

Jon Peddie

Augmented Reality

Where We Will All Live
Second Edition

Augmented Reality

Jon Peddie

Augmented Reality

Where We Will All Live

Second Edition

Springer

Jon Peddie
Jon Peddie Research Inc.
Tiburon, CA, USA

ISBN 978-3-031-32580-9 ISBN 978-3-031-32581-6 (eBook)
<https://doi.org/10.1007/978-3-031-32581-6>

1st edition: © Springer International Publishing AG 2017

2nd edition: © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gwerbestrasse 11, 6330 Cham, Switzerland

*To Kathleen Maher, my best friend,
supporter, nudger, editor, and wife—couldn’t
have done it without you darling*

Foreword to the First Edition by Thomas A. Furness III

During the mid-1980s, there was a rush of media exposure related to the Super Cockpit¹ project I was working on at Wright-Patterson Air Force Base, Ohio. I was inundated by people out of the blue asking me about the possibility for applications of virtual interfaces beyond the military. One such individual was a golf pro from Australia. He wanted to create a better way to instruct novice golfers how to swing the golf club. He told me that he had tried everything. He started by saying to these novices, “watch me” and “do as I do” then demonstrating how to stand, hold the club, and swing the club. He would show them videos of their own swings and point out corrections. He attempted to stand behind them as they were gripping the club...but the students still didn’t get it. Finally, in frustration he asked me, is there any way you can use this virtual interface stuff to put me inside the student...like a ghost. So that when the students wear a headset they see my arms and feet coming out of their own bodies and, in turn, just position their real feet, hands and club where I position and move mine in the ghost image. This way they have a “personal” or “inside-out” view rather than the typical “outside-in.” The golf pro’s problem with novice golfers was clearly one of perspective...that is, switching from a third person, or “outside-in” perspective to that of a first person perspective.

This question opened a flood of ideas for other applications of virtual interfaces beyond the military ones that I was pursuing. I thought of the notion of virtual embedded experts, for training, remote operation, and physical therapy. For example, an embedded expert cohabiting a person’s body could show them how to repair a jet engine, perform brain surgery, or go through a physical therapy session (“put your arm where mine is” or “put your hand *in* mine”). My wife suggested, “let me show you how to knit from my perspective or learn American Sign Language.” Interestingly, this cohabitation can all be done equally well in a remote setting where the “co-inhabitor” and “co-inhabitee” are not physically present in the same location. In this way, a remote surgeon could, in real time, show a medical corpsman in the battlefield how to perform a life-saving procedure while looking through the corpsman’s point of view and then saying: “follow my hands and do what I am showing you to do.”

¹The Super Cockpit is a virtual cockpit that the pilot wears. Using devices embedded into the pilot’s helmet, flight suit, and gloves, the super cockpit creates a circumambience of visual, acoustic, and haptic information that can be superimposed over the real world.

Wow, the implications of this switch in perspective are enormous!

I began my journey in developing and applying virtual interfaces in 1966 when I was assigned as an Air Force Engineering officer to what is now known as the Air Force Research Laboratory at Wright-Patterson Air Force Base. My job was to research, design, build, and test better fighter aircraft cockpit interfaces that would improve system performance of both pilots and their machines in military operations. But it was clear that this wasn't going to be easy. The most daunting constraints were the small cockpit space into which we needed to place a myriad of instruments and controls (maybe 300 switches and 75 instrument displays). This made addition of sensor image displays (so that the pilot could see at night) darn near impossible. That is when I turned to virtual interfaces² as a means to better couple the pilot's sensory capability to the complexity of the machine. Virtual images, when tied to the pilot's helmet, allowed us to create sensor displays with sufficient size and resolution that better matched the pilot's eyes. The addition of helmet tracking then allowed us to position those sensors in synchrony with pilot head movement so as to create a moving portal or "picture window" to see through the cockpit and at night. Furthermore, these virtual displays could be populated with other relevant information in the form of graphics that related to threats and aircraft dynamics, such as orientation, navigation, airspeed, altitude, and other parameters. The helmet tracking also allowed the pilot to aim various weapon systems to line of sight. Significantly, all of these crucial features would be added without taking up any cockpit space!

I was not the first to think about these issues.³ Much of the initial thinking about advanced cockpit concepts using virtual interfaces such as helmet-mounted display and graphical displays overlaid over the outside world evolved in the early Army Navy Instrumentation program that began in 1953. The motivation of the program was to take a user-centered approach for cockpit design, starting with the pilot and working toward the machine rather than the traditional way of working from the machine to the pilot. It was this program that established the platform for inspiring my further work in virtual interfaces, visual coupling aids, and eventually the Super Cockpit.

Certainly another part of my willingness to go down the virtual path was inspired by my interest in science fiction. I have been a sci-fi junkie and dreamer since my childhood, beginning in the 1940s. One of my favorites was *They Shall Have Stars* by James Blish. It was the first of his novel series: *Cities in Flight*. Interestingly, when published in 1956 its original title was: *Year 2018*. In the novel there was a vivid description of construction workers building an unusual bridge on the planet Jupiter using blocks of frozen ammonia. Because of the harsh environment on Jupiter, the workers were physically located on a moon orbiting Jupiter but were telepresent on the "surface" of Jupiter. This was made possible by using sensors and displays at both ends to transport the eyes and hands of the construction workers to

²By virtual interfaces, I mean the *appearance* of virtual, acoustic, and haptic images or interfaces in a location in three-dimensional space surrounding the pilot, without the object creating the image actually being there.

³Even though I seem to have inherited the moniker "the grandfather of virtual reality," I was not the first to begin thinking about these approaches. But to my credit I am probably among the few that have worked continuously in the field of virtual interfaces since 1966.

the construction equipment at some distance. Other novels in the same genre extended these notions, such as Heinlein's *Waldo* and *Starship Troopers*. The *Lensman* space opera series by Edward Elmer "Doc" Smith opened my mind to the use of virtual interfaces for command and control applications using virtual image projection and gestures to control remote entities.

But now these dreams and early developments have evolved and become the new tools of our age. I liken their advent to "splitting the atom" in terms of unleashing enormous power to unlock and link minds. This unlocking comes from the unprecedented shift in perspective that augmented, virtual and mixed reality gives us...like the golf pro. It is like breaking the glass of the display and going inside and being there. We can augment the real world or share and collaborate in a virtual world. Our research has shown the amazing results of doing so, especially in education and training. Somehow, "breaking the glass" unlocks spatial memory. It allows us to take the real or virtual world and superimpose or imbed artifacts in the form of graphics or images that "attach" themselves to that space...and gives us a better way to relate to those items. In a way this awakens our long-term memory. It is akin to what the Greeks called the method of loci; that is, to remember things by associating them to spatial locations. The key idea is that we often remember things better when they are spatially associated with locations in 3D spaces rather than as abstract ideas.

For many years, we have been adding artificial things to real-world things; for example, like adding the laugh tracks to TV sitcoms or showing the first down line superimposed (or embedded) on the playing field (appearing under the players) during televised football games. Why do we want to do this? Think about head-up displays in military cockpits that enable pilots to associate abstract graphical information to the real world such as navigation waypoints and landing projections. This combination of the real and virtual adds to our knowledge and understanding and helps us to do things better and more efficiently. But at the same time, we need to be careful so as not to obscure important images from the real world.

When I asked Jon Peddie what was his motivation for writing this book, he said: "I genuinely and truly believe we will all use AR and that it will alter forever our lives...." I share Jon's enthusiasm and predictions. But while I am excited about what is happening in the virtual space, I throw out the caution that we don't want to become *intoxicated* by our technology. Technology tools are not an end in themselves, but a means to an end. We should ask not only what, but so what! This means a shift in our perspective from just pushing technology because we can do it, to a mode of developing technology because it helps solve problems and provide new avenues for emergence. Let me explain this further.

I feel we need application "pulls" that we haven't had in the past. In my half-century journey in this work, I have been as guilty as others in overhyping what is possible with virtual interface technology. It is not as much an issue of developing this technology so much as the question, do we really need to do it.

Certainly we can anticipate vertical market applications in military, medicine, design, training, and education, but what good is it going to do for the everyday person not affiliated with these specialties. We are all aware of the outcome of the Google Glass experience where promoters had a substantial pushback from the social experience of people's wariness of interacting with people wearing these virtual gadgets. So

the solution is to tap the “pull”...or those applications that can benefit from having virtual augmentation. Combined, the “push” of technology and the “pull” of solving problems can propel the development and uptake of this technology. Certainly we are not finished with the hardware development of augmented reality or virtual reality or mixed reality depending on what you call it. There is a lot of work to do on the technology to make the devices comfortable, useful, and successful. Tracking and luminance are big issues when overlaying virtual images on the real world. But most importantly we need to address human factors and not just the ergonomics of comfort. We need to remember that we are deeply coupling to the human senses, and we don’t want to do any harm. That should be our mantra: DO NO HARM! There is a substantial portion of this book that Jon has dedicated to these issues.

As Jon also reports in this book, the augmented reality industry is forecasted to be big...really big, far eclipsing the virtual reality industry. That is why this book is important. For some time, we have needed a definitive work on AR to parallel all that has been written about VR, such as the excellent *The VR Book*, written by Dr. Jason Jerald. Dr. Jon Peddie is a pioneer himself in digital media and graphics. From his early work, he has taken the approach to understand the trees but to elevate beyond that to view the forest in the context of the industry landscape. His current work is to guide thrusts in our industry with his substantial insights into the complex dynamics of our workplaces, especially with this new emergence of augmenting reality.

What you are going to experience as you turn the next pages of this book is an authoritative, comprehensive, and modern treatment of the subject of augmented reality. The author says that this is for the layman...that is true, but it is more than that. It also contributes to the hardware and software development community, building upon the scholarly work of many pioneers such as the seminal work by Ronald T. Azuma.⁴ In this book, Jon Peddie has amassed and integrated a corpus of material that is finally in one place. This, in itself, is a grand launching platform for achieving the billions in this growing industry that has been forecasted.

Jon’s book is also fun, peppered with quips and sarcasm. This is probably how the author kept himself entertained. It has brought back a lot of memories for me, but more importantly, it gets me excited again about the possibilities of this great tool of our age.

Human Interface Technology Lab,
Department of Industrial & System Engineering
University of Washington
Seattle, WA, USA

Thomas A. Furness III

University of Canterbury (HIT Lab NZ)
Christchurch, New Zealand

University of Tasmania
Hobart TAS, Australia
January 28, 2017

⁴ See for example: <http://ronaldazuma.com/publications.html>

Foreword to the First Edition by Steve Mann

Real Augmented Reality: Steve Mann with SWIM (Sequential Wave Imprinting Machine) and Meta2 that visualizes electromagnetic radio waves from his modified smartphone

Since childhood, for more than 40 years, I've been living my life in a computer-mediated universe called "augmented reality" where I see otherwise invisible radio waves, sound waves, and electrical signals traveling through neurons.

In the next few years, this is the universe "where we will all live."

The father of the field of AI (artificial intelligence), Marvin Minsky, together with the world's foremost futurist, Ray Kurzweil, and myself, put forth a view that AI and machine learning are turning the world into a one-sided control system that's evolving toward total sensing of all aspects of our lives, while at the same time, it remains completely opaque to us [Minsky, Kurzweil, Mann 2013]. We argued for a different kind of intelligence, called HI (humanistic intelligence), as the fundamental basis for augmented reality.

HI is intelligence that makes itself visible and understandable to humans through something we call "sousveillance," or inverse surveillance. Rather than only having

the machines watch us, we get to also watch and understand them. HI is intelligence that keeps humans in the loop.

This very principle is what was at the heart of my childhood fascination with being able to see and lay bare the otherwise hidden world of machines and their otherwise secret world of sensory modalities.

There were three fundamental problems I solved in my childhood, through the creation of a wearable computer augmented reality device:

1. Space. The shining light of augmentation must align in space with what it represents. When your eyes focus and converge on reality, the shining light needs to appear at the same focus and convergence.
2. Time. The shining light of augmentation must align in time with what it represents. Feedback delayed is feedback denied.
3. Tonality. The light itself needs to be correct in terms of tonality (i.e., contrast), so that the shining light of augmentation matches what it is supposed to represent.

These three criteria are like a tripod that supports the experience. If one is not met, the experience falls over. And yet so many companies fail to meet all three.

And that's one of the reasons why I've been involved in the founding of a number of institutions in this space.

I believe that, rather than building a carceral world of AI and machine learning, what we need to do is to build a world of HI and AR—a world in which we will live and in which we will thrive as humans.

During my lifetime of living in a computer-mediated reality, I have dreamed of the day when we can all live better, safer, healthier lives through a new form of existential technology.

Today, with the publishing of Jon's book, a large number of people will be gaining access to a deeper and broader understanding of the amazing benefits AR can offer to all industry and individuals. The book wonderfully identifies the benefits and opportunities of AR, as well as the obstacles that could delay its design and realization. The book shows how AR will make people more healthy and self-confident and not just secure but "suicure" (self-care) as well: AR is not so much a device for surveillance (security) but, more importantly, a device for sousveillance ("suicurity").

In this sense, your eyeglass will serve as your personal life recorder and record keeper, such that your most up-to-date medical record will be the one on your body. It will also be your real-time health, fitness, and wellness advisor and personal trainer/assistant.

AR is as important as electric light and may well be the most important invention over the last 5000 years, since the days when "elA"krA • n" is said to have meant "shining light."

The world of sousveillance is a world where we won't have to fear the police nor honest police fear us.

It will take many years to master all the challenges required to make a socially acceptable-looking device that meets the three fundamental criteria (space, time, tonality), but the path is clear, and we are well on our way to doing it. This book will help us on that journey.

Chief Scientist, Meta Company
San Mateo, CA, USA

Steve Mann

Preface to the Second Edition

Abstract The goal of this book is to explain the many nuances of augmented reality and what augmented reality is. Often confused with virtual reality and mixed reality, it is the objective of the book to establish a clear delineation between those other technologies whose only common element is a display, but not the content, proximity, or problems.

Augmented reality holds the promise of forever altering and improving our lives. It will give us freedom from oppression, unlimited sources of information in real time, and new ways to communicate and understand one another. We will be able to help and get help for each other at great distances, and increase the quality of service, health and welfare, maintenance, design, and education. We will also have more fun. This is not science fiction, although the concepts have their roots in such fiction.

This is the second edition of this book on augmented reality. It is not meant to be a science fiction book, but it is about the future, or at least one possible future.

Philosophers, scientists, futurists, and others have speculated about the moment in time when computers will match, and quickly exceed, human processing speed, memory access, and ultimately supposition. The conceit is when machines can process data in enormous volumes, and at lightning speeds, our innate inferiority complex leads us to predict those machines will find us irrelevant, feebly competitive, and a misuse of resources. There is no analog or metaphor for such an analysis; after all, despite our irresponsible coexistence and husbandry of the environment, other animals, fowl, and aquatic species, we never deliberately, or maliciously (with a few notable exceptions), sought their genocide. Insects and viruses are another story.

So why then would super-intelligent machines, based (grown up you might suggest) on our morals, culture, and history behave any differently? Logic is the typical answer. Super-smart machines, whose basic DNA is logic, would assess, adjudicate, and execute on cold, uncompromising logic, and logic is not conducive to human behavior or vice versa. Therefore, the popular notion is the computer would simply eliminate us, or in the best case, ignore us.

Another possibility is as machines develop seemingly sentient capabilities, they will become companions and advisors. And lacking (and never able to fully obtain) imagination, will rely on us to come up with the next idea, the next goal, the next artistic expression, and the next interpretation of current events or characters' behaviors.

So how does augmented reality fit into all of that? As we are more conveniently, and comfortably, able to access information in real time, we will literally and figuratively become augmented, though not physically—at least for a while. We will have greater and faster access to information. And as we learn how to assimilate, process, and use this enhanced capability, we will become more creative, imaginative, and interesting. As we do, emerging, or even nouveau-sentient machines, will be confounded by us, always a step behind so to speak despite their astronomical processing speeds and memory access.

However, for us to be so augmented and in touch with the databases and the data analysis tools, we must have real-time, inconspicuous, localized information, information about where we are, and all the things around us and approaching us.

To be in touch with the databases and analytical tools requires wireless communications and real-time updating. To have inconspicuous capture of localized information in real time, we will have smart contact lenses, and ultimately implants.

So the science fiction scenario is we will have augmented reality contact lenses while the computers approach or perhaps reach sentience, and rather than dismiss or kill us because we would be irrelevant and unnecessary resource usages, they will rely on us for insight, imagination, and challenges, cynically perhaps as a necessary evil. And of course, they will need some of us to keep them running.

This book will provide insight for technologists, marketing and management people, educators, academics, and the public who are interested in the field of augmented reality concepts, history, and practice and the visual and sensory science behind the improvements in advanced display systems. From the explanation of the human-machine interaction issues, through the detailing of visual display and informational access systems, this book provides the reader an understanding of the issues related to defining, building, and using (with respect to our senses) our perception of what is represented and, ultimately, how we assimilate and react to this information (Fig. 1).

The artist Zenka, who is an artist and curator-historian of augmented and virtual reality headsets, says, “augmented reality catapults us from the information age to the knowledge age.”⁵

⁵ <http://www.zenka.org/>

Fig. 1 Renowned AR artist Zenka's depiction of the joy of augmented reality. (Image courtesy of the artist)

What Are We Doing Here?

Augmented reality is such a complex, wide ranging topic, it's difficult to organize all it encompasses in a logical outlined way. But one has no choice, so this book is organized into ten sections: The beginning chapter introduces the benefits and potential dangers of augmented reality, an overview of the applications, some proposed rules or law for augmented reality, the definitions, and augmented reality's place in the metaverse. In the second chapter, a taxonomy is presented, and the ways in which augmented reality can be delivered is given. That is followed with an overview of how augmented reality has the potential to make all of us experts with information at our eyeballs.

In the next chapter, some of the technical aspects of seeing things in augmented reality are discussed, as well as the challenges of describing technology. That is followed with a brief historical overview of when augmented reality started (earlier than most people think).

Next some of the applications are examined and a distinction is made between commercial and consumer—although there is overlap (e.g., is a real estate user of augmented reality a commercial (the real estate agent) or a consumer (the house buyer) application)? That chapter is one of the largest and still it can't cover all of the existing or future applications of augmented reality—augmented reality isn't going to be a big thing, it's going to be everything.

The following chapter gets technical and delves into the physiology of the eye, on to the types and technology of displays, and ends with brain waves and implants—you've been warned.

Finally, there is a brief discussion on some of the suppliers, take note—there are too many and then there are conclusions and a very brief vision of the future.

Augmented reality will touch all parts of our lives, our society, and the subsequent rules we live by. As we adapt to the new capabilities, and power that augmented reality bestows on us, we will have to think about things differently and give up some cherished ideas and fantasies. It will change social mores and rules and challenge those who hold power arbitrarily.

Studying augmented reality is like spiraling down a Mandelbrot that reveals progressively ever-finer recursive detail. Down and down I go into the never-ending rabbit hole, finding one thing, only to learn about three others and on and on it goes.

Tiburon, CA, USA

Jon Peddie

Acknowledgments

No book was ever written in isolation or without help. A book is a joint effort, a team effort, a massive body of work contributed to, edited by, and at times painfully read by friends, colleagues, relatives, and underpaid editors. Listing all their names alone would fill pages; their contributions would require even more pages, and it would appear as the credits of a major movie.

And yet I try, for to do otherwise would at the least be rude, and at the most make me the most unappreciative person to walk the earth. (Egotistical and selfish also come to mind.)

The second problem is how to list? By order of appearance, by number of hours invested, alphabetically, topically? I took the easy route—alphabetically. I did that for two reasons: A—so they could find themselves and make sure I didn’t forget them (as I have sadly done in other books), and B—so I could easily add them when their contribution was realized.

So here are some of the folks who helped make this book possible. If you know any of them, give them a pat on the back, and tell them, Jon thanks you.

Beverley Ford, my sponsor at Springer and a good friend with questionable judgment.

Bob Raikes, a tireless writer and editor of all things display, and a dear old friend.

Bruce Sievers, lecturer, author, and very good friend.

Douglass (Doug) Magyari, king of Field of View (FOV), great engineer, and good friend.

Helen Desmond, Senior Editor at Springer and encourager of this second edition.

James Robinson, editorial assistant, protector, and sometimes pain-in-the-butt friend at Springer.

Karl Guttag, inventor of VRAM and other amazing graphics devices, a tremendous help with display section, and great friend.

Kathleen Maher, my mentor, partner, muse, and best friend.

Khaled Sarayeddine, CTO of Lumus Optical.

Mark Fihn, author, publisher, display expert, and good friend.

Michael Burney, entrepreneur, technologist, who’s willing to read what I write.

Neal Weinstock who taught me about plenoptic lenses.

Neil Trevett, old friend and president of Khronos.

Ori Inbar, Augmented Reality Org founder and advisor.

Robert Dow, my researcher, reader, and good friend.

Ron Padzensky, an AR blogger, an excellent and helpful critic, and great help with the taxonomy.

Soulaiman Itani, an amazing augmented reality scientist with a great sense of humor.

Steve Mann, the father of AR, and a tremendous help and guide with this book.

Ted Pollak, my colleague in gaming, opinionated and surprising sounding board. Tom Furness, the grandfather of AR, and most generous advisor.

Tracey McSheery, an augmented reality scientist, friend, and font of great ideas.

And so many others like Dr. Garth Webb, Jay Wright, Tom Defanti, Oliver Ktrylos, Jean-François Chianetta, Khaled Sarayeddine, Christine Perey, and Neal Leavitt.

Contents

1	Introduction	1
1.1	From Pepper’s Ghost to Contact Lenses: Augmented Reality Is Where We All Will Live.	2
1.1.1	The Promise of Augmented Reality	7
1.1.2	The Dangers of Augmented Reality	8
1.1.3	Augmented Reality Skills	10
1.1.4	Seeing Augmented Reality	10
1.1.5	The Realities	12
1.1.6	Augmented Reality’s Place in the Metaverse	13
1.1.7	Definitions	25
1.2	Summary	35
	References	35
2	Types of Augmented Reality Systems	37
2.1	The Taxonomy of Augmented Reality	38
2.2	Contact Lens	41
2.2.1	Hybrid: Glasses and Contacts	45
2.3	Head-Up Display	46
2.4	Helmet	48
2.4.1	First Responders AR Helmet	50
2.4.2	Construction and Other AR Helmets	54
2.4.3	Motorcycle Helmets: AR May Not Be for Everyone	55
2.4.4	Retrofit Devices	57
2.5	Smart Glasses	60
2.5.1	Integrated Smart Glasses	60
2.5.2	Add-on Smart Glasses	72
2.6	Projection	72
2.6.1	Projectors	76
2.6.2	Spatial Augmented Reality	77
2.6.3	CAVE	79
2.7	Specialized and Others	80
2.7.1	Watermarking Augmented Reality	80
	References	82

3	Augmented Reality: We'll All Be Experts Now	83
3.1	Augmented Reality Will Change Our Lives Forever—For the Better	84
3.2	Technology Works When It Is Invisible.	86
	Reference	87
4	Overview of Augmented Reality System Organization	89
4.1	What to See and What Not to See	91
4.1.1	A Few Words About Convergence Conflict	91
4.1.2	Summary	98
4.2	The Problem with Technology	99
	References.	100
5	Historical Overview: Ghosts to Real AR to DARPA	101
5.1	Trend Spotting	128
5.1.1	Interest Over Time Google Trends.	129
5.2	Real-Time Content in Context	129
5.2.1	Informational	131
5.2.2	Instructional	131
	References.	133
6	Key Applications	135
6.1	Scientific, Industrial, and Government	136
6.1.1	Architecture, Engineering, and Construction.	137
6.1.2	Aviation and Aerospace	142
6.1.3	Education	145
6.1.4	Inspection and Maintenance	148
6.1.5	Manufacturing	152
6.1.6	Marine Vehicles (Submarines to Pleasure Craft to Aircraft Carriers)	154
6.1.7	Medicine	155
6.1.8	Military	164
6.1.9	Power and Energy	165
6.1.10	Public Sector	167
6.1.11	Weather and News	173
6.1.12	Real Estate	173
6.1.13	Telepresence.	174
6.2	Commercial and Enterprise	175
6.2.1	Email with Personality	175
6.2.2	Advertising and Marketing	175
6.3	Consumer	182
6.3.1	Markerless Identification of Things	187
6.3.2	Virtual Fashion Items	189
6.3.3	Art	194
6.3.4	Entertainment.	196
6.3.5	Educational	203

6.3.6	Navigation and Control	205
6.3.7	Translation	216
6.3.8	Sports and Training	217
6.4	Summary	220
	References	225
7	Software Tools and Technologies	227
7.1	Khronos Group	230
7.1.1	Khronos Compute Acceleration Standards	231
7.1.2	OpenVX: An API Dedicated to Vision Processing and Inferencing	232
7.1.3	Khronos OpenXR Standard	232
7.1.4	The glTF 3D Asset Format for Pervasive 3D	237
7.1.5	Summary	239
7.2	ARToolkit	240
7.2.1	Vuforia	241
7.2.2	Augment	243
7.2.3	Infinity AR	243
7.2.4	Kudan	244
7.2.5	HoloLens MRTK3	246
7.2.6	Scope AR	247
7.2.7	ViewAR	248
7.2.8	Others	249
7.3	The Role of Augmented Reality Interfaces	250
7.3.1	Who Will Define Augmented Reality?	250
7.4	Summary: Players and Platforms	251
8	Technology Issues	253
8.1	Our Amazing Eyes	254
8.1.1	Rods, Cones, and Fovea	255
8.1.2	Resolution	255
8.2	What We See	256
8.2.1	Blind Spot	256
8.2.2	Eye Movement	256
8.2.3	Interlaced TV and Motion Perception	258
8.3	Latency Issues in Augmented Reality Displays	259
8.3.1	Field Sequential Color System and Latency	260
8.3.2	Display Issues	262
8.4	Eyebox	264
8.4.1	Head Motion Box	265
8.5	Field of View	266
8.5.1	Pixel Pitch	270
8.6	Displays	271
8.6.1	Proximity	271
8.6.2	Close	271
8.6.3	Virtual Reality	272

8.6.4	Augmented Reality	272
8.6.5	Mixed	272
8.6.6	Ambient Light	273
8.6.7	Color Depth	273
8.6.8	Refresh Rate	274
8.6.9	Summary	274
8.7	Augmented Reality Displays	275
8.7.1	Transparency	276
8.7.2	Technology	277
8.7.3	Direct Emissive and Modulated	278
8.7.4	Optical Routing	293
8.7.5	Transparent Direct-Emissive Displays	316
8.8	Sensors	326
8.8.1	Cameras	327
8.8.2	Localization, Tracking, and Navigation Sensors	330
8.8.3	Inertial Measurement Unit	331
8.8.4	Haptic Feedback	332
8.8.5	Earthquake Prediction Sensor	335
8.9	Augmented Reality: Marker vs. Markerless	335
8.9.1	Markers and Fiducials	337
8.9.2	Natural Feature Tracking Using Markers	338
8.9.3	SLAM: Markerless Location	338
8.10	User Interfaces in Augmented Reality Systems	343
8.10.1	Voice Control	345
8.10.2	Gesture Control	347
8.10.3	Eye-Tracking	353
8.10.4	Brain Waves	359
8.11	Processors	360
8.11.1	Summary	361
	References	362
9	Augmented Reality Devices and Suppliers	365
9.1	Suppliers	366
9.2	Things That Are Not AR	367
9.2.1	VR Is Not AR	368
10	Conclusions and Future Possibilities	369
10.1	Privacy: Is There Such a Thing Today?	369
10.2	Social Issues	371
10.3	Nano-scale Technology	371
10.4	What the Future May Hold	373
	Appendix	375
	Glossary	379
	Index	389

List of Figures

Fig. 1.1	Pepper's ghost (1862) seeing things that are not there. (Courtesy of Wikimedia)	2
Fig. 1.2	The many things augmented reality smart glasses must accommodate	4
Fig. 1.3	The Lynx R-1 HMD is an example of a bespoke MR HMD. (Courtesy of Lynx)	5
Fig. 1.4	HTC's Quest2 MR HMD. (Courtesy of HTC)	5
Fig. 1.5	Edgar Dale's Cone of Experience does not contain percentages as listed here. It relates to abstraction vs concrete and the greater use of senses. (Courtesy of Jeffrey Anderson)	12
Fig. 1.6	Rubin's vase utilizes the concept of negative space to create ambiguous images: the vase or two opposing faces. (By Ataturk.svg: NevitNevit Dilmen courtesy of Wikipedia)	14
Fig. 1.7	The augmented reality eye of <i>The Terminator</i> evaluates the situation and provides suggestions for action. (Courtesy of <i>Orion Pictures</i>)	17
Fig. 1.8	Simplified representation of a metaverse continuum. (Milgram, 1994)	17
Fig. 1.9	Double 3 is a self-driving, two-wheeled videoconferencing robot. (Courtesy of Double Robot)	18
Fig. 1.10	Mixed reality with mediated reality.....	19
Fig. 1.11	Mann's taxonomy of reality.....	20
Fig. 1.12	Keiichi Matsuda vision of riding a bus while using a smartphone to play a game, get alerts, be inundated with advertisements, and get a phone call. (Courtesy of Keiichi Matsuda)	20
Fig. 1.13	Augmented reality head-up display in a first-person shooter game, <i>Fallout 4</i> . (Courtesy of Bethesda Softworks).....	24
Fig. 1.14	Augmented reality uses various devices and is used in various applications	27
Fig. 1.15	Seeing augmented reality	29
Fig. 1.16	Direct-view AR with superimposed CG image. (Simulated image courtesy of Canon)	30
Fig. 1.17	Video see-through MR image. (Courtesy of Canon).....	31

Fig. 1.18	Image processing based on the sense of distance in the real world can be more accurate in MR. (Simulation courtesy of Canon)	31
Fig. 1.19	Qualcomm's reference design AR glasses. (Courtesy of Qualcomm)	34
Fig. 2.1	Vision-based augmented reality.....	38
Fig. 2.2	Taxonomy of augmented reality	39
Fig. 2.3	Taxonomy of augmented hardware. (Ron Padzensky, https://www.nvzn.net/).....	39
Fig. 2.4	Patent diagrams for Samsung's smart contact lenses. (Courtesy of the Samsung/Korea Intellectual Property Right Services)	43
Fig. 2.5	Contact lens augmented reality. (Courtesy of Mojo Vision)	44
Fig. 2.6	Mojo Vision demonstrates Alexa shopping list on smart contact lens. (Courtesy of Mojo)	44
Fig. 2.7	Innovega's eyborne optics. (Courtesy of Invega).....	45
Fig. 2.8	Kshioe's Universal 5.5" Car A8 head-up display. (Courtesy of Amazon)	47
Fig. 2.9	Hudway Glass, which offers navigation and speed information from a smartphone. (Courtesy of Hudway)	47
Fig. 2.10	This is a helmet. (Courtesy of Elbit)	49
Fig. 2.11	This is not a helmet but an integrated smart glasses AR HMD. (Courtesy of Honeywell).....	50
Fig. 2.12	First responders can see virtual floor plans in smoky conditions. (Courtesy of ThirdEye).....	50
Fig. 2.13	ARCortex's emergency response information system uses icons to summarize and visualize first-responder screen on the ground. (Courtesy of NIST)	52
Fig. 2.14	NextGen's prototype AR interface focuses on organizing information in a way that prevents it from being overwhelming. (Courtesy of NIST).....	53
Fig. 2.15	The Brave AR concept helmet was the winner of the Red Dot Design Concept Award for the year 2021. (Designers: Kim Hyewon and Shin Alim).....	53
Fig. 2.16	Quake firefighter's C-thur helmet. (Courtesy of Quake)	54
Fig. 2.17	XYZ's atom helmet for the construction industry. (Courtesy of XYZ)	55
Fig. 2.18	The CrossHelmet promised a revolutionary HUD with a wide field of view. (Courtesy of CrossHelmet)	56
Fig. 2.19	Shoei Opticson HUD-based helmet. (Courtesy of Shoei)	57
Fig. 2.20	Argon's dualretro-fit augmented reality camera system. (Courtesy of Argon).....	58
Fig. 2.21	EyeLights retrofit HUD display. (Courtesy of EyeLights).....	58

Fig. 2.22	Hudway claims their HUD has a ten-hour battery life. (Courtesy of Hudway)	59
Fig. 2.23	Scubapro Galileo HUD for scuba masks. (Image courtesy of Scubapro)	59
Fig. 2.24	Consumer augmented reality glasses. (Courtesy of Nreal)	61
Fig. 2.25	Ziess tooz smart glasses for consumers. (Tooz Technologies GmbH)	61
Fig. 2.26	Luxexcel printed the waveguide side port lens for WaveOptics projector that fits in the tab on the right. (Courtesy of Luxexcel)	63
Fig. 2.27	WaveOptics' miniature projectors fits in the side of the lens. (Courtesy of WaveOptics)	63
Fig. 2.28	Vuzix augmented reality smart glasses. (Courtesy of Vuzix)	64
Fig. 2.29	Kolpin solos sport AR glasses. (Courtesy of Kopin)	64
Fig. 2.30	Project Aria prototype Gemini smart glasses. (Courtesy of Meta/Facebook)	65
Fig. 2.31	Snap's AR Spectacles, announced in 2021, were still for developers only in 2023. (Courtesy of Snap)	67
Fig. 2.32	This is a commercial integrated augmented reality example of smart glasses. (Courtesy of Vuzix)	68
Fig. 2.33	ActiveLook is a micro-projection system that integrates into eyewear. (Courtesy of ActiveLook)	68
Fig. 2.34	Remote workers can be assisted by experts and the latest data. (Courtesy of ThirdEye)	69
Fig. 2.35	DigiLens' Argo industrial smart glasses. (Courtesy of Anshel Sag)	70
Fig. 2.36	DigiLens' ARGO features. (Courtesy of DigiLens)	70
Fig. 2.37	This is an add-on augmented reality display device. (Courtesy of Garmin)	72
Fig. 2.38	RealWare Navigator 500-assisted reality devices. (Courtesy of RealWear)	73
Fig. 2.39	Princess Leia's hologram projected into open space. (Courtesy of Lucasfilm Ltd.)	73
Fig. 2.40	Prof. Dennis Gabor (Nobel Prize Laureate, 1971), Inventor of Holography (Dennis Gabor, Father of Holography, http://www.americanhungarianfederation.org/FamousHungarians/dennisgabor.htm). (Courtesy of The American Hungarian Federation)	74
Fig. 2.41	Realview's deep perception live holography system. (Courtesy of Realview)	75
Fig. 2.42	HoloLamp glasses-free augmented reality projector (HoloLamp)	76
Fig. 2.43	Projected images seen by looking directly at emitter. (Courtesy of Hypervsn)	77

Fig. 2.44	Left: Sandbox unit when turned off. The Kinect three-dimensional camera and the digital projector are suspended above the sandbox proper from the pole attached to the back. Right: Sandbox table when turned on, showing a mountain with a crater lake, surrounded by several lower lakes.....	78
Fig. 2.45	“Reality Deck” CAVE at Stony Brook University (2012) 40' × 30' × 11' high room containing 308 LCD display—1.25 billion pixels.....	79
Fig. 2.46	University of California, San Diego’s WAVE CAVE	80
Fig. 2.47	Digimarc’s watermarking technology was used to embed digital watermarks in printed images such as magazine advertisements, event tickets, CD covers, goods packaging, etc.....	81
Fig. 3.1	A technician can use a tablet to “look at” a device and be given instructions on how to fix it or use it. (Courtesy of XMReality).....	85
Fig. 3.2	Theodore carries a camera in his shirt, so Samantha can see what he’s seeing. (Courtesy of Warner Bros Pictures)	85
Fig. 3.3	Steve Mann field tests his prototype augmented reality system circa 1980. (Courtesy of Steve Mann).....	86
Fig. 4.1	Block diagram augmented reality system.....	90
Fig. 4.2	Accommodation distance vs. vergence distance in three-dimensional viewing	92
Fig. 4.3	Focus depends on where one looks. (Courtesy of AR Insider)	93
Fig. 4.4	Vergence conflict. (Courtesy of AR Insider)	94
Fig. 4.5	Multifocal polymer interlayer lamination screens used to reduce vergence conflict. (Courtesy of the Lightspace Technologies).....	95
Fig. 4.6	Petary’s light field display overcomes vergence issue. (Courtesy of Petary).....	97
Fig. 4.7	Getting two conflicting depth cues	98
Fig. 4.8	Visual, audio, positional, and user interface all have to fast, accurate, and use little power in an AR HMD. (Courtesy of Qualcomm).....	99
Fig. 4.9	Immersion in AR requires knowing where you are and balancing the images generated with the environment. (Courtesy of Qualcomm).....	99
Fig. 5.1	Lyman Frank Baum (May 15, 1856–May 6, 1919), better known by his pen name L. Frank Baum. (Wikipedia).....	103
Fig. 5.2	A diagram of a version of Howard Grubb’s collimating reflector sight designed to make a compact version suitable for firearms and small devices. (Courtesy of Wikipedia)	103

Fig. 5.3	A teleprompter system. (Courtesy of Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=334814).....	105
Fig. 5.4	Artificial horizon image from ANIP system. (Courtesy of Douglas Aircraft)	105
Fig. 5.5	Philco's Headsight headset with CRT display. (Courtesy of Electronics magazine)	106
Fig. 5.6	Third Eye for Space Explorers, Hughes Aircraft's Electrocular. (Courtesy of Popular Electronics)	107
Fig. 5.7	Lt. Tom Furness wearing first USAF helmet-mounted display. (Armstrong Laboratory, Wright-Patterson AFB, OH).....	108
Fig. 5.8	The viewer saw computer-generated graphics—basically a floating wire-frame cube. (Courtesy of the Computer History Museum).....	109
Fig. 5.9	The Sword of Damocles (without gantry) head-mounted display. (Courtesy of the Computer History Museum, http://www.computerhistory.org/revolution/input-output/14/356).....	109
Fig. 5.10	Test pilot wearing prototype augmented reality helmet, circa 1971. (Tom Furness).....	111
Fig. 5.11	Real augmented reality—visualization of information with no mediation. (Mann)	111
Fig. 5.12	Steve Mann field tests his prototype EyeTap augmented reality system at MIT circa 1980. (Courtesy of Wikipedia Steve Mann).....	112
Fig. 5.13	Steven Feiner's private eye. (Photo by Dan Farber)	113
Fig. 5.14	Augmented reality intended to show toner cartridge and show location of and identify paper tray. (Courtesy of Blair MacIntyre)	115
Fig. 5.15	Augmented simulation (AUGSIM) system. (Courtesy of the Peculiar Technologies, http://jmabaai.com/vwsim99/vwsim99.html).....	116
Fig. 5.16	Sony Glasstron augmented reality headset. (Courtesy of Wikipedia)	117
Fig. 5.17	Touring machine—first mobile augmented reality system backpack augmented reality with head-worn display. (Courtesy of Columbia University)	119
Fig. 5.18	Mark Billinghurst and Hirokazu Kato developed the pioneering and widely used augmented reality tool kit. (Courtesy of Thomas Furness and Hirokazu Kato)	120
Fig. 5.19	Mann wearing his EyeTap Digital Eye Glass from 1999. (Photo by Dan Farber for Cnet, http://www.cnet.com/pictures/google-glass-ancestors-45-years-of-digital-eyewear-photos/2/).....	121
Fig. 5.20	Video see-through example on a cell phone	122

Fig. 5.21	Tomohiko Koyama (aka Saqoosha) developed FLARToolKit bringing augmented reality to web browsers.....	123
Fig. 5.22	Esquire featured an augmented reality experience within its magazine in 2009. (Courtesy of the Hearst Publishing)	124
Fig. 5.23	Magic Leap 2 AR glasses for enterprise and medial. (Courtesy of Magic Leap)	125
Fig. 5.24	Epson Moverio BT-100 augmented reality glasses. (Courtesy of Epson).....	126
Fig. 5.25	Oppo Air Glass 2 comes with a built-in microphone and speakers. (Courtesy of Oppo)	128
Fig. 5.26	An April 19 continuation patent shows Apple's proposed headset connected to a mobile device, like an iPod or iPhone. In June 2023 Apple officially announced their Vision Pro headset. (Courtesy of USPTO)	128
Fig. 5.27	Interest over time of augmented reality	130
Fig. 5.28	Interest over time of virtual reality	130
Fig. 5.29	Interest over time of artificial intelligence.....	130
Fig. 5.30	The spectrum of use of augmented reality with some overlap.....	131
Fig. 5.31	Incorrectly lighted virtual objects in an augmented reality view. (Courtesy of Qualcomm)	132
Fig. 5.32	Correctly lighted virtual objects in an augmented reality scene. (Courtesy of Qualcomm).....	133
Fig. 6.1	A 1993 head-mounted display used in architectural anatomy. (Courtesy of Columbia University)	138
Fig. 6.2	Coretronic ARGo AR glasses (Photo: Michael Lee, Digitimes, February 2022)	139
Fig. 6.3	Canon's MReal headset combines live video with computer-generated graphics to create a mixed reality experience	140
Fig. 6.4	Structure of Canon's Mreal optical system. (Courtesy of Canon)	140
Fig. 6.5	Cannon's HM-A1 MERAL S1 headset with HD cameras. (Courtesy of Cannon)	141
Fig. 6.6	Canon' Mreal system for mixed reality. (Courtesy of Canon)	142
Fig. 6.7	The F35 helmet. (Courtesy of Rockwell Collins)	143
Fig. 6.8	Soldamatic augmented welding training. (Courtesy of Soldamatic).....	147
Fig. 6.9	Students at the Case Western Reserve University learn about human anatomy using Microsoft HoloLens. (Courtesy of the Case Western Reserve University).....	148
Fig. 6.10	Augmented reality handbook visualized onto the machine. (With permission of Kothes/SIG)	149
Fig. 6.11	Step-by-step instructions for replacing a vapor filter. (Courtesy of Kothes/SIG).....	150

Fig. 6.12	Augmented reality guide to find parts and check items in a car. (Courtesy of AR media).....	151
Fig. 6.13	Construction workers building a factory without blueprints or drawings by using augmented reality. (Courtesy of the Index Augmented Reality Solutions)	152
Fig. 6.14	Visualizing and planning where new pumps and equipment will go in an aircraft carrier. (Courtesy of Huntington Ingalls).....	154
Fig. 6.15	Oxsight's Smart Specs for people with limited vision. (Courtesy of Oxsight)	155
Fig. 6.16	Smart Specs can show a natural color image or a simplified high-contrast display depending on the needs of the user. (Courtesy of Oxsight)	156
Fig. 6.17	Speech recognition AR glasses. (Courtesy of XRAI)	157
Fig. 6.18	EyeSpeak adapted its eye-racking sensor to augmented reality glasses. (Courtesy of LusoVu).....	158
Fig. 6.19	A webcam provides live video of the patient displayed on a computer screen. Myoelectric pattern recognition is used to decode motor volition and voluntarily control the virtual limb. (Courtesy of Lancet)	159
Fig. 6.20	Low-dose X-ray system: (1) optical cameras on flat panel X-ray detector and (2) image the surface of the patient. (Courtesy of Philips).....	160
Fig. 6.21	Augmented satiety is a method for modifying perception of satiety and controlling nutritional intake by changing the apparent size of food with augmented reality. (Courtesy of the Cyber Interface Lab, University of Tokyo).....	162
Fig. 6.22	Veins exposed with infrared can be seen in augmented reality glasses for accurate syringe placement. (Courtesy of the Evena Medical).....	163
Fig. 6.23	Using a contact ultrasonic sensor, the clinician can see femoral veins and arteries. (Courtesy of Evena Medical)	163
Fig. 6.24	Military-based ruggedized wearable augmented reality system for soldiers. (Courtesy of the Applied Research Associates).....	164
Fig. 6.25	ARA's ARC4 helmet mounted augmented reality system. This is not a helmet and could be considered a special case of a smart glasses head-up display. (Courtesy of ARA)	165
Fig. 6.26	Elbit's Iron Vision helmet uses sensors and software and a user-friendly interface (originally developed for aircraft) to transmit video images from inside and outside the tank to the commander and driver's visors. (Courtesy of Elbit).....	166
Fig. 6.27	Elbit's see-through armor (STA) technology. (Courtesy of Elbit).....	166
Fig. 6.28	Design concept for the next generation of first-responder augmented reality glasses. (Courtesy of Qualcomm).....	168

Fig. 6.29	CRG's Civicaugmented reality application, using markerless image recognition, applies augmented reality for local public information. (Courtesy of the Civic Resource Group)	169
Fig. 6.30	Airport security and threat assessment will be sent to security guard's augmented reality glasses. (Courtesy of Deloitte).....	170
Fig. 6.31	Virtual box simulator. (Courtesy of USPS).....	171
Fig. 6.32	US postal boxes were turned into holiday cards. (Courtesy of USPS)	171
Fig. 6.33	Have your picture taken with your favorite Peanuts character and postal box. (Courtesy of USPS)	172
Fig. 6.34	The video shows how a 3-foot storm surge could look like in a real-life situation. (Credit: YouTube/Weather Channel)	173
Fig. 6.35	An augmented reality virtual desktop, superimposed over an actual desktop, conveyed through Magic Leap's light field technology headset. (Courtesy of Magic Leap).....	176
Fig. 6.36	A typical QR code. (Courtesy of Wikipedia)	176
Fig. 6.37	Coca Cola's holiday augmented reality advertising. (Courtesy of Arlooppa).....	177
Fig. 6.38	Visualizing how something (e.g., furniture) might look in a given environment. (Courtesy of Google)	179
Fig. 6.39	Yelp's Monocle app identifying stores based on what the camera is looking at the user's location. (Courtesy of Yelp)	181
Fig. 6.40	Markers are picked in the scene to develop a three-dimensional model. (Courtesy of Mirriad).....	182
Fig. 6.41	Same scene, two different ads in the windows. (Courtesy of Mirriad)	182
Fig. 6.42	"Tom Lea—2000 Yard Stare" by the US Army.....	184
Fig. 6.43	Google Glass (2012). (Courtesy of Wikipedia).....	184
Fig. 6.44	Google Glass 2 (2022). (Courtesy Google).....	185
Fig. 6.45	Tethered glasses. (Courtesy of Aunt Lydia's).....	186
Fig. 6.46	Augmented reality glasses make you Tom Cruise in the Minority Report. (Courtesy of shutterstock.com)	186
Fig. 6.47	Merging the online digital experience with the in-store experience. (Courtesy of Layar)	188
Fig. 6.48	A point cloud is created and then a three-dimensional model for fitting. (Courtesy of Anthropics).....	191
Fig. 6.49	This women is not wearing glasses. (Courtesy of Fuel3D).....	192
Fig. 6.50	This woman is not wearing makeup. (Courtesy of ModiFace)	193
Fig. 6.51	Seeing things that aren't there—woman wearing augmented reality glasses at Smau, International Exhibition of Information Communications Technology in Milan (Image credit: Tinxt)	194
Fig. 6.52	The Museum of Stolen Art is a gallery exhibition of works currently reported stolen or missing. (Image credit: MOSA)	195