänge)
q	Vektor innerer Koordinaten (Bindungslängen und Bindungswinkel)
R	universelle Gaskonstante, $R=8.314\mathrm{J~K^{-1}~mol^{-1}}$
R	Ohm'scher Widerstand $[\Omega]$
$R_{0,l}$	spezifischer Porenwiderstand [Ω cm ⁻¹] = $\rho/(\pi r_p^2)$
$R_{\rm CT}$	Ladungstransferwiderstand $[\Omega]$
$R_{ m E}$	Elektrolytwiderstand $[\Omega]$
$R_{\rm S}$	Reihenwiderstand $[\Omega]$
r	Radius [m]
r	Reaktionsgeschwindigkeit; homogene [mol $\rm L^{-1}~s^{-1}$], heterogene [mol $\rm cm^{-2}~s^{-1}$]
r_0	Austauschreaktionsgeschwindigkeit; homogene [mol $\rm L^{-1}~s^{-1}$], heterogene [mol $\rm cm^{-2}~s^{-1}$]
$r_{\rm crit}$	kritischer Keimradius [nm]
$r_{ m D}$	Debye-Länge [m]
$r_{ m i}$	hydrodynamischer Radius des i-ten Ions [m]
$r_{ m p}$	charakteristischer Porenradius [cm]
$r_{ m sol}$	Radius der Solvathülle eines Ions
$r_{ m S}$	Radius der aktiven Probe (SECM)
$r_{ m T}$	Radius der Mikroelektrode (SECM)
$R_{ m g}$	normierter Radius der isolierenden Einfassung [einheitenlos] (SECM)
$R_{\rm S}$	normierter Radius der aktiven Probe [einheitenlos] (SECM)
$R_{\rm uc}$	unkompensierter Elektrolytwiderstand $[\Omega]$
S	molare Entropie [J K ⁻¹ mol ⁻¹]
S°	molare Standardentropie [J K^{-1} mol^{-1}]
S^{\neq}	molare Aktivierungsentropie (als intensive Größe) [J $\mathrm{K}^{-1}\;\mathrm{mol}^{-1}]$
S	Entropie als extensive Größe $[J K^{-1}]$
T	absolute Temperatur [K]
T_{b}	Siedepunkt [K] (boiling)
T_{e}	Transmissionskoeffizient für einen Tunnelprozess [einheitenlos]
$T_{ m i}$	Flammpunkt [K] (ignition)
T_{m}	Schmelzpunkt [K] (melting)
$T_{ m P}$	Streufähigkeit (Kap. 9) [einheitenlos]
t	Zeit [s]
t_+, t	Überführungszahl, Anteil der Ionensorte am Gesamtstrom [einheitenlos]
$t_{\rm d}$, $t_{\rm c}$	Entlade- bzw. Ladezeit [s], [h] (discharge/charge)
$t_{ m off}$	Ruhezeit [ms]
$t_{\rm on}$	Pulsdauer [ms]
U	Spannung [V]
U	Momentanspannung [V]
U°	Standardzellspannung [V]

 U_0 Spannungsamplitude [V]

Vorspannung [V] $U_{\rm bias}$

 $\langle U_{\rm d} \rangle, \langle U_{\rm c} \rangle$ mittlere Entlade- bzw. Ladespannung (discharge/charge) [V]

 $U_{
m eq}$ Gleichgewichtszellspannung [V]

Spannung am Punkt maximaler Leistungsabgabe [V] $U_{P,\max}$

Zersetzungsspannung [V] U_{zer}

elektroosmotische Mobilität [m² V-1 s-1] u_{eo}

experimentell bestimmte elektroosmotische Mobilität [m² V-1 s-1] $u_{\rm exp}$

Ionenbeweglichkeit des Ions i [m² s⁻¹ V⁻¹] u_i

VVolumen [L, cm³, ...]

 $V_{\rm m}$ molares Volumen [L mol⁻¹, cm³ mol⁻¹, ...]

Quantenzahl des harmonischen Oszillators [einheitenlos] Potentialvorschubgeschwindigkeit in der Voltammetrie [V s⁻¹]

W Arbeit, Energie [Wh], [Ws], [J]

W/mspezifische Energie [Wh kg^{-1}] = [mWh g^{-1}]

Arbeit [J, Ws, Nm] w

Masse des Stoffes 1 [einheitenlos] w_1 elektrische Arbeit [Ws, J, Nm, VAs] $w_{\rm el}$

elektroosmotische Flussgeschwindigkeit [m s⁻¹] \mathbf{W}_{eo}

 $\mathbf{w}_{\mathrm{exp}}$ experimentell bestimmte Wanderungsgeschwindigkeit [m s⁻¹] Wanderungsgeschwindigkeit [m s⁻¹], Index i = Ionenart \mathbf{w}_{i}

{X} Konzentrationsaktivität der Komponente X [mol L-1]

[X] Konzentration der Komponente X [mol L⁻¹]

Blindwiderstand [V A⁻¹] X

Ortskoordinate [m], z. B. Abstand zur Elektrode x Molenbruch des i-ten Stoffes [einheitenlos] x_i

Admittanz (admittance) [A V^{-1}] = [Ω^{-1}] Y

ZBetrag der Impedanz $[\Omega]$

 \mathbf{Z} Impedanz $[\Omega]$

spezifische Grenzflächenimpedanz (auf Ringbreite Δl bezogen) [Ω cm] $\mathbf{Z}_{0,l}$ $\mathbf{Z}_{\!\scriptscriptstyle A}$ flächenbezogene Grenzflächenimpedanz [Ω cm²], an glatter Elektrode

ermittelt

 $\mathbf{Z}_{\mathfrak{p}}$ Impedanz einer Pore $[\Omega]$

Ladungszahlen für Kationen und Anionen [einheitenlos] Z_{+}, Z_{-}

Ionenladung des Ions i [einheitenlos], exakt Verhältnis der Ladung eines Z_i

Ions [As] zur Ladung eines Protons [As]

Griechische Symbole (Auswahl)

Griechische Syr	nbole (Auswahl)
α	Transferkoeffizient [einheitenlos]
α	Dissoziationsgrad [einheitenlos (01) oder angegeben in $\%$]
α, β,	Index der Phase
β	Adsorptionsgleichgewichtskonstante [mol ⁻¹ L]
β	Abklingkonstante eines Tunnelprozesses [m ⁻¹]
γ	Exponent des CPE [0< γ < 1], oder Arbeitszyklen (Abschn. 18.6.1)
γ	Grenzflächen- oder Oberflächenspannung [N $\mathrm{m}^{-1}]$
Γ	Grenzflächenkonzentration [mol cm ⁻²]
Γ^* ,	Gesamtgrenzflächenkonzentration eines Redoxpaares [mol $\rm cm^{-2}]$
δ	allgemein Schichtdicke, Abstand; insbesondere Abstand zwischen zwei Redoxzentren [m]
ΔE	Amplitude der Wechselspannung [V]
$\Delta E_{ m p}$	Aufspaltung der Peakpotentiale in der Cyclovoltammetrie [V]
$\Delta_{ m R} G$	molare freie Reaktionsenthalpie [J mol ⁻¹]
$\Delta_{ m R} G^{f o}$	molare freie Standardreaktionsenthalpie [J $\mathrm{mol}^{-1}]$
$\Delta_{ m B} G$	molare freie Bildungsenthalpie [J mol ⁻¹]
$\Delta G^{ eq}$	molare freie Aktivierungsenthalpie [J mol ⁻¹]
$\Delta_{ m B}G^{f o}$	molare freie Standardbildungsenthalpie [J $\mathrm{mol^{-1}}]$
$\Delta_{ ext{SS}}G$	molare freie Übersättigungsenthalpie [J mol ⁻¹]
ΔH^{\neq}	molare Aktivierungsenergie [J mol ⁻¹]
$\Delta_{ m R} H$	molare Reaktionsenthalpie [J mol ⁻¹]
$\Delta_{ m R} H^{f o}$	molare Standardreaktionsenthalpie [J $\mathrm{mol^{-1}}]$
ΔI	Amplitude des Wechselstroms [A]
Δm	Massenverlust [g] durch Korrosion, ermittelt durch Wägung
$\Delta m_{ m theo}$	nach dem Faraday'schen Gesetz berechneter Massenverlust [g]
$\Delta_{ m R} S$	molare Reaktionsentropie [J K^{-1} mol ⁻¹]
ΔS^{\neq}	molare Aktivierungsentropie [J K ⁻¹ mol ⁻¹]
$\Delta_{ m R} S^{f o}$	molare Standardreaktionsentropie [J K^{-1} mol $^{-1}$]
Δx	Dicke der Diffusionsschicht [cm], z. B. Nernst'sche Diffusionsschichtdicke
$\Delta arphi^{lpha,eta}$	Galvani-Spannung zwischen Phase α und β [V]
$\Delta arphi^{ullet lpha,eta}$	Standard-Galvani-Spannung [V] zwischen Phase α und β
$\Delta arphi_{ m A}$	Differenz der Galvani-Spannungen [V] zwischen Anode und Lösung
$\Delta arphi_{ m eq}$	Gleichgewichts-Galvani-Spannung [V]
$\Delta arphi_{ m eq}^{f \circ}$	Standard-Gleichgewichts-Galvani-Spannung [V]
$\Delta arphi_{ m C}$	Differenz der Galvani-Spannungen [V] zwischen Kathode (<i>cathode</i>) und Lösung
ε_{r}	relative Dielektrizitätskonstante des Lösungsmittels [einheitenlos]
ϵ_0	Dielektrizitätskonstante des Vakuums (Permitivität des Vakuums), $\varepsilon_0=8.854\times 10^{-12}~{\rm A^2~s^4~m^{-3}~kg^{-1}}=8.854\times 10^{-12}~{\rm A~s~V^{-1}~m^{-1}}=8.854\times 10^{-12}~{\rm F~m^{-1}}$
ζ	zeta-Potential oder Oberflächenpotential [V]
η	Überspannung [V]
η	Viskosität [N s m ⁻²]
ε	Wirkungsgrad [einheitenlos], allgemein Effizienzgrößen
$arepsilon_{ m be}$	bipolare Stromeffizienz [einheitenlos], Abschn. 9.6.1
$\epsilon_{ extsf{C}}$	Kollektoreffizienz, Übertragungsverhältnis [einheitenlos]

```
Ladungseffizienz [einheitenlos]
\epsilon_{\mathrm{C}}
                      Energieeffizienz [einheitenlos]
\epsilon_{\mathrm{el}}
                      Stromausbeute [einheitenlos]
\epsilon_{\mathrm{F,i}}
A
                      Bedeckungsgrad [%]
                      Kontaktwinkel [°]
                      spezifische Leitfähigkeit [S cm^{-1}, \Omega^{-1} cm^{-1}]
K
                      Abklingkonstante (STM) [m<sup>-1</sup>]
                      normierte homogene Geschwindigkeitskonstante (Kap. 6, 17, 18)
                      [einheitenlos]
                      normierte heterogene Geschwindigkeitskonstante (SECM) [einheitenlos]
                      normierte Geschwindigkeitskonstante eines immobilisierten Redoxsystems
                      [einheitenlos]
                      molare Leitfähigkeit [(\Omega^{-1} \text{ cm}^{-1})/(\text{mol cm}^{-3}), \text{ S cm}^2 \text{ mol}^{-1}]
Λ
                      molare Leitfähigkeit bei unendlicher Verdünnung
\Lambda_0
                      [(\Omega^{-1} \text{ cm}^{-1})/(\text{mol cm}^{-3}), \text{S cm}^2 \text{ mol}^{-1}]
                      Abnahme der Leitfähigkeit durch Relaxation
                      [(\Omega^{-1} \text{ cm}^{-1})/(\text{mol cm}^{-3}), \text{S cm}^2 \text{ mol}^{-1}]
                      Abnahme der Leitfähigkeit durch elektrophoretischen Effekt
\Lambda_{\mathrm{ephor}}
                      [(\Omega^{-1} \text{ cm}^{-1})/(\text{mol cm}^{-3}), \text{S cm}^2 \text{ mol}^{-1}]
λ
                      partieller Entladungskoeffizient [einheitenlos] bei der Adsorption von
                      Metallionen mit der Ladung z^+; \lambda z ist die Elektrosorptionswertigkeit
                      Reorganisationsenergie im Rahmen der Marcus-Theorie
λ
λ
                      mittlere freie Weglänge von Elektronen im Festkörper (Kap. 8)
                      Einzelionenäquivalentleitfähigkeit bei unendlicher Verdünnung des Ions
\lambda_{0,\text{eq,i}}
                      i [S cm^2 mol^{-1}]
\lambda_{0,i}
                      molare Einzelionenleitfähigkeit bei unendlicher Verdünnung des Ions
                      i [S cm^2 mol^{-1}]
                      Äquivalentleitfähigkeit
\lambda_{0,\text{eq}}
                      Betrag des Dipolmoments eines Moleküls [A s m],
μ
                      meist angegeben in Debye D; 1 D = 3.33564 \times 10^{-30} A s m
                      chemisches Potential des Stoffes i [J mol<sup>-1</sup>]
\mu_i
                      chemisches Standardpotential des Stoffes i [J mol<sup>-1</sup>]
\mu_i^{\circ}
\tilde{\mu}_{i}^{\alpha}
                      elektrochemisches Potential des Stoffes i in der Phase \alpha [J mol<sup>-1</sup>]
\tilde{\mu}_{i}^{\alpha}
                      elektrochemisches Standardpotential des Stoffes i in der Phase \alpha [J mol<sup>-1</sup>]
                      Übergangsdipolmoment in der Spektroskopie
                      Kreisfrequenz [s<sup>-1</sup>], Umdrehungen pro Sekunde
                      mittlere Diffusionsgeschwindigkeit entlang einer Raumrichtung [cm s<sup>-1</sup>]
\nu_{\mathrm{D}}
                      vorzeichenbehafteter stöchiometrischer Koeffizient (für Ausgangsstoffe < 0;
V_i
                      für Reaktionsprodukte > 0) [einheitenlos]
                      stöchiometrische Koeffizienten für Kationen bzw. Anionen [einheitenlos]
                      Frequenz [Hz] = [s^{-1}]
                      Oszillatorfrequenz in der Schwingungsspektroskopie [Hz] = [s^{-1}]
v_{\rm osc}
                      Reaktionsumsatz angegeben als Objektmenge der Formelumsätze
ξ
                      bezüglich der Reaktionsgleichung [mol]
                      Kreiszahl, pi ≈ 3.141
π
П
                      Filmdruck [N m<sup>-1</sup>]
                      Massendichte [g cm<sup>-3</sup>] = [kg dm<sup>-3</sup>] = [t m<sup>-3</sup>]
                      Ladungsdichte [As cm<sup>-3</sup>], [C cm<sup>-3</sup>]
                      spezifischer Widerstand [\Omega cm<sup>-1</sup>]
                      spezifischer Elektrolytwiderstand [\Omega cm]

ho_{
m E}
```

$\sigma^{ m M}$	Überschussladungsdichte am Metall [As cm^{-2}], [C cm^{-2}]
τ	Zeitkonstante, oder auch Schrittzeit [s]
τ	Tropfzeit einer Quecksilberelektrode [s]
τ	Transferverhältnis beim Langmuir-Blodgett-Transfer [einheitenlos]
φ	inneres Potential [V]
$arphi^{ m A}$	Potential [V] im Inneren der Anode $(x \to \infty)$
$arphi^{ ext{C}}$	Potential [V] im Inneren der Kathode ($cathode$) ($x \to \infty$)
$arphi^{ m S}$	Potential [V] im Lösungsinneren (solution) $(x \to \infty)$
$\phi_{x'=0}$	Potential [V] an der äußeren Helmholtz-Fläche
ϕ	Austrittsarbeit [eV]
χ_{α}	Oberflächenpotential [V] einer speziellen Oberfläche der Phase α
Ψ	quantenmechanische Wellenfunktion
Ψ	Fugazität [Pa], die zum Partialdruck gehörende Aktivitätsgröße
Ψ	Stromfunktion, normierter Faraday'scher Strom [einheitenlos]
Ψ^{α}	äußeres Potential [V] der Phase α
ψ_{T}	Stromfunktion (normierter Strom) in der SECM [einheitenlos]
ω	Winkelfrequenz (omega = $2\pi f$) [s ⁻¹], Winkel in Radiant pro Sekunde

Abkürzungen in diesem Buch

2D DIGE zweidimensionale differentielle Gelelektrophorese (2D differential gel

electroporesis)

Ab Antikörper (antibody)

AC Wechselspannung (alternating current)

AChE Acetylcholinesterase

ACS American Chemical Society

ACV Wechselstrom-Voltammetrie (alternating current voltammetry)

ADC Analog-Digital-Wandler (analog-digital converter)

ADP Adenosindiphosphat

AES Auger-Elektronenspektroskopie

AFC alkalische Brennstoffzelle (alkaline fuel cell)

Ag Antigen

ALP alkalische Phosphatase

AO Atomorbital

APT Atomsonden-Tomographie (atom probe tomography)

APU zusätzliche Stromquelle (auxiliary power unit)

aq in wässriger Lösung (aqueous)

ARXPS winkelaufgelöste Photoelektronenspektroskopie (angle resolved XPS)

ATP Adenosintriphosphat

ATR abgeschwächte Totalreflexion (attenuated total reflection)
Aux Gegenelektrode oder Hilfselektrode (auxiliary electrode)

CB Leitungsband

CC konstante Stromstärke (constant current) beim Laden von Batterien

CCD ladungsgekoppelter Zähler (charge-coupled device)

CE Gegenelektrode in Zwei-Elektroden-Aufbau (counter electrode)

CE Kapillarelektrophorese, capillary electrophoresis

CEI kathodische ionenleitende Grenzschicht (cathode electrolyte interphase)

CFME Kohlefaser-Mikroelektrode (carbon fiber microelectrode)

cgs Einheitensystem Zentimeter-Gramm-Sekunde

CHP kombinierte Wärme-Kraft-Kopplung (combined heat power)

CL Katalysatorschicht (catalyst layer)

CMC kritische Mizellbildungskonzentration (critical micelle concentration)

CN Koordinationszahl (coordination number)

COT Cyclooctatetraen

CPE Kohlepaste-Elektrode (carbon paste electrode)

CPE Element mit konstantem Phasenwinkel, Konstant-Phasen-Element (constant

phase element)

C-SFM Rasterkraftmikroskopie mit gleichzeitiger Leitfähigkeitsmessung (conductive

scanning force microscopy)

DA Dopamin

DAC Digital-Analog-Wandler (digital-analog converter)

DC Gleichstrom (direct current)

DCECM elektrochemische Abtragung mit Gleichspannung (direct current

electrochemical machining)

DCM Dichlormethan

DDO von außen angetriebener Schwinger mit Stoßdämpfer (damped, driven

oscillator)

DEMS differentielle elektrochemische Massenspektrometrie

direkter Elektronentransfer DET Differentialgleichung DGL.

DHE dynamische Wasserstoffelektrode (dynamic hydrogen electrode) DME tropfende Quecksilberelektrode (dropping mercury electrode)

DMF Dimethylformamid

DMFC Direktmethanol-Brennstoffzelle (direct methanol fuel cell)

DMSO Dimethylsulfoxid Desoxyribonucleinsäure DNA

DPV Differenzpuls-Voltammetrie (differential pulse voltammetry) DPN Tauchstift-Nanolithographie (dip pen nanolithography)

DSA dimensionsstabile Anode

DSC farbstoffsensibilisierte Solarzelle (dye-sensitized solar cell)

dsDNA doppelsträngige Desoxyribonucleinsäure (double-stranded DNA) **EBSD** Elektronenrückstreubeugung (electron backscatter diffraction) **ECM** elektrochemische Abtragung (electrochemical machining)

The Electrochemical Society **ECS**

ECSA electrochemically active surface area

ECSFM elektrochemische Rasterkraftmikroskopie (electrochemical scanning force

microscopy)

ECSTM elektrochemische Rastertunnelmikroskopie (electrochemical scanning

tunneling microscopy)

EDTA Ethylendiamintetraessigsäure

EELS Elektronenenergie-Verlustspektroskopie (electron energy loss spectroscopy)

EIS elektrochemische Impedanzspektroskopie ELOXAL elektrolytische Oxidation von Aluminium

EMD elektrolytisches Mangandioxid (electrolytic manganese dioxide) **ENA** elektrochemische Rauschanalyse (electrochemical noise analysis) **EQCM** elektrochemische Quarzmikrowaage (electrochemical quartz crystal

microbalance)

EOF elektroosmotischer Fluss (electroosmotic flow)

ESR Elektronenspin-Resonanz ET Elektronentransfer

ETC Elektronentransportkette (electron transfer chain)

kantenferne Röntgenabsorptions-Feinstruktur (extended X-ray absorption fine **EXAFS**

structure)