INTELLIGENT MANUFACTURING MANAGEMENT SYSTEMS

OPERATIONAL APPLICATIONS OF EVOLUTIONARY DIGITAL TECHNOLOGIES IN MECHANICAL AND INDUSTRIAL ENGINEERING

Edited by KAMALAKANTA MUDULI V.P. KOMMULA DEVENDRA K. YADAV M. CHITHIRAI PON SELVAN JAYAKRISHNA KANDASAMY

Intelligent Manufacturing Management Systems

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Intelligent Manufacturing Management Systems

Operational Applications of Evolutionary Digital Technologies in Mechanical and Industrial Engineering

> Edited by Kamalakanta Muduli V. P. Kommula Devendra K. Yadav M. Chithirai Pon Selvan and Jayakrishna Kandasamy

This edition first published 2023 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2023 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-119-83624-7

Cover image: Pixabay.Com Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Preface				
Pa	art I	: Sma	rt Technologies in Manufacturing	1
1			nufacturing Systems for Industry 4.0 Gangmei and Polash Pratim Dutta	3
	Uui	,	eviations	3
	11		duction	4
			arch Methodology	5
			s of Smart Manufacturing	6
	1.0		Manufacturing Technology and Processes	6
			Materials	7
			Data	8
			Sustainability	8
			Resource Sharing and Networking	9
			Predictive Engineering	9
			Stakeholders	10
		1.3.8	Standardization	10
	1.4	Enabl	lers and Their Applications	11
			Smart Design	12
			Smart Machining	12
		1.4.3	Smart Monitoring	13
		1.4.4	Smart Control	13
		1.4.5	Smart Scheduling	14
	1.5	Asses	ssment of Smart Manufacturing Systems	14
	1.6	Chall	enges in Implementation of Smart	
		Manu	ıfacturing Systems	15
		1.6.1	Technological Issue	16
		1.6.2	Methodological Issue	16
	1.7	Impli	cations of the Study for Academicians	
		and P	Practitioners	17

vi Contents

	1.8	Conc	lusion	17
		Refer	ences	18
2	Sma	art Mai	nufacturing Technologies in Industry 4.0:	
			s and Opportunities	23
		•	Kumar, G. Arun Manohar, R. Surya Teja,	
		-	nana Rao, A. Mandal, Ajit Behera and P. Srinivasa Rao	
			eviations	24
	2.1	Intro	duction to Smart Manufacturing	24
			Background of SM	24
		2.1.2	Traditional Manufacturing versus	
			Smart Manufacturing	25
		2.1.3	Concept and Evolution of Industry 4.0	25
		2.1.4	Motivations for Research in Smart Manufacturing	28
		2.1.5	Objectives and Need of Industry 4.0	29
		2.1.6	Research Methodology	30
		2.1.7	Principles of I4.0	30
		2.1.8	Benefits/Advantages of Industry 4.0	31
	2.2	Techr	nology Pillars of Industry 4.0	31
		2.2.1	Automation in Industry 4.0	33
			2.2.1.1 Need of Automation	33
			2.2.1.2 Components of Automation	33
			2.2.1.3 Applications of Automation	34
		2.2.2	Robots in Industry 4.0	34
			2.2.2.1 Need of Robots	35
			2.2.2.2 Advantages of Robots	35
			2.2.2.3 Applications of Robots	37
			2.2.2.4 Advances Robotics	37
		2.2.3	0	38
			2.2.3.1 Additive Manufacturing's	
			Potential Applications	39
			Big Data Analytics	40
			Cloud Computing	41
		2.2.6	Cyber Security	43
			2.2.6.1 Cyber-Security Challenges in Industry 4.0	43
		2.2.7	Augmented Reality and Virtual Reality	44
		2.2.8	Simulation	46
			2.2.8.1 Need of Simulation in Smart	
			Manufacturing	46
			2.2.8.2 Advantages of Simulation	47
			2.2.8.3 Simulation and Digital Twin	47

		2.2.9	Digital Twins	47
			2.2.9.1 Integration of Horizontal and Vertical	
			Systems	48
		2.2.10	IoT and IIoT in Industry 4.0	48
			Artificial Intelligence in Industry 4.0	49
		2.2.12	Implications of the Study for Academicians	
			and Practitioners	51
	2.3	Summ	nary and Conclusions	51
		2.3.1	Benefits of Industry 4.0	51
			Challenges in Industry 4.0	52
		2.3.3	Future Directions	52
			owledgement	53
		Refere	ences	53
3	IoT	Based	Intelligent Manufacturing System: A Review	59
			Samanta, Pradip Kumar Talapatra, Kamal Golui	
		-	Chakraborty	
		Introd	,	60
	3.2	Literat	ture Review	60
	3.3	Resear	rch Procedure	64
			The Beginning and Advancement of SM/IM	64
		3.3.2	Beginning of SM/IM	64
		3.3.3	Defining SM/IM	65
		3.3.4	Potential of SM/IM	66
		3.3.5	Statistical Analysis of SM/IM	68
		3.3.6	Future Endeavour of SM/IM	68
		3.3.7	Necessary Components of IoT Framework	69
			Proposed System Based on IoT	71
			Development of IoT in Industry 4.0	72
	3.4		Manufacturing	73
			Re-Configurability Manufacturing System	73
			RMS Framework Based Upon IoT	75
			Machine Control	76
			Machine Intelligence	77
		3.4.5		78
			Wireless Technology	78
			IP Mobility	78
		3.4.8	Network Functionality Virtualization (NFV)	79
	3.5		mia Industry Collaboration	79
	3.6		usions	80
		Refere	ences	81

viii Contents

4			ng Technology in Smart Manufacturing Systems for						
	Effi	cient P	Production Process	85					
	Kali Charan Rath, Prasenjit Chatterjee,								
	Pankajkumar Munibara Patro, Polaiah Bojja, Amaresh Kumar								
	and Rashmi Prava Das								
		Abbro	eviations	86					
	4.1	Intro	duction and Literature Reviews	86					
		4.1.1	Motivation Behind the Study	88					
			Objective of the Chapter	89					
	4.2		ork in Smart Manufacturing System	89					
		4.2.1	Challenges for Smart Manufacturing Industries	90					
		4.2.2	Smart Manufacturing Current Market Scenario	93					
	4.3		Drives in Smart Manufacturing	93					
			Benefits of Data-Driven Manufacturing	94					
	4.4		afacturing of Product Through 3D Printing Process	97					
			3D Printing Technology	99					
			3D Printing Technologies Classification	100					
			3D Printer Parameters	101					
			Significance of Honeycomb Structure	102					
		4.4.5							
			Polymer Used for Honeycomb Structures Model	103					
		4.4.6	0 1	107					
	4.5		lusion	107					
		Refer	ences	109					
5	Sma	art Invo	entory Control: Proposed Framework						
-			f IoT, RFID, and Supply Chain Management	113					
			Samanta and Kamal Golui						
	5.1	-	duction	114					
	5.2	Objec	ctives	114					
		•	arch Methodology	114					
			ature Review	115					
	5.5	Com	ponents of SIM	116					
		5.5.1		116					
		5.5.2	Inventory Management System (IMS)	117					
		5.5.3		120					
		5.5.4		121					
		5.5.5	Maintenance, Repair, and Operations	123					
		5.5.6	Deep Reinforcement Learning	125					
	5.6	Fram	ework	127					
	5.7	Optir	nization	130					

		5.7.1	Inventory Optimization	130
	5.8	Result	s and Discussion	131
	5.9	A Mir	ror to Researchers and Managers	132
	5.10	Concl	usions	133
	5.11	Future	e Scope	133
		Refere	ences	134
6			n of Machine Learning in the Machining Processes:	
			spective Towards Industry 4.0	141
			ndra Behera, Bikash Ranjan Moharana,	
			ad Rout and Kishore Debnath	
		Introd		142
			ine Learning	143
			Factory	146
			gent Machining	148
			ine Learning Processes Used in Machining Process	150
	6.6		mance Improvement of Machine Structure	
		0	Machine Learning	152
	6.7	Concl		153
		Refere	nces	153
7	Inte	lligent	Machine Learning and Deep Learning Techniques	
		-	gs Fault Detection and Decision-Making Strategies	157
	•		T., Thutupalli Srinivasa Advaith,	
			Sarath Wesley, Grandhi Sri Sai Charith	
	and		lapudi Manohar	
			viations	158
		Introd		158
			ture Review	159
	7.3		odology	161
			Dataset Preparation	161
			CWRU Dataset	161
			Methodology Flow Chart	161
			Data Pre-Processing	162
			Models Deployed	163
		7.3.6	Training and Testing	163
	7.4	Analy	sis	164
		7.4.1	Datasets	164
		7.4.2	Feature Extraction	168
		7.4.3	1 0 1	168
		7.4.4	0	169
			7.4.4.1 Multinomial Logistic Regression	169

			7.4.4.2	K-Nearest Neighbors	170
			7.4.4.3	Decision Tree	172
			7.4.4.4	Support Vector Machine (SVM)	173
				Random Forest	175
	7.5	Resul	ts and Di	scussion	177
		7.5.1	Importa	nce of Classification Reports	177
		7.5.2	Importa	nce of Confusion Matrices	177
		7.5.3	Decision	n Tree	178
			Randon		180
				est Neighbors	182
				Regression	185
		7.5.7		Vector Machine	185
		7.5.8	-	rison of the Algorithms	188
				Accuracies	188
			7.5.8.2	Precision and Recall	188
	7.6		lusions		191
	7.7		e of Futur	e Work	191
		Refer	ences		192
8	Sma	art Visi	on-Based	l Sensing and Monitoring of Power Plants	
			n Environ		195
	<i>K</i> . <i>S</i>	Sujatha	, R. Krish	nakumar, N.P.G. Bhavani,	
	U. J	ayalats	sumi, V. S	rividhya, C. Kamatchi and R. Vani	
	8.1	Intro	duction		196
				nage Processing	197
		8.1.2	Motivat	ion	199
			Objectiv		199
	8.2		ture Revi		200
		8.2.1	Gas Tur	bine Power Plants	200
				l Intelligent Methods	201
	8.3	Mater	rials and 1	Methods	202
				Extraction	202
			Classific		203
	8.4		ts and Di		204
		8.4.1		Linear Discriminant Function (FLDA)	
			and Cur	velet	204
	8.5		lusion		219
					000
		8.5.1 Refer		Scope of Work	220 221

9	Implementation of FEM and Machine Learning Algorithms						
		•	and Manufacturing of Laminated				
	Composite Plate						
	Sidharth Patro, Trupti Ranjan Mahapatra, Romeo S. Fono Tamo, Allu Vikram Kishore Murty, Soumya Ranjan Parimanik						
	and l	Debadut	ta Mishra				
		Abbrev	riations	224			
	9.1	Introdu		224			
	9.2		ical Experimentation Program	227			
	9.3		sion of the Results	239			
	9.4	Conclu		244			
			wledgements	245			
		Referen	nces	245			
Pa	rt II	: Integ	ration of Digital Technologies				
		ration		249			
10	Edge	Compu	ting-Based Conditional Monitoring	251			
	Granville Embia, Aezeden Mohamed, Bikash Ranjan Moharana						
	and Kamalakanta Muduli						
	10.1	Introdu	iction	252			
		10.1.1	Problem Statement	252			
	10.2	Literatı	are Review	253			
	10.3	Edge C	omputing	257			
	10.4	Methoo		259			
	10.5	Discuss	sion	263			
		10.5.1	Predictive Maintenance	263			
			Energy Efficiency Management	264			
		10.5.3	Smart Manufacturing	265			
		10.5.4	0 0				
			Computing Locally	266			
		10.5.5	Lesson Learned	266			
	10.6	Conclu	sion	267			
		Referen	nces	267			
11			n Methodologies in Intelligent Manufacturing				
			lication and Challenges	271			
			manta, Pradip Kumar Talapatra,				
		<i>al Golui</i> Introdu	and Atiur Alam	272			
	11.1	introdu	ICHOIL	272			

	11.2	.2 Literature Review 2				
	11.3	Intellig	ent Manufacturing System Framework	275		
		11.3.1	Principles of Developing Industry 4.0 Solutions	277		
		11.3.2	Quantitative Analysis	279		
			11.3.2.1 Optimization Characteristics and			
			Requirements of Industry 4.0	279		
		11.3.3	Optimization Methodologies and Algorithms	281		
	11.4	Bayesia	ın Networks (BNs)	287		
		11.4.1	Instance-Based Learning (IBL)	288		
			The IB1 Algorithm	288		
		11.4.3	Artificial Neural Networks	289		
		11.4.4	1			
			Networks (RNN) and Convolutional			
			Neural Networks (CNN)	291		
	11.5		ns of Implementing Machine Learning			
			ufacturing	293		
	11.6	Conclu		293		
		Referer	nces	294		
12	Chall	enges of	f Warehouse Management Towards Smart			
	Manu	ıfacturiı	ng: A Case of an Indian Consumer Electrical			
	Manu Comj		ng: A Case of an Indian Consumer Electrical	297		
	Com	pany	ng: A Case of an Indian Consumer Electrical amanathan, Neeraj Vairagi, Sakti Parida,	297		
	Comp Natar	pany r <i>ajan Ra</i>		297		
	Comj Natar Susha	pany r <i>ajan Ra</i>	amanathan, Neeraj Vairagi, Sakti Parida, pathy, Ashok Kumar Sar, Kumar Mohanty	297		
	Comp Natar Susha and A	pany rajan Ra inta Tri <u>f</u>	amanathan, Neeraj Vairagi, Sakti Parida, bathy, Ashok Kumar Sar, Kumar Mohanty akra	297 298		
	Comp Natar Susha and A	pany rajan Ra Inta Trij Alisha La Introdu	amanathan, Neeraj Vairagi, Sakti Parida, bathy, Ashok Kumar Sar, Kumar Mohanty akra			
	Comp Natar Susha and A 12.1	pany rajan Ra Inta Trij Alisha La Introdu	amanathan, Neeraj Vairagi, Sakti Parida, bathy, Ashok Kumar Sar, Kumar Mohanty akra action are Review	298		
	Comp Natar Susha and A 12.1	pany rajan Ra unta Trij Misha La Introdu Literatu	amanathan, Neeraj Vairagi, Sakti Parida, pathy, Ashok Kumar Sar, Kumar Mohanty akra action are Review Shortage of Space	298 300		
	Comp Natar Susha and A 12.1	pany rajan Ra anta Trip Alisha La Introdu Literatu 12.2.1	amanathan, Neeraj Vairagi, Sakti Parida, pathy, Ashok Kumar Sar, Kumar Mohanty akra action are Review Shortage of Space	298 300 301 301 302		
	Comp Natar Susha and A 12.1	pany rajan Ra anta Trip Alisha La Introdu Literatu 12.2.1 12.2.2	amanathan, Neeraj Vairagi, Sakti Parida, pathy, Ashok Kumar Sar, Kumar Mohanty akra action are Review Shortage of Space Non-Moving Materials	298 300 301 301		
	Comp Natar Susha and A 12.1	pany rajan Ra anta Trip Misha La Introdu Literatu 12.2.1 12.2.2 12.2.3	amanathan, Neeraj Vairagi, Sakti Parida, bathy, Ashok Kumar Sar, Kumar Mohanty akra action are Review Shortage of Space Non-Moving Materials Lack of Action on Liquidation	298 300 301 301 302 302 302		
	Comp Natar Susha and A 12.1	pany rajan Ra inta Trip Misha La Introdu Literatu 12.2.1 12.2.2 12.2.3 12.2.4	amanathan, Neeraj Vairagi, Sakti Parida, bathy, Ashok Kumar Sar, Kumar Mohanty akra action are Review Shortage of Space Non-Moving Materials Lack of Action on Liquidation Defective Material from Both Ends Gap Between the Demand and the Supply Multiple Price Revision	298 300 301 302 302 302 302		
	Comp Natar Susha and A 12.1	pany rajan Ra inta Trip Alisha La Introdu Literatu 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5 12.2.6 12.2.7	amanathan, Neeraj Vairagi, Sakti Parida, bathy, Ashok Kumar Sar, Kumar Mohanty akra action are Review Shortage of Space Non-Moving Materials Lack of Action on Liquidation Defective Material from Both Ends Gap Between the Demand and the Supply Multiple Price Revision More Manual Timing for Loading and Unloading	298 300 301 302 302 302 303 303		
	Comp Natar Susha and A 12.1	pany rajan Ra inta Trip Alisha La Introdu Literatu 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5 12.2.6	amanathan, Neeraj Vairagi, Sakti Parida, bathy, Ashok Kumar Sar, Kumar Mohanty akra action are Review Shortage of Space Non-Moving Materials Lack of Action on Liquidation Defective Material from Both Ends Gap Between the Demand and the Supply Multiple Price Revision More Manual Timing for Loading and Unloading Operational Challenges for Seasonal Products	298 300 301 302 302 302 302		
	Comp Natar Susha and A 12.1	pany rajan Ra inta Trip Lisha La Introdu Literatu 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5 12.2.6 12.2.7 12.2.8 12.2.9	amanathan, Neeraj Vairagi, Sakti Parida, bathy, Ashok Kumar Sar, Kumar Mohanty akra action are Review Shortage of Space Non-Moving Materials Lack of Action on Liquidation Defective Material from Both Ends Gap Between the Demand and the Supply Multiple Price Revision More Manual Timing for Loading and Unloading Operational Challenges for Seasonal Products Lack of Automation	298 300 301 302 302 302 303 303 303 303		
	Comj Natar Susha and A 12.1 12.2	pany rajan Ra inta Trip Alisha La Introdu Literatu 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5 12.2.6 12.2.7 12.2.8 12.2.9 12.2.10	amanathan, Neeraj Vairagi, Sakti Parida, bathy, Ashok Kumar Sar, Kumar Mohanty akra action ure Review Shortage of Space Non-Moving Materials Lack of Action on Liquidation Defective Material from Both Ends Gap Between the Demand and the Supply Multiple Price Revision More Manual Timing for Loading and Unloading Operational Challenges for Seasonal Products Lack of Automation Manpower Balancing Between Peak and Off	298 300 301 302 302 302 303 303 303 303 303		
	Comp Natar Susha and A 12.1	pany rajan Ra inta Trip Lisha La Introdu Literatu 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5 12.2.6 12.2.7 12.2.8 12.2.9 12.2.10 The Pro	amanathan, Neeraj Vairagi, Sakti Parida, bathy, Ashok Kumar Sar, Kumar Mohanty akra action are Review Shortage of Space Non-Moving Materials Lack of Action on Liquidation Defective Material from Both Ends Gap Between the Demand and the Supply Multiple Price Revision More Manual Timing for Loading and Unloading Operational Challenges for Seasonal Products Lack of Automation Manpower Balancing Between Peak and Off oposed ISM Methodology	298 300 301 302 302 302 303 303 303 303		
	Comj Natar Susha and A 12.1 12.2	pany rajan Ra inta Trip Alisha La Introdu Literatu 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5 12.2.6 12.2.7 12.2.8 12.2.9 12.2.10	amanathan, Neeraj Vairagi, Sakti Parida, bathy, Ashok Kumar Sar, Kumar Mohanty akra action are Review Shortage of Space Non-Moving Materials Lack of Action on Liquidation Defective Material from Both Ends Gap Between the Demand and the Supply Multiple Price Revision More Manual Timing for Loading and Unloading Operational Challenges for Seasonal Products Lack of Automation Manpower Balancing Between Peak and Off oposed ISM Methodology Establishment of the Structural Self-Interaction	298 300 301 302 302 302 303 303 303 303 304 304		
	Comj Natar Susha and A 12.1 12.2	pany rajan Ra inta Trip Lisha La Introdu Literatu 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5 12.2.6 12.2.7 12.2.8 12.2.9 12.2.10 The Pro	amanathan, Neeraj Vairagi, Sakti Parida, bathy, Ashok Kumar Sar, Kumar Mohanty akra action are Review Shortage of Space Non-Moving Materials Lack of Action on Liquidation Defective Material from Both Ends Gap Between the Demand and the Supply Multiple Price Revision More Manual Timing for Loading and Unloading Operational Challenges for Seasonal Products Lack of Automation Manpower Balancing Between Peak and Off oposed ISM Methodology	298 300 301 302 302 302 303 303 303 303 303		

		12.3.3 Implementation of the Level Partitions	308
		12.3.4 Classification of the Selected Challenges	309
		12.3.5 Development of the Final ISM Model	310
	12.4	-	311
	12.5	Practical Implications	312
	12.6	Conclusions	313
		References	314
13	The I	mpact of Organizational Ergonomics on Teaching	
	Rapio	d Prototyping	319
	Yaon	e Rapitsenyane, Patience Erick, Oanthata Jester Sealetsa	
	and F	Richie Moalosi	
		Abbreviations	320
	13.1	Introduction	320
	13.2	Organizational Ergonomics	322
		13.2.1 Aim of Organizational Ergonomics	323
	13.3	Rapid Prototyping and Teaching Rapid Prototyping	323
	13.4	Industry 4.0 Factors Associated with Organizational	
		Ergonomics in a Rapid Prototyping/Manufacturing Facility	325
		13.4.1 Technology	326
		13.4.2 Communication	327
		13.4.3 Teamwork	328
		13.4.4 Human Resource	328
		13.4.5 Quality Management	329
	13.5	Implications of Industry 4.0 on Prototyping	
		and Prototyping Facilities in Design Schools	329
	13.6	The Influence of Cooperative Working Ergonomics	
		of Distributed Manufacturing in Teaching and Learning	
		Rapid Prototyping	332
	13.7	Health and Safety in Rapid Prototyping Laboratories	333
		13.7.1 Common Health Hazards in 3D Printing	333
		13.7.2 Chemical Hazards	335
		13.7.3 Flammable/Explosion Hazards	336
		13.7.4 UV and Laser Radiation Hazard	336
		13.7.5 Other Hazards	336
		13.7.6 Hazard Controls	337
		13.7.7 Engineering Controls	337
		13.7.8 Administrative Controls	338
		13.7.9 Personal Protective Equipment	338
	13.8	Impact of Digital/Rapid Prototyping on Organizational	
		Ergonomics	339

xiv Contents

	13.9	Implica	tions of th	e Study for Academicians	
		and Pra	actitioners		340
	13.10	Conclu	sions and	Future Work	341
		Referer	nces		343
14	Susta	inable N	Ianufactu	ring Practices through Additive	
	Manu	ıfacturiı	ng: A Case	e Study on a Can-Making Manufacturer	349
	Kiren	Piso, A	ezeden Ma	hamed, Bikash Ranjan Moharana,	
	Kama	ılakanta	Muduli a	nd Noorhafiza Muhammad	
	14.1	Introdu	iction	-	350
	14.2	Literatu	ire Review	7	352
	14.3	Researc	ch Set Up		354
	14.4	Additiv	e Manufa	cturing Techniques	356
		14.4.1	Types of	Additive Manufacturing	356
			14.4.1.1	Fused Deposition Modelling (FDM)	356
			14.4.1.2	Stereolithography (SLA)	356
			14.4.1.3	Selective Laser Sintering (SLS)	357
			14.4.1.4	Direct Energy Deposition (DED)	357
			14.4.1.5	Digital Light Processing (DLP)	358
	14.5	Strategi	ies Used by	y Production Company	358
		14.5.1	Maintena	ance Strategies	358
			14.5.1.1	Breakdown Maintenance (BM)	358
			14.5.1.2	Preventive Maintenance (PM)	358
			14.5.1.3	Periodic Maintenance (Time Based	
				Maintenance – TBM)	359
			14.5.1.4	Predictive Maintenance (PM)	359
			14.5.1.5	Corrective Maintenance (CM)	359
			14.5.1.6	Maintenance Prevention (PM)	359
		14.5.2	Inventor	y Control in Manufacturing	359
			14.5.2.1	Inventory Control and Maintenance	
				in Manufacturing	360
			14.5.2.2	Warehouse Storages	360
		14.5.3	Time Fac	ctor in Manufacturing	361
			14.5.3.1	Breakdown Time	361
			14.5.3.2	Set-Up Time	361
			14.5.3.3	Manned Time (Available Time)	361
			14.5.3.4	Operating Working Time	361
			14.5.3.5	Operating Time	362
			14.5.3.6	Production Time	362
	14.6		able Manu	0	362
		14.6.1	Social As	pect of Sustainable Manufacturing	363

Index			377
	Referen	nces	373
14.1	1 Conclu	isions and Recommendations	373
14.1	0 Limitat	tions of Additive Manufacturing	372
	Toward	ls Sustainability	370
14.9	O Contril	bution of Additive Manufacturing	
14.8	8 Additiv	ve Manufacturing with IFC CMD: A Case Study	369
	14.7.4	Maintenance with Additive Manufacturing	368
	14.7.3	Supply Chain	368
		14.7.2.1 Downtime Cost	366
	14.7.2	Cost	366
	14.7.1	Energy	365
14.7	' Sustain	able Additive Manufacturing	365
	14.6.3	Economical Aspect of Sustainable Manufacturing	364
		Manufacturing	364
	14.6.2	Environmental Aspects of Sustainable	

Preface

Since the world is no longer reliant on analogue technology, the new standard, which is digital, is centered on the management of data, which has become the equivalent of industrial gold in this century. The examination of this data has a great many applications in the business world, ranging from retail enterprises to medical applications and supply chain management, amongst other areas, and can be used to forecast various aspects of consumer behavior such as product utilization and consumer requirements. With the current improvement in IoT applications, the utilization of data has progressed beyond these fundamental economic applications at this point. Because of this digitization, information is now being shared on a massive scale, to the point where there is now an intelligent information system that connects industry, machines, and even end-users across a wide range of devices, which, when structured, models the physical world.

The collection of a wide variety of datasets, collectively referred to as "big data," is now much simpler thanks to the widespread use of internet-based technology. In most cases, this data is obtained via social media, shopping data, and the purchasing habits of consumers, among other sources. Understanding behaviors and conducting predictive analysis could both benefit from this information. Using artificial intelligence (AI), large amounts of data may be easily interpreted for the sake of strategic planning. The majority of the machinery and tools used in manufacturing industries come equipped with sensors and make use of the internet for the purposes of monitoring as well as data transfer. Artificial intelligence, with its growing capacity for machine learning, could be combined with these features to drive the manufacturing industry. This could be put to use for a broad variety of economic purposes, including the management of maintenance based on data analysis, the making of decisions, the planning of efficiency improvements, remote management, automation of industrial lines, and data visualization, to mention a few. Because of this, it is clear that even though IoT collects a lot of data from equipment, sensors, and other sources, the large amount of data creates an analytical bottleneck that

could be solved by using AI to quickly evaluate and understand the data in real time.

The concepts that pertain to the application of digital evolutionary technologies in the sphere of industrial engineering and manufacturing are presented in this book. A few chapters of the book demonstrate these concepts with stepwise discussion, case studies, structured literature review, rigorous experimentation results, and applications. A few chapters also attempt to address the challenges encountered by industries in integrating these digital technologies into their operational activities as well as the opportunities for this integration.

The ideas and concepts addressed in this book will be useful to professionals, researchers, academics, and undergraduate and graduate students in non-circuit fields, particularly those majoring in mechanical engineering, industrial engineering, and business studies. So, this book offers practicing engineers, stakeholders, and academics a better way to move toward Industry 4.0.

> **The Editors** February 2023

Part I SMART TECHNOLOGIES IN MANUFACTURING

Smart Manufacturing Systems for Industry 4.0

Gaijinliu Gangmei^{1*} and Polash Pratim Dutta²

¹Center for Interdisciplinary Programs, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana, India ²Department of Mechanical Engineering, Tezpur University, Napaam, Sonitpur, Assam, India

Abstract

Manufacturing industries have evolved from using of steam power for mechanization to using of electricity in the past two industrial revolutions. The third industrial revolution was brought about with the application of information technology in manufacturing. Now, it has reached the fourth industrial revolution or Industry 4.0 which is built on inter-connectivity. Smart manufacturing systems play an integral role in moving towards Industry 4.0. The aim of this chapter is to discuss the technologies which supports and contributes to smart manufacturing and to understand its characteristics. Because of the benefits of smart manufacturing, it has attracted various professionals to apply smart manufacturing in their own fields. In this chapter, the applications of smart manufacturing are presented especially in industrial and mechanical engineering. The challenges faced by the industry while implementing smart manufacturing systems has also been mentioned.

Keywords: Industry 4.0, additive manufacturing, smart manufacturing system, big data analytics, machine learning, CPS, IoT, cloud manufacturing

Abbreviations

CPS	Cyber-Physical System
DT	Digital Twin

*Corresponding author: gaijinliugangmei@gmail.com

Kamalakanta Muduli, V. P. Kommula, Devendra K. Yadav, M. Chithirai Pon Selvan, and Jayakrishna Kandasamy (eds.) Intelligent Manufacturing Management Systems: Operational Applications of Evolutionary Digital Technologies in Mechanical and Industrial Engineering, (3–22) © 2023 Scrivener Publishing LLC

AI	Artificial Intelligence
NIST	National Institute of Standards and Technology
АМ	Additive Manufacturing
CAD	Computer Aided Design
ANN	Artificial Neural Network
IoT	Internet of Things
CNC	Computer Numerical Control
PdM	Predictive Maintenance
AMCoT	Advanced Manufacturing Cloud of Things
RFID	Radio Frequency Identification
GPS	Global Positioning System
GIS	Geographic Information Systems
VR	Virtual Reality
AR	Augmented Reality
SMTS	Smart Machine Tool System
DQN	Deep Q Network
SMKL	Smart Manufacturing Kaizen Level
FAHP	Fuzzy Analytic Hierarchy Process
SMMEs	Small, Medium and Micro-Enterprise

4 INTELLIGENT MANUFACTURING MANAGEMENT SYSTEMS

1.1 Introduction

Smart manufacturing systems aid in transforming traditional industry into an intelligent and interconnected manufacturing system through technologies like Cyber-Physical Systems (CPS), Digital Twin (DT), Artificial Intelligence (AI), etc. Due to its network, it enables a shift from centralized to decentralized manufacturing units [1]. Manufacturing technology is merged with information technology via an interface so as to connect the local intelligence with the system intelligence [2]. Smart Manufacturing is mostly about the methods of improving processes and decisions within industrial manufacturing environments [3].

The National Institute of Standards and Technology (NIST) defines smart manufacturing as "fully-integrated, collaborative manufacturing systems that respond in real time to meet changing demands and conditions in the factory, in the supply network, and in customer needs". Smart manufacturing systems are implemented with the objectives of providing autonomous lean operation and co-development of multi-stakeholder and smart manufacturing systems enterprise by sharing of knowledge and information [4]. Moreover, it should have the characteristics of self-learning, self-optimizing, and adaptability to the change in manufacturing environment [5].

The study on smart manufacturing systems for Industry 4.0 has been carried out to help the readers specially beginners, in understanding the concepts as well as the broad structure of Industry 4.0. It will aid the researchers to advance the work or to implement Industry 4.0 in the manufacturing system. Given the diverse nature of smart manufacturing, existing scientific literature does not provide a clear understanding of this topic as most researchers either work on a specific domain or on a particular enabling technology. Therefore, this study aims at filling this gap by covering the broad scope of smart manufacturing.

This chapter will brief the eight pillars of smart manufacturing which are sustainability, data, manufacturing technology and processes, materials, predictive engineering, resource sharing and networking, stakeholders and standardization [2]. Various cutting-edge technologies and solutions has been developed under each pillar which supports and contributes to smart manufacturing. For simplicity, such enablers will be grouped under five categories i.e., smart machining, smart control, smart design, smart monitoring, and smart scheduling [6]. The enablers will be discussed in detail along with their applications in Industrial and Mechanical Engineering. Assessment of smart manufacturing system as well as the challenges faced by the industry while implementing smart manufacturing systems has also been discussed.

Smart manufacturing is not only about the technologies that are associated with it but it's about how the data are collected, captured, analyzed and communicated so as to make the best decisions in real-time. Because of the benefits of smart manufacturing like energy efficiency, greater productivity and its ability to tackle the competitiveness of the industry, it is applied in the fields of aviation, manufacturing, healthcare, building management, automotive industry, etc. The chapter will finally end with the implications of the study for academicians and practitioners, followed by concluding remarks and contribution of this chapter.

1.2 Research Methodology

The main purpose of this study is to provide a basic knowledge of smart manufacturing system in context of Industry 4.0. In order to obtain that, a systematic mapping process [7] was applied in this study. This research methodology was chosen as it provides a broad overview of the research area.

6 INTELLIGENT MANUFACTURING MANAGEMENT SYSTEMS

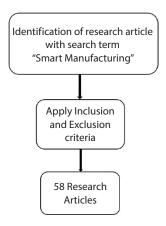


Figure 1.1 A schematic representation of the research methodology.

The schematic representation of the research methodology used in this study is shown in Figure 1.1. The first step was to identify the search term required for finding the research articles. The research papers were chosen from three leading digital databases; Science Direct, Google Scholar and IEEE Xplore. A total of 77 articles were identified from the four databases. It was followed by processing of papers using a set of inclusion and exclusion criteria. To be included in the study, the search terms should be present in the articles and it should be from an academic source. While the exclusion criteria involve removing duplication from those papers which met the inclusion criteria as well as omitting those papers that does not align with the topic of the study. As a result, 58 papers were found to be relevant for this study.

1.3 Pillars of Smart Manufacturing

The nature of smart manufacturing can be expressed across eight pillars [2]. Each pillar is described in the following section.

1.3.1 Manufacturing Technology and Processes

A manufacturing unit with intelligent control technology is reliable as it gives accurate products and can quickly respond to changes namely, market changes, fluctuations in load, and uncertain conditions, etc. [8]. Smart manufacturing technology like additive manufacturing (AM) enables the fabrication of complex component directly from its Computer Aided Design (CAD) models. Because it is a material addition process, parts can be manufactured using exotic materials. Traditional manufacturing has its own advantages which cannot be overlooked. As a result, hybrid of additive and traditional processes will produce a quality product as it will exploit the benefits of both the processes. Manufacturing equipment can be made smarter with an addition of sensor and robots along with integration of several operations.

Manufacturing of precision components from sheet metal coil requires levelling before performing metal forming/cutting process so as to remove the residual stress which was left from the coil. Expert machine technicians choose the machine parameters based on their experiences. So, Tsai *et al.* [9] digitize the knowledge of expert technicians on coil leveling system through deep learning method, originated from Artificial Neural Network (ANN). ANN is an information processing paradigm where knowledge is acquired through a learning process similar to the way the brain process information [10].

Due to the availability of numerous smart manufacturing solutions, Martin *et al.* [11] developed a methodology based on value stream mapping method. It supports the production planner to choose the best solution for a given manufacturing system.

1.3.2 Materials

Smart manufacturing utilizes all sort of materials which includes smart materials, organic-based materials, and biomaterials. This enables the engineers to take advantage of their unique properties in creating a component. Smart materials use sensors to detect unwanted changes in environment and operations, while the required corrective actions are carried out by actuators [12]. The sensors used for smart manufacturing systems (CPS, Internet of things (IoT), robot-human interactions) are multi-material sensors as single material sensors are not enough for such applications [13].

Smart manufacturing is not directly involved in the development of novel materials but it led to exploration of new materials as almost all materials could be fabricated. Although there are some materials which require novel processes to be developed for its fabrication. Making use of recycled materials as raw materials will reduce the amount of products which are discarded at the landfills after their end of life.

1.3.3 Data

Data plays a major role in smart manufacturing. It could be considered as the building block of smart manufacturing system. Data are of various kinds such as vibration data, visual data, auditory data, etc. It is collected from diverse sources like sensors, wireless technology, analytics, and so on. The data are being collected for various purposes such as, productivity analysis, building predictive models, preserving and extraction of information related to manufacturing, etc. This ultimately results in tremendous amount of data production. Such large sets of data including real-time data could be analyzed using a technology called big data analytics [8].

The data can also be analyzed using data visualization technique where data are represented by means of graphs or other visual representations. After converting the data into useful knowledge, it could be used to develop decision, predictive and diagnostic models. Moreover, the study of realworld system could be simplified by analyzing the data generated from the simulation of a model.

1.3.4 Sustainability

Sustainability in manufacturing is essential in safeguarding the environment as well as in increasing the resource efficiency. Sustainability is not only about what product is manufactured but it should also include re-manufacturing, product usage impacts, surface restoration, supply chain energy costs, and waste disposal [14].

Sustainability efforts include sustainable product design, using environment friendly materials or biodegradable or recycled materials as raw materials, development of manufacturing processes which consume less energy and release fewer pollutants. As a matter of fact, AM is a sustainable manufacturing process as it generates less scrap and it could perform surface as well as geometry restoration. To reduce energy consumption in Computer Numerical Control (CNC) shop floor for stamping dies, an identical parallel machine scheduling problem was studied by Wang *et al.* [15] and developed an efficient method. Blömeke *et al.* [16] identified smart manufacturing technologies and solutions such as, smart bin, automated transport system, pick by vision, and cobots to support companies in carrying out recycling and remanufacturing operations. In a system which involves human-robot collaboration, protective measures could be given to the human component by connecting it with adaptor technologies for tracking safety distance or human position [17].

1.3.5 Resource Sharing and Networking

Resource sharing and networking is one of the capabilities of smart manufacturing systems that set it apart from other manufacturing system. Exchange and sharing of information between the system units enables interoperability within the system [8]. Storing data digitally for instance, in cloud, which behaves like a database, allows sharing of resources across businesses in an instant. In a manufacturing network, computational and physical resource efficiency can be increased using an intelligent cloud manufacturing platform [18]. Adoption of IoT enables smart manufacturing to carry out collaborative modelling, lease manufacturing equipment, share software and expertise, etc.

Transportation in manufacturing, though a non-value-adding activity, is an essential part of manufacturing. Autonomy in material handling, supply and distribution network can be increased with developments in robotics and autonomous vehicles. Whereas sharing of resources digitally will reduce the overall transportation cost.

1.3.6 Predictive Engineering

Predictive engineering provides manufacturing solutions by enabling machines and systems or material handling and transportation vehicles to make their own decisions. This is made possible due to the adoption of smart sensor networks, smart machines and smart vehicles. It utilizes advanced prediction tools for processing the data into information that gives an insight into future performance of the equipment. This will reduce the impact of uncertainties on the quality of manufactured products and services as solutions can be implemented to prevent performance loss [19].

A manufacturing system which responds and recovers autonomously to disturbances in real-time could manage to lower the downtime of the system. But Predictive maintenance (PdM) could be a better process as it involves correcting future critical conditions which are predicted using both current and past machinery data [20]. Implementing PdM reduces the cost associated with defective products and downtime. For PdM, a multiple classifier machine learning methodology was applied on a semiconductor manufacturing Ion-Implanter by Susto *et al.* [21] for related maintenance related task. It resulted in reduction of operating cost and better performance. A case study was carried out by Lin *et al.* [22] in a semiconductor company in Taiwan, where a smart manufacturing platform-AMCoT (Advanced Manufacturing Cloud of Things) was applied to a bumping process. It has the capabilities to conduct total inspection, detect the root cause of yield loss, store and handle production data, and provide predictive maintenance on the equipment.

1.3.7 Stakeholders

Smart manufacturing stakeholders consists of manufacturers (managers, employees), suppliers (system integrators, material, software, energy and hardware suppliers), communities (local and government communities), and customers. With an advancement in technology like AI, cloud computing and big data, stakeholders' requirement could be predicted and fulfilled [23]. In smart manufacturing system, co-development of enterprise and its multi-stakeholder is a must [4]. Smart manufacturing system will evolve depending on the optimization of stakeholders' value.

Intelligent tracking technologies like Radio Frequency Identification (RFID), Global Positioning Systems (GPS), wireless telecommunications, and Geographic Information Systems (GIS) improves customer services. Using such technology in supply chain provides accurate information and a visual experience to the related stakeholders. Moreover, stakeholders are involved in the creation of sustainable products and services. Due to the manufacturing system moving towards automation, reduction in jobs for low-skilled laborers will indeed take place. Conversely, demand for employees with competencies in software development and IT technologies will rise due to the increasing use of analytics, software, and connectivity [24].

1.3.8 Standardization

Standards are fundamental for the implementation and development of smart manufacturing system. Availability of standards eliminate the loss cause by repetition of research. In addition to that, developing common standards is useful to form or to operate smart manufacturing supply networks. Around 30 standards related to smart manufacturing systems have been published [25]. Standards come in varieties so as to enable the various capabilities of smart manufacturing system [26]. The standard of smart manufacturing system includes [27]:

- 1. Smart design standards which deal with design activities and data management.
- 2. Smart production standards focused on the working processes.
- 3. Business operation and management standards focused on management activities for design and production.