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Preface 

In 1980, I published a book titled Hydrophobic Interactions, wherein I summarized 
all that was known at that time about the hydrophobic (HφO) effects: solvation and 
hydrophobic interactions. The more general term “solvent-induced interactions” was 
studied mainly in connection with the effect of a solvent on the interaction between 
two charged particles. 

Toward the end of the 50s, Kauzmann (1959) introduced the idea of “hydrophobic 
bonds”—later referred to as “hydrophobic interactions”—to explain the stability of 
the 3D structure of proteins. This idea dominated the field of protein chemistry in its 
entirety, including the protein folding problem and the self-assembly of proteins. My 
contributions to the field were: First, a clear-cut definition of the concepts of “HφO 
solvation” and “HφO interaction,” and second, a new and useful measure of both the 
HφO solvation and HφO interactions, Ben-Naim (1971a, b, 1972a, b, 1974). 

The application of the new definition and new measure of the HφO effects led to 
the establishment of the fact that there is a tendency of the two HφO molecules to 
adhere to each other, and that this tendency is far stronger in aqueous solutions than 
in any other solvent for which the relevant data was available. 

In my book’s preface, Ben-Naim (1980), I wrote: 

…in spite of my research in this field over almost ten years, I cannot confirm that there is 
at present either theoretical or experimental evidence that unequivocally demonstrates the 
relative importance of hydrophobic interactions over other types of interaction in aqueous 
solutions. 

In this quoted paragraph, I did not specify the processes in which the HφO inter-
actions were involved, but it was clear from the context of the preface as a whole that 
I was referring specifically to the processes of protein folding and protein–protein 
association. 

In the 1980s, it was believed that direct hydrogen bonds (HBs) did not contribute 
significantly to the stability of proteins. This led to the widespread acceptance of the 
idea that HφO interactions are the most important factors in determining the stability 
of proteins.

vii



viii Preface

However, the situation changed dramatically in the late 1980s, upon the discovery 
of some new hydrophilic (HφI) effects. It was found that some HφI interactions are 
far stronger than the corresponding HφO interactions. Contrary to common belief, 
it was also ascertained that direct HBs contribute significantly to the stability of 
proteins; and that the role of HφO effects in protein was grossly exaggerated. 

Unfortunately, there are still numerous scientists who still subscribe to the old 
and obsolete ideas regarding the role of HBs and HφO effects in protein stability in 
spite of the overwhelming evidence that there are many more HφO interactions, and 
that each of these is far stronger than the corresponding HφO effect. 

This book is in some sense a sequel to my previous book which was published in 
1980. However, its main message is that for quite a long-time people were misled to 
believe in the idea of the “most important” HφO effects. In a way, this book presents 
a paradigm shift from HφO to HφI. It will be shown that various HφI effects not 
only explain the stability of the structure of proteins and the speed of the process 
of protein folding but also effectively expunge the mystery associated with some 
biochemical processes such as protein folding and self-assembly of proteins. 

The first three chapters deal with some basic definitions of solvent-induced effects 
and narrate the story of the evolution of the ideas about the factors that are important 
for protein stability; from early ideas about HBs to HφO effects and finally to the 
HφI effects. In Chap. 4, we summarized what is known about HφO solvation and 
interactions. It is shown that these HφO effects are very different in strength when 
they are applied to entire molecules, and on groups attached to a protein. Chapter 5 
is dedicated to HφI effects. Here we present the evidence regarding their strength 
based on theoretical, experimental, and simulated calculations. 

The last chapter summarizes the implementation of the HφI effects in the expla-
nations of the long-lasting problems such as protein folding and self-assembly of 
proteins. 

Jerusalem, Israel Arieh Ben-Naim 
https://ariehbennaim.com 
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Chapter 1 
Introduction, Definitions 
and Motivations for Studying 
Solvent-Induced Interactions 

In the first part of this chapter we start by defining the interaction energy between 
two or more particles in different media and express these interactions in terms of 
thermodynamic quantities. In the second part, we discuss the motivation for studying 
these interactions in the context of the so-called protein folding problem (PFP). We 
shall survey the main historical landmarks in the history of studying solvent-induced 
interactions (SII) in connection with the PFP. 

1.1 Definitions; Direct and Indirect Interactions 

The basic idea of solvent-induced interactions (SII) is quite simple. We can view the 
SII as an extension of the concept of intermolecular interaction between two atoms 
or two molecules in a vacuum. 

Figure 1.1 shows two spherical particles (A and B which can either be identical 
or different particles). The intermolecular interaction between these two particles 
is defined as the work (i.e. the force, times distance) involved in bringing the two 
particles from infinite separation to the final distance R. We denote this work by: 

W (v) (∞ →  R) = U (R) − U (∞) = U (R) (1.1)

The superscript (v) is for “vacuum,” or in an ideal-gas phase. On the left-hand 
side, we write the work (W ) associated with the process, denote by (∞ →  R), as  
the difference between the potential energy of this system at R, minus the potential 
energy of the same system at infinite separation (∞). Since the latter is assumed to be 
zero, we omit U (∞) and simply identify the work W (v) (∞ →  R) with the potential 
energy U (R) which is also referred to as the direct interaction energy between the 
two particles at a distance R in a vacuum.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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2 1 Introduction, Definitions andMotivations for Studying Solvent-Induced…

Fig. 1.1 Two simple spherical particles A and B are brought from infinite separation to the final 
distance R, in a vacuum or in an ideal-gas phase

For non-spherical particles, the interaction energy might also be dependent on the 
orientations of the two particles as well as on the internal configuration of the two 
molecules, (say, proteins). 

We now extend the concept of interaction between the two particles and apply it 
to the same two particles but in a solvent, or in a liquid phase (l), Fig. 1.2. The  work  
associated with the process (∞ →  R) no longer depends only on R but also on some 
thermodynamic parameters of the system. 

Figure 1.2 shows the same process as in Fig. 1.1 but now the two particles are 
immersed in some “solvent.” Clearly, the work associated with the process would 
depend on the density of the solvent molecules, the temperature at which the process 
is carried out, and on whether the solvent is or is not at equilibrium. 

In this book, we always assume that the solvent is at equilibrium. Also, we assume 
that process (∞ →  R) is carried out very slowly (quasi-statically) in such a way 
that while the two particles are moved, the state of equilibrium of the solvent is 
maintained. 

The origin of the difference in the amount of work associated with the processes 
in Figs. 1.1 and 1.2 is easy to understand, qualitatively. Let us start with two simple

Fig. 1.2 The same process as in Fig. 1.1, but the two spherical particles A and B are in a liquid 
phase 
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Fig. 1.3 The same process as in Fig. 1.1, but the “solvent” consists of a single particle C 

cases of “solvents.” Suppose for simplicity that there is only one solvent particle in 
the system, Fig. 1.3. 

In this case, in addition to the direct interaction U (R) between the two particles, 
A and B (which is presumed to be the same as in Fig. 1.1), we also have indirect 
interactions mediated through the “solvent.” In the simplest case of Fig. 1.3, we  
have only one solvent molecule, denoted by C. Here, we have in addition to the 
interactionU (RAB), also the two additional interactionsU (RAC ) andU (RBC ). These 
two interactions can either cause attraction or repulsion between the two particles 
A and B, depending on the type of interactions U (RAC ) and U (RBC ), and on the 
location of the solvent particle. For instance, if A attracts C, and C attracts B, then 
these two interactions cause an indirect attraction between A and B. It should be 
noted that in a liquid of hard-sphere particles, all the direct pairwise interactions are 
repulsive, yet these repulsive interactions produce indirect attractive interactions. 
For details see Refs. [1–3]. 

Remember that the process we carried out is the same as in Fig. 1.1. The “solvent” 
particle is free to move around while the two particles A and B approach each other. 
Therefore, in studying the work W (∞ →  R) we need to account for the average 
indirect interactions over all possible configurations of the solvent molecule. 

Another simple example is shown in Fig. 1.4. Here we have a “solvent” 
consisting of two, denoted by C and D. In this case, we have in addition to the 
direct interaction U (RAB), five additional interactions U (RAC ), U (RAD), U (RBC ), 
U (RB D) and U (RC D). These five interactions can either cause attraction or repulsion 
between the two particles A and B. Again, recall that the process we carried out is the 
same as in Fig. 1.1. The “solvent’ particles are free to move around while the two parti-
cles A and B approach each other. Therefore, in studying the work W (∞ →  R) we 
need to account for the average indirect interactions over all possible configurations 
of the solvent molecules.

Clearly, when the solvent consists of many molecules, the difference between 
the direct interaction U(R), and the work function W (∞ →  R), becomes more and 
more complicated. This is a fortiori true when the solvent is a complicated liquid like 
water. It is here that statistical mechanics is most useful in studying the SII between 
two (or more) particles (or groups of proteins) in different solvents.
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Fig. 1.4 Two particles A and B at fixed positions and at a distance R, in a “solvent” consists of two 
particles C and D. Here, in addition to the direct interaction between A and B, there are five more 
interactions that contribute to the indirect interaction between A and B

In most of this book, we will assume that the solvent is maintained at equilibrium 
and at a constant volume and temperature. Also, the total number of solvent molecules 
will always be assumed to be constant. In such a case, the work W (∞ →  R) is related 
to the change in the Helmholtz energy change in a system consisting of two particles 
at fixed positions and at a distance R, and a solvent of N molecules in a volume V, 
and at temperature T. Thus, we write: 

W (l) (∞ →  R) = A(T , V , N ;∞) − A(T , V, N ; R) (1.2) 

The superscript (l) is for the “liquid phase.” In most of the experiments, in which 
SII has been studied the solvent was maintained at constant temperature and pressure 
(rather than volume). In this case, the work W (∞ →  R) is related to the Gibbs energy 
change in the process, i.e. 

W (l) (∞ →  R) = G(T , P, N ;∞) − G(T, P, N ; R) (1.3) 

Fortunately, for the processes we will be discussing in this book, there is not 
much difference in the numerical values of the Helmholtz and Gibbs energies, see 
Ben-Naim [2], for some numerical examples. 

Figure 1.5 shows the same process (∞ →  R), as discussed above carried out 
in both an ideal gas (or in a vacuum) and in a liquid phase (l). We now define the 
solvent-induced interactions (SII) by difference: 

δW (R) = W (l) (∞ →  R) − W (v) (∞ →  R) 
= �A(R) − U (R) 
= �G(R) − U (R) (1.4)


