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Preface

This book provides basic concepts and recent advances of fluid flow and transport in unconven-
tional reservoirs across different scales (from pore to core and to reservoir) for a broad range of
audiences from various scientific disciplines, such as geology, geoscience, geochemistry, geophys-
ics, rock mechanics, and petroleum engineering. In the Introduction chapter, we address recent
progress and ongoing challenges related to hydrocarbon exploration and production in tight and
ultra-tight formations. The first part of the book on pore-scale characterizations consists of three
chapters. In the second chapter, Wang and his coworkers present an overview of recent progress
on pore-scale simulations and digital rock physics to unconventional reservoir rocks. They
emphasize that further small-scale experiments are still required to validate numerical models.
In Chapter 3, Wu and Tahmasebi review digital rock models. They discuss that incorporating
multiresolution and multiscale structures and generating large-scale digital models are still very
challenging. In Chapter 4, Ghanbarian and Esmaeilpour address the effect of scale on permea-
bility and formation factor. They present a simple scaling law and show reasonable agreement
between theoretical estimations and pore-network simulations. Part II of the book on core-scale
heterogeneity includes seven chapters. In Chapter 5, Ghanbarian et al. study theoretical modeling
of single-phase and gas relative permeabilities in shales and tight porous rocks. They apply con-
cepts of the effective-medium approximation and demonstrate that by including the physics of
gas flow, one can estimate permeability reasonably well at the core scale. Chapter 6 by Chen
and his coworkers addresses applications of nuclear magnetic resonance and its recent advances
to determine total porosity and partial porosity in organic matter of unconventional reservoir
rocks. In Chapter 7, recent progress on tight rock permeability measurement is addressed by
Liu, Zhang, and Boudjatit. They present two newly developed laboratory methods and evaluate
them using laboratory measurements. Chapter 8 by Bhandari et al. presents permeability
evolution under cycling confining stress conditions. They demonstrate that micro-fractures
might be closed due to confining stress leading to permeability reduction under cyclic loading.
In Chapter 9, Gao and Hu provide insights into shale wettability using spontaneous imbibition
experiments. Their results demonstrate the co-existence of water and oil in the pore network of
shales proving their mixed-wet characteristics. In Chapter 10, Schwartz and Elsworth study per-
meability enhancement in shales induced by desorption. Those authors argue that the magnitude
of permeability enhancement depends on the distribution of sorptive mineral components, geom-
etry of flow path, and initial permeability. Chapter 11 by Liang, Liu, and Zhang provides insights
that help improve oil and gas production in unconventional reservoirs. More specifically, their
experimental evidence shows that aqueous-based fracturing fluid may have positive impacts
on gas production from organic-rich carbonate source rocks. The last part of the book focuses
on large-scale petrophysics of unconventional reservoirs, which has broad applications to field.

xxi



In Chapter 12, Ghanbarian proposes percolation-based effective-medium theory to model effec-
tive permeability in matrix-fracture systems. By comparing with numerical simulations, he shows
that effective permeability can be accurately estimated at different fracture densities. In Chapter
13, Xie et al. apply embedded discrete fracture model to simulate fluid flow in complex fracture
networks. They address the effect of natural fracture properties, such as fracture azimuth, length,
and dip angle. Chapter 14 by Liu and his coauthors presents a closed-form relationship for pro-
duction rate. By comparing with numerical simulations, Liu et al. validate their proposed model
for different initial reservoir pressures, pressure drawdowns, and pressure sensitivity factors for
permeability. In the last chapter, Mesdour et al. discuss sweet spots and their identification in
shale reservoirs. They provide a state-of-art review of existing methods developed for sweet spot
identification and address relevant challenges and knowledge gaps.
Many colleagues and students contributed to our understanding of fluid flow and transport in

unconventional reservoirs.We are grateful to those who helped us with this book.We also acknowl-
edge those who contributed to this book by writing different chapters on several topics. We hope
this book helps geologists and petroleum engineers in industry as well as faculty and students in
academia.

Behzad Ghanbarian
Feng Liang
Hui-Hai Liu
January 2023
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Unconventional Reservoirs

Advances and Challenges

Behzad Ghanbarian1, Feng Liang2, and Hui-Hai Liu2

1 Porous Media Research Lab, Department of Geology, Kansas State University, Manhattan, KS, USA
2 Aramco Americas: Aramco Research Center—Houston, Houston, TX, USA

1.1 Background

Energy is one of the most important components in the world. Primary sources of energy take
various forms, such as fossil energy, nuclear energy, and renewable energy sources. Fossil energy
resources (e.g. coal, oil, and natural gas) were formed when plants and animals died and were
buried underground. The quality of hydrocarbon accordingly depends on organic content as well
as temperature and pressure conditions. Although there are limited reserves of fossil energy
resources and despite recent advances in renewable energy, global economy still depends on fossil
fuels to a great extent (Figure 1.1). Statistics reported by the British Petroleum (BP) company based
on data from 1994 to 2019 show that the world primary energy consumption growth in 2019 slowed
to 1.3%. This is less than half the growth rate i.e. 2.8% in 2018. Three-quarters of the energy
consumption increase was driven by natural gas and renewable resources in 2019.
Based on analyses reported by the BP company, oil has contributed to the share of global primary

energy more than others since 1994 (Figure 1.2) with 33.1% contribution in 2019. After oil, coal and
natural gas are the second and third largest contributors. Although coal lost its share to account for
nearly 27%, the contribution of natural gas increased to 24% in 2019. The share of renewable
resources rose to record highs of 5% in 2019, and they overtook nuclear energy with about 4% con-
tribution. Figure 1.2 shows the share of hydroelectricity has been nearly constant and about 6%.
Unconventional reservoirs, including oil and gas shales and tight sandstones, are distributed

around the world (Figure 1.3) with an estimated endowment of several thousand trillion cubic feet
(Kim et al. 2000). Since shale reservoirs have been successfully explored and produced in the United
States (Figure 1.3), they recently became one of the major contributors to energy supplies.
There exist three general types of unconventional reservoirs, i.e. (i) organic-rich source rocks,

(ii) tight oil reservoirs, and (iii) hybrid plays in which production occurs from source rocks and
conventional reservoirs (Zoback and Kohli 2019). These types of unconventional reservoirs are
different in geologic formations and, therefore, should be optimally exploited using different
and appropriate approaches.
Despite numerous practical applications in oil/gas exploration and production as well as recent

progress, we are still far from fully understanding all mechanisms of flow and transport in shales
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and tight sandstones across scales, particularly from pore to reservoir. In the following, we briefly
address recent advances in unconventional reservoirs and discuss current challenges in oil and gas
exploration and production.

1.2 Advances

Since 2005, the beginning of shale gas revolution in the United States, unconventional oil and gas
resources as well as their developments and productions have received a remarkable amount of
attention around the world (Zoback and Kohli 2019). Despite various challenges that still exist,
the petroleum engineering community made tremendous progress, particularly in the past decade.
In what follows, we briefly address several notable achievements. For further details and compre-
hensive recent advances, see e.g. Barati and Alhubail (2020), Rezaee (2021), andMoghanloo (2022).

1.2.1 Wettability

Characterizing the contact angle of fluids (e.g. water, oil, and gas) and its spatial variability within
unconventional reservoirs and under in situ conditions are essential not only to understand the trap-
ping phenomenon and enhance oil and gas recovery but also to improve greenhouse gas (e.g. carbon
dioxide and hydrogen) sequestration underground. In the literature, variousmethods, such as contact
angle measurements (Iglauer et al. 2015; Roshan et al. 2016), spontaneous imbibition (Liu et al. 2019;
Siddiqui et al. 2019), and nuclear magnetic resonance (Odusina et al. 2011; Su et al. 2018) were pro-
posed to determinewettability in unconventional reservoir rocks. Recently, Arif et al. (2021) collected

Figure 1.1 World total energy consumption between 1994 and 2019. Source: BP Statistical Review
of World Energy (2020)/BP International Limited.

4 1 Unconventional Reservoirs



published data on shale contact angle measurements and developed a repository. They concluded
that the oil-brine mixture in shales behaved in terms of wettability over a wide range from water-
wet to strongly oil-wet. Although the CO2-brine mixture typically showed weakly water-wet to
CO2-wet behavior, the CH4-brinemixture in shales wasweaklywater-wet. Arif et al. (2021) also inves-
tigated what causes high variabilities in shale wettability and found that the main factors were pres-
sure, temperature, thermal maturity, total organic content, and mineralogy of shales.
Although our knowledge of shale wettability has improved, further investigations are still needed

to study the solid–fluid and fluid–fluid contact angles under realistic reservoir conditions more
comprehensively. This would help enhance oil and gas recovery and exploit unconventional reser-
voirs even more successfully.

1.2.2 Permeability

Liquid and gas transports in shales and tight porous rocks were widely studied, particularly at the
pore and core levels. The literature on gas permeability and its modeling is indeed vast and exten-
sive (Javadpour et al. 2021; Liu 2017; Tahmasebi et al. 2020; Zhang et al. 2019). Numerous models

Figure 1.2 Shares of global primary energy between 1994 and 2019 (BP Statistical Review of World
Energy 2020/BP International Limited).
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were developed to address gas flow in nanostructures of shales by taking the effect of different trans-
port mechanisms, such as slip flow, Knudsen diffusion, surface diffusion, and sorption into
account. For example, Beskok and Karniadakis (1999) incorporated the effect of slip flow and mod-
ified the Poiseuille equation to describe gas flow in a cylindrical tube. Civan (2010) later applied the
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Figure 1.3 World shale gas resources (top) and shale gas and oil plays in the United States (bottom).
Source: Both maps are from US Energy Information Administration.
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