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In the first chapter of this book I describe some of the factors responsible for the recent 
emergence of a subdiscipline at the interface between developmental psychology and cog-
nitive neuroscience. I have chosen to refer to this new field as “developmental cognitive 
neuroscience,” though it has been known under a number of other terms such as “develop-
mental neurocognition” (de Boysson-Bardies et al., 1993). Though a series of edited vol-
umes on the topic has recently appeared, like most newly emerging disciplines there is a 
time lag before the first books suitable for teaching appear. This book and the Reader which 
I edited in 1993 (Johnson, 1993) are initial attempts to fill the gap. While some may believe 
these efforts to be premature, my own view is that the lifeblood of any new discipline is in 
the students and postdocs recruited to the cause. And the sooner they are recruited, 
the better.

Is developmental cognitive neuroscience really significantly different from other fields 
that have a more extended history, such as developmental neuropsychology or cognitive 
development? Clearly, it would be unwise to rigidly demarcate developmental cognitive 
neuroscience from related, and mutually informative, fields. However, it is my belief that 
the emerging field has a number of characteristics that make it distinctive. First, while 
there is some disagreement about exact definitions, the fields of developmental neuropsy-
chology and developmental psychopathology focus on atypical development, while com-
monly comparing them to normal developmental trajectories. In contrast, cognitive 
neuroscience (including the developmental variant outlined in this book) focuses on nor-
mal cognitive functioning, but uses information from deviant functioning and develop-
ment as “nature’s experiments” which can shed light on the neural basis of normal 
cognition. This book is therefore not intended as an introduction to the neuropsychology of 
developmental disorders. For such information the reader is referred to the excellent intro-
ductions by Cicchetti and Cohen (1995) and Spreen et al. (1995).

Second, unlike many in cognitive development, this book adopts the premise that infor-
mation from brain development is more than just a useful additional source of evidence for 
supporting particular cognitive theories. Rather, information about brain development is 
viewed as both changing and originating theories at the cognitive level. Third, develop-
mental cognitive neuroscience restricts itself to issues at the neural, cognitive, and immedi-
ate environmental levels. In my view, it is a hazard of some interdisciplinary fields that the 
focus of interest is diffused across many different levels of explanation. This is not to deny 
the importance of these other levels, but a mechanistic interdisciplinary science needs to 
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restrict both the domains (in this case aspects of cognitive processing) and levels of expla-
nation with which it is concerned. Finally, developmental cognitive neuroscience is specifi-
cally concerned with understanding the relation between neural and cognitive phenomena. 
For this reason, I have not discussed evidence from the related field of developmental 
behavior genetics. In general, developmental behavior genetics tends to be concerned with 
correlations between the molecular level (genetics) and gross behavioral measures such as 
IQ. With some notable exceptions, little effort is made to specifically relate these two levels 
of explanation via the intermediate neural and cognitive levels. Having pointed out the dif-
ferent focus of developmental cognitive neuroscience, my hope is that this book is written 
to be both accessible and informative to those in related and overlapping disciplines.

The above comments go some way to explaining the choice of material that I have pre-
sented in the book. However, I have no doubt that there is a substantive amount of excel-
lent experimentation and theorizing that could have been included but was not. Since this 
is intended as a brief introduction to the field, I have chosen to focus on a few particular 
issues in some detail. Of course, the choice of material also reflects my own biases and 
knowledge since the book is intended as an introductory survey of the field as viewed from 
my own perspective. I apologize in advance for the inevitable omissions and errors.

The book is aimed at the advanced-level student and assumes some introductory knowl-
edge of both neuroscience and cognitive development. Students without this background 
will probably need to refer to more introductory textbooks in the appropriate areas. I also 
hope that the book will attract developmentalists with an interest in learning more about 
the brain, and cognitive neuroscientists curious as to how developmental data can help 
constrain their theories about adult functioning. But most of all I hope that the book 
inspires readers to find out more about the field, and to consider a developmental cognitive 
neuroscience approach to their own topic.



xxii

It is now several decades since the first edition of this book was published, and the field 
continues to grow rapidly, inspiring us to prepare this fifth edition of Developmental 
Cognitive Neuroscience: An Introduction. The expansion of the field has been driven by a 
number of factors, including development of new technologies and analysis techniques 
and increasing linking of developmental cognitive neuroscience with other fields such as 
clinical sciences and social and educational policy making.

The continuing growth in the field is exciting, and we hope that this introduction to it 
will motivate further work in this area. In order to better cover these rapid developments, 
particularly in the areas of mid-childhood and adolescent development, social cognition, 
and neuroimaging, we have been delighted to recruit a third author—Iroise Dumontheil. 
The abundance of studies published means that we will not be exhaustively reviewing the 
entire area; this book does inevitably reflect to some extent our biases—but always with the 
aim of best illustrating developmental cognitive neuroscience approaches and theory.

One area that has grown considerably since the publication of the last edition is applying 
developmental cognitive neuroscience in global and cross-cultural settings. Thus, in this 
fifth edition we have included a new chapter addressing this area. Building from the fourth 
edition we have continued to include clinical and educational issues as well, reflecting the 
continued research and applied interest around these topics.

There will always be topics that we cannot completely cover within this volume—as in 
previous volumes, we give pointers to further reading which can guide the way on broader 
issues. We also continue to include topics for further thought and discussion at the end 
of each chapter. The website with teachers’ resources is also still available in an updated 
form—here there are multiple choice, short answer, and essay questions available to 
facilitate formulation of assessments in courses on developmental cognitive neuroscience.

We would like to thank our colleagues and collaborators for educating and informing us 
on so many topics. Likewise, we owe thanks to our publishers for their continued support 
and commitment to this book throughout the years.
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This book is accompanied by a companion website:

www.wiley.com/go/johnson/devneuro5e 

The website includes:

●● Multiple choice questions, short answer questions and an answer guide

About the Companion Website
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The Biology of Change

In this introductory chapter we discuss a number of background issues for developmental 
cognitive neuroscience, beginning with historical approaches to the nature–nurture 
debate. Constructivism, in which biological forms are an emergent product of complex 
dynamic interactions between genes and environment, is presented as an approach to 
development that is superior to accounts that seek to identify pre-existing information 
exclusively in either genes or the external environment. However, if we are to abandon 
existing ways of analyzing development into “innate” and “acquired” components, this 
raises the question of how we should best understand developmental processes. One 
scheme is proposed for taking account of the various levels of interaction between genes 
and environment. Following this, a number of factors are discussed that demonstrate 
the importance of the cognitive neuroscience approach to development, including the 
increasing availability of brain imaging and molecular approaches around the globe. 
Conversely, the importance of taking a developmental approach to analyzing the rela-
tion between brain structure and cognition is reviewed. In examining the ways in which 
development and cognitive neuroscience can be combined, three different perspectives 
on human functional brain development are discussed: a maturational view, a skill 
learning view, and an “interactive specialization” framework. We expand on the latter 
framework, which will be used to structure evidence discussed in later chapters, and 
revisited in the closing chapter. Finally, the contents of the rest of the book are outlined.

Viewpoints on Development

As many people know, the changes we can observe during the growth of children from 
birth to adolescence are truly amazing. Perhaps the most remarkable aspects of this growth 
involve the brain and mind. Accompanying the fourfold increase in the volume of the brain 
during this time are numerous, and sometimes surprising, changes in behavior, thought, 
and emotion. An understanding of how the developments in brain and mind relate to each 
other could potentially revolutionize our thinking about education, social policy, and dis-
orders of mental development. It is no surprise, therefore, that there has been increasing 
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interest in this new branch of science, including from grant funding agencies, medical 
charities, and international governmental summits. Since the publication of the first 
edition of this book in 1997, this field has become known as developmental cognitive 
neuroscience.

Developmental cognitive neuroscience has emerged at the interface between two of the 
most fundamental questions that challenge humankind. The first of these questions con-
cerns the relation between mind and body, and specifically between the physical substance 
of the brain and the mental processes it supports. This issue is fundamental to the scientific 
discipline of cognitive neuroscience. The second question concerns the origin of organized 
biological structures, such as the highly complex structure of the adult human brain. This 
issue is fundamental to the study of development. In this book we will show that light can 
be shed on these two fundamental questions by tackling them both simultaneously, and 
specifically by focusing on the relation between the postnatal development of the human 
brain and the emerging cognitive processes it supports.

The second of the two questions above, that of the origins of organized biological struc-
ture, can be posed in terms of phylogeny or ontogeny. The phylogenetic (evolutionary) ver-
sion of this question concerns the origin of species, and has been addressed by Charles 
Darwin and many others since. The ontogenetic version of this question concerns individ-
ual development within a life span. The ontogenetic question has been somewhat neglected 
relative to phylogeny, since some influential scientists have held the view that once a par-
ticular set of genes have been selected by evolution, ontogeny is simply a process of execut-
ing the “instructions” coded for by those genes. By this view, the ontogenetic question 
essentially reduces to phylogeny (e.g., so-called “evolutionary psychology”). In contrast to 
this view, in this book we argue that ontogenetic development is an active process through 
which biological structure is constructed afresh in each individual by means of complex 
and variable interactions between genes and their respective environments. The informa-
tion is not in the genes, but emerges from the constructive interaction between genes and 
their environment. However, since both ontogeny and phylogeny concern the emergence 
of biological structures, some of the same mechanisms of change have been invoked in the 
two cases.

The debate about the extent to which the ontogenetic question (individual development) 
is subsidiary to the phylogenetic question (evolution) is otherwise known as the nature–
nurture issue, and has been central in developmental psychology, philosophy, and neuro-
science. Broadly speaking, at one extreme the belief is that most of the information 
necessary to build a human brain, and the mind it supports, is latent within the genes of the 
individual. While most of this information is common to the species, each individual has 
some specific information that will make them differ from others. By this view, develop-
ment is a process of unfolding or triggering the expression of information already con-
tained within the genes.

At the opposing extreme, others believe that most of the information that shapes the 
human mind comes from the structure of the external world. Some facets of the 
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environment, such as gravity, patterned light, and so on, will be common throughout the 
species, while other aspects of the environment will be specific to that individual. It will 
become clear in this book that both of these extreme views are ill conceived, since they 
assume that the information for the structure of an organism exists (either in the genes or 
in the external world) prior to its construction. In contrast to this, it appears that biological 
structure emerges anew within each individual’s development from constrained dynamic 
interactions between genes and various levels of environment, and is not easily reducible to 
simple genetic and experiential components (Scarr, 1992).

It is more commonly accepted these days that the mental abilities of adults are the result 
of complex interactions between genes and environment. However, the nature of this inter-
action remains controversial and poorly understood, although, as we shall see, light may 
be shed on it by simultaneously considering brain and psychological development. Before 
going further, however, it is useful briefly to review some historical perspectives on the 
nature–nurture debate. This journey into history may help us avoid slipping back into ways 
of thinking that are deeply embedded in the Western intellectual tradition.

Throughout the 17th century there was an ongoing debate in 
biology between the so-called “vitalists,” on the one hand, and 
the “preformationists,” on the other. The vitalists believed that 
ontogenetic change was driven by “vital” life forces. Belief in 
this somewhat mystical and ill-defined force was widespread 
and actively encouraged by some members of the clergy. 
Following the invention of the microscope, however, some of 
those who viewed themselves as being of a more rigorous scien-
tific mind championed the preformationist viewpoint. This 
view argued that a complete human being was contained in 
either the male sperm (“spermists”) or the female egg (“ovists”). 
In order to support their claim, spermists produced drawings of 
a tiny, but perfect, human form enclosed within the head of 
sperm (see Figure 1.1). They argued that there was a simple and 
direct mapping between the seed of the organism and its end 
state: simultaneous growth of all the body parts. Indeed, prefor-
mationists of a religious conviction argued that God, on the 
sixth day of his work, placed about 200,000 million fully formed 
human miniatures into the ovaries of Eve or sperm of Adam 
(Gottlieb, 1992)!

Of course, we now know that such drawings were the result 
of overactive imagination, and that no such perfectly formed 
miniature human forms exist in the sperm or ovaries. However, 
as we shall see, the general idea behind preformationism, that 
there is a pre-existing blueprint or plan of the final state, has 
remained a pervasive one for many decades in biological and 
psychological development. In fact, Oyama (2000) suggests that 
the same notion of a “plan” or “blueprint” that exists prior to 
the development process has persisted to the present day, with 
genes replacing the little man inside the sperm. As it became 

Figure 1.1  Drawings 
such as this influenced a 
17th-century school of 
thought, the “spermists,” 
who believed that there 
was a complete 
preformed person in each 
male sperm and that 
development merely 
consisted of 
increasing size.
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clear that genes do not contain a simple “code” for body parts, in more recent years, “regu-
lator” and “switching” genes have been invoked to orchestrate the expression of the other 
genes. Common to all of these versions of the nativist viewpoint is the belief that there is a 
fixed mapping between a pre-existing set of coded instructions and the final form. We will 
see in Chapter 3 that we are discovering that the relationship between the genotype and its 
resulting phenotype is much more dynamic and flexible than traditionally supposed.

On the other side of the nature–nurture dichotomy, those who believe in the structuring 
role of experience also view the information as existing prior to the end state, only the 
source of that information is different. This argument has been applied to psychological 
development, since it is obviously less plausible for physical growth. An example of this 
approach came from some of the more extreme members of the behaviorist school of psy-
chology who believed that a child’s psychological abilities could be entirely shaped by its 
early environment. Since that time, some developmental psychologists who work with 
computer models of the brain have suggested that the infant’s mind is shaped largely by the 
statistical regularities latent in the external environment. Such efforts can reveal hitherto 
unrecognized contributions from the environment, and it will become evident in this book 
that these computer models can also be an excellent method for exploring types of interac-
tion between intrinsic and extrinsic structure.

The viewpoints discussed above share the common assumption that the information 
necessary for constructing the final state (in this case, the adult mind) is present prior to the 
developmental process itself. While vitalists’ beliefs were sometimes more dynamic in 
character than preformationists’, the forces that guided development were still assumed to 
originate with an external creator. Preformationism in historical or modern guises involves 
the execution of plans or codes (from genes) or the incorporation of information from the 
structure of the environment. Oyama (2000) argues that these views on ontogenetic devel-
opment resemble pre-Darwinian theories of evolution in which a creator was deemed to 
have planned all the species in existence. In both the ontogenetic and phylogenetic theories 
of this kind a plan for the final form of the species or individual exists prior to its emergence.

Following on from this, there have been steps forward in thinking about ontogenetic 
development, called constructivism. Constructivism differs from preformationist views in 
that biological structures are viewed as an emergent property of complex interactions 
between genes and environment. Perhaps the most famous proponent of such a view with 
regard to cognitive development was the Swiss psychologist Jean Piaget. The essence of 
constructivism is that the relationship between the initial state and the final product can 
only be understood by considering the progressive construction of information. This con-
struction is a dynamic and emergent process to which multiple factors contribute. There is 
no simple sense in which information either exclusively in the genes or in the environment 
can specify the end product. Rather, these two factors combine in a constructive manner 
such that each developmental step will be greater than the sum of the factors that contrib-
uted to it. The upshot of this viewpoint is not that we can never understand the mapping 
between genetic (or environmental) information and the final product, but rather that this 
mapping can only be understood once we have unraveled some of the key interactions that 
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