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 Preface

“Energy and persistence conquer all things.”
Benjamin Franklin (1706–1790)

Considering the United Nations Agenda 2030 for Sustainable Development and the urgent 
need to reduce the environmental impact of current and emerging technologies, the devel-
opment of sustainable smart and multifunctional materials and processes is essential for 
an increasing number of application areas.

One of the most relevant areas is energy, based both on the increasing energy demand 
that must be supported by a growing share of renewable energy sources and energy storage 
systems and in the electrification and digitalization of the economy in the scope of the 
Industry 4.0 and Internet of Things (IoT) paradigms, demanding ubiquitous sensing, data 
communication systems, and mobile electronic devices, also relying in energy storage 
systems.

In this book, the current state of the art on energy storage devices based on sustainable 
materials is addressed within the framework of the circular economy.

Further, the main applications being developed for these energy storage devices as well 
as the main advantages and remaining challenges in this research field are presented.

The first chapter provides an overview on circular economy, including the general con-
cepts, definition, benefits, and origins. The principles of the circular economy are presented 
and their relevance in the context of energy is discussed. Also, the approach based on the 
sustainability for energy field, with special focus on battery devices, is described.

Chapter two presents the energy carrier properties of reactive metals and their  application 
in energy storage applications. The economic and environmental implications of reactive 
metals are also discussed.

Chapters three, four and five focuses on sustainable battery materials, covering materials 
for lithium‐ion batteries, beyond lithium, and biodegradable batteries, respectively.

Chapter six is dedicated to sustainable materials for supercapacitor devices, with special 
attention to electrodes and electrolyte materials. Recent advances on nanomaterials for 
electrodes are presented and discussed.

Chapters seven and eight focuses on sustainable approaches for fuel cells, describing the 
materials for fuel cell devices and the recent advances in microbial fuel cells, respectively.

Chapter nine presents multifunctional sustainable materials for energy storage based on 
biomass‐derived electrodes and traditional carbon electrodes for redox flow batteries.
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Chapters ten and eleven focuses on sustainable devices and their corresponding design, 
covering sensors/actuators and devices in the scope of Internet of Things (IoT), respectively.

Chapter twelve reports on waste prevention for energy storage devices based on second‐
life use of lithium‐ion batteries.

Chapter thirteen describes the recycling procedures for energy storage devices with a 
particular focus on the implementation of the electric vehicle.

Finally, chapter fourteen summarizes some of the open questions, needs, and future 
trends in the scope of the principles of sustainability of materials and processes applied to 
energy storage systems.

This book was only possible by the excellent contributions of the authors who accepted 
the invitation to write different chapters in this relevant, needed, and timely research and 
technological field that encompasses sustainability and energy storage systems. The editors 
are grateful for the time and effort to write these magnificent chapters that will serve as a 
reference for the state of the art and as a guide for further developments in this area. For us, 
it was real pleasure and an honor to have contacted, to have worked together, and to pro-
vide all together the important milestone that this book represents!

Also, this book would not have been possible without the support, understanding, and 
dedication of our research group and also of the research centers at the University of 
Minho, Braga, Portugal and BCMateriais, Basque Center for Materials, Applications and 
Nanostructures, Leioa, Spain, to which the different editors belong. Pushing science and 
technology forward through the idealization, writing and materialization of a book is one 
of the most beautiful and relevant efforts to share with you all!

Last but not least, we truly thank the excellent support from the team from Wiley: from 
the first contacts with Sarah Higginbotham and Sakeena Quraishi to the latter support 
from Stefanie Volk and Jenny Cossham. The continuous support, technical expertise, 
patience, and kindness were essential to make this book come true. It has been a pleasure 
working with you all!

Finally, being a book that covers sustainable materials for batteries, supercapacitors, and 
fuel cells; energy storage devices for sensors, biomedical, and wearable applications, as well 
as recycling and utilization, the book can be used on a variety of different scopes: from 
researcher and professionals aiming to enter any of the different fields covered by the book 
to courses at universities focusing on sustainable energy. It is also suitable for political 
organizations, companies, and NGOs focusing on this subject and/or organizing specific 
funding schemes and/or development strategies in the area. The editors truly believe that 
this book will become a milestone to further foster increasing scientific and engineering 
efforts based on sustainability and circular economy paradigms applied to energy storage 
devices, urgently needed to successfully tackle some of the main challenges society is fac-
ing nowadays: energy and environment.

    Carlos Miguel Costa, Renato Gonçalves, and  
Senentxu Lanceros-Méndez

Braga, Portugal
10 November 2022
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1.1  Introduction

Since the last century, it is observed that fast economic growth worldwide has also led to a 
strong environmental impact. Thus, efforts from different world countries are being 
directed toward the development of more sustainable technologies. In this context, the 
attention to the circular economy concept increased, where the waste of resources and 
environmental pollution matters have been intensively addressed in a variety of ways. 
Different countries have been developing approaches to increase the implementation of 
the circular economy paradigm in their own country to substitute the current linear econ-
omy model, which leads to a strong environmental impact  [1]. Different countries and 
geographical areas such as China, the United States, the European Union, and India have 
implemented targets and conditions to improve the circular economy not only for their 
individual country but also to interrelate which other countries create a world circular 
economy based on exchange and product valorization [2].

The general concept of circular economy is based on the fact that economic activity con-
tributes to the overall sustainability of the system. The circular economy concept recog-
nizes how important the functioning of the economy is at any level  – large and small 
businesses, organizations and individuals, and globally and locally. Thinking about the 
subject, it is realized that nature has no room for waste or trash. That is, all the elements in 
nature are related in a delicate balance. Thus, the circular economy must be a system of use 
of resources where the reduction, reuse, and recycling of elements predominate. 
Considering this, the circular economy model is based on consumption and production 
in  relation to concepts such as sharing, leasing, reusing, repairing, refurbishing, and 
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recycling, preserving the materials and products as long as possible and extending their life 
cycle. Through the reduction of waste and extending the material’s life cycle, the circular 
economy can also provide further value.

Unlike the traditional model of linear economy, where natural resources and energy are 
turned into products that are ultimately destined to become waste based on a take- make- 
consume- throw- away pattern [3], a circular economy employs reuse, sharing, repair, refur-
bishment, remanufacturing, and recycling to create a closed- loop system, minimizing the 
use of resource inputs and the creation of waste, pollution, and carbon emissions [4]. In 
this sense, the circular economy model relies on large quantities of cheaper, easily acces-
sible materials and energy, and aims to keep products, materials, equipment, and infra-
structure [5] in use for longer time, thus improving the productivity of the resources. Waste 
materials and energy should become input for other processes through waste valorization: 
either as a component for another industrial process or as regenerative resources for nature 
(Figure 1.1).

A circular economy approach aims to preserve the value of products, materials, and 
resources for as long as possible. Following the procedures of fewer products discarded 
and fewer materials extracted, least energy is lost and the environment is preserved. 
Thus, the circular economy, in order to tackle global challenges like climate change, 
biodiversity loss, waste, and pollution, is a framework of three principles, driven by 
design: eliminate waste and pollution, keep products and materials in use, and regener-
ate natural systems [6].

The circular economy proposes an opportunity to restructure our economy. This compre-
hensive strategy that aims to reduce both the input of raw materials as well as the produc-
tion of waste closes the cycles or economic and ecological flows of resources, providing the 
benefits summarized in Table 1.1 for the economy, the environment, and the community.

Share

Circular economy

Linear economy

Reuse

Pollutants
Throw
away

ConsumeMakeTakeResources

Paradigm shift

Recycle

Remanufacture

RefurbishRepair

Figure 1.1 An illustration showing 
the paradigm shift from the take- 
make- consume- throw- away pattern of 
the linear economy to the circular 
economy approach.
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1.2  Circular Economy and the Central Role of Energy

The notion of circularity has its origin in the historical as well as in the philosophical field. 
The idea of feedback and cycles in world systems is old and arises in various philosophical 
schools. This concept regained interest at the end of World War II, when computer studies 
of nonlinear systems revealed the complex, connected, and unpredictable nature of our 
world. Those studies led to the conclusion that the circular economy concept is more like a 
metabolism than a machine. In this scope, recent technological advances have the power to 
support the transition to a circular economy through modeling and computer simulations, 
allied to the new materials and production technologies. Finally, the term circular economy 
was first used in Western literature in 1980 [7] to describe a closed system of interactions 
between the economy and the environment. Therefore, the circular economy is part of the 
study of feedback from nonlinear systems, including living systems.

More recently, the idea and concept of circular economy have been introduced in the 
guidelines and action plans of institutions worldwide. In 2015, the European Commission 
adopted an ambitious “Circular Economy Package.” An EU Action Plan for the circular 
economy establishes a specific program of actions outlining measures that cover the entire 
product life cycle: from production and consumption to waste management and the market 
for secondary raw materials. On 4 March 2019, the European Commission adopted a com-
prehensive report on the implementation of the Circular Economy Action Plan.

On 11 March 2020, the European Commission adopted a new Circular Economy Action 
Plan – one of the main building blocks of the European Green Deal, Europe’s new agenda 
for sustainable growth. The new Action Plan announces initiatives along the entire life 
cycle of products, targeting for example their design, promoting circular economy processes, 

Table 1.1 Summary of the benefits provided by the circular economy in the three main areas 
of action.

Benefit area

Economy Creates balanced wealth

Opportunities for local jobs and social integration

Reduces expenses and investments. More innovative and efficient ways of 
producing and consuming

Reorients the production of the countries, protecting businesses against scarcity 
of resources and volatile prices

Environment Reduces the use of resources

Optimization of waste management which boosts recycling and reduces landfill

Limits energy consumption, fewer production processes require less energy

Benefits for the environment in terms of climate and biodiversity, air, soil, and 
water preservation

Community Allows the change of consumption habits.

Creates awareness

Balances society with the economy and the environment
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fostering sustainable consumption, and aiming to ensure that the resources used are kept in 
the EU economy for as long as possible. It introduces legislative and non- legislative meas-
ures targeting areas where action at the EU level brings real added value.

In addition, the circular economy has strong synergies with the EU’s objectives on cli-
mate and energy and with the Commission’s package on “Clean Energy for all Europeans.” 
The circular economy is also instrumental in supporting the EU’s commitments on 
 sustainability, as outlined in the communication “Next steps for a sustainable European 
future” and in particular to reach Sustainable Development Goal 12 “Responsible con-
sumption and production” [8]. China has established guidelines and regulations at a multi- 
level scale from micro to macro in a top- down structure. The Circular Economy Promotion 
Law, published in 2008, is one of the many efforts that promote the 3R policy (reduce, 
reuse, and recycle). With the “National Development and Reform Commission (NDRC)” in 
2016, digital solutions have into account the circular economy to design products and new 
business models. In 2018, the “Circular Economy Promotion Law” was revised highlighting 
the recycling processes until 2020, by the domestic–international circulation  [9]. Latin 
American countries are organizing primary work on circular economy roadmap since 2020 
based on policies related to landfill bans, extended producer responsibility, and renewable 
energy end- of- use  [10]. The US National Recycling Strategy implements a national recy-
cling rate goal of 50% by 2030. This goal is based on five strategies: support recycling, stand-
ardize measurements, reduce contamination from recycling, improve markets for recycling 
commodities, and increase materials recycling collection and infrastructures [11].

Although some circular economy practices are already well established in some places, 
most definitions and actions relate to perspective possibilities and strategies, rather than to 
what actually exists. Multiple interrelated concepts such as loop closing, ecodesign, indus-
trial ecology, industrial symbiosis, life cycle analysis, and performance economy have con-
tributed to the concept of a circular economy. Nonetheless, a strong policy direction is 
likely needed for effective implementation [12].

The general objective of the circular economy is to obtain products and manufacturing 
processes that consume little energy and do not generate waste or garbage that negatively 
affect society and the environment. In order to meet this important challenge, there are dif-
ferent components or principles that define how the circular economy should be implemented:

1) The waste becomes a resource: it is the main characteristic. All biodegradable mate-
rials return to nature and the non- biodegradable materials are reused.

2) The second use: to reintroduce into the economic circuit those products that no longer 
correspond to the initial needs of the consumers.

3) Reuse: reuse certain residues or certain parts of them, which can still work for the pro-
duction of new products.

4) Repair: find a second life for damaged products.
5) Recycling: use the materials found in waste.
6) Valorization: take advantage of waste that cannot be recycled.
7) The economy of functionality: the circular economy proposes to eliminate the sale 

of products in many cases to implement a system of renting goods. When the product 
completes its main function, it returns to the company, which will disassemble it to 
reuse its valid parts.
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8) Energy from renewable sources: elimination of fossil fuels to produce the product, 
reuse, and recycle.

9) Eco- conception: considers the environmental impacts throughout the life cycle of a 
product and integrates them from its conception.

10) Industrial and territorial ecology: establishment of a mode of industrial organiza-
tion in the same territory characterized by optimized management of stocks and flows 
of materials, energy, and services.

These ten principles are interrelated in the concept of circular economy as represented in 
Figure 1.2.

As a consequence of the 10 principles, oil and gas energy resources are incompatible with 
the idea of a circular economy, since they represent “development that meets the needs of 
the present while compromising the ability of future generations to meet their own 
needs” [13]. A sustainable circular economy can only be powered by renewable energies, 
such as wind, solar, hydropower, and geothermal, among others [14].

What gives entities the ability to achieve “net zero” carbon emissions, is that they can 
offset their fossil fuel consumption by removing carbon from the atmosphere. While this 
is a necessary first step, it has been also stated that in order to create a truly circular 
economy we should adopt the concept of “true zero” as opposed to “net zero,” which is 
eliminating fossil fuel consumption entirely so that all energy is produced from renewable 
sources [15, 16].

Current growth projections in the renewable energy industry expect a significant amount 
of energy and raw materials to manufacture and maintain these renewable systems. 
Nevertheless, “due to the emissions attributed to fossil- fuel electricity generation, the 
overall carbon footprint of renewable energy technologies is significantly lower than for 
fossil- fuel generation over the respective systems lifespan”  [17]. However, there are still 

Recycle/Resource
Reuse/Repair

Intersection of
environmental,
economic and
social aspects

Renewable
energy sources

Limit waste
productionCircular

economy

Figure 1.2 Illustration of the 
relationship between the basic 
principles of the circular economy.
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linear trajectories when establishing renewable energy systems that should be assessed in 
order to fully transition to a circular economy.

In addition to the perspective of renewable energies, different regulations across the 
world have been applied, such as the European Commission, in the field of batteries and 
accumulators, which aims to ensure that batteries and accumulators placed in the EU mar-
ket are sustainable and safe throughout their entire life cycle. This regulation focuses on 
the importance of sustainable energy in the area of batteries and accumulators, as they will 
play an essential role to ensure that many daily- used products, appliances, and services 
work properly anywhere and anytime, constituting an indispensable energy source in our 
society. In the last couple of years, approximately 800 000 tons of automotive batteries, 
190 000 tons of industrial batteries, and 160 000 tons of consumer batteries enter the 
European Union every year, so that, in order to achieve the Green Deal, sustainable batter-
ies for a circular and climate neutral economy are necessary.

1.3  The Central Role of Energy in the Scope 
of Sustainability

Companies are playing a key role in energy transition by contributing to energy security 
and decarbonisation. In the face of growing political pressure and increasing levels of regu-
lation, investors on the one hand and citizens on the other are demanding energy supply 
organizations to address climate change and sustainability. These trends continue to com-
pel energy companies to systematically pursue their transition to affordable, reliable, and 
more sustainable energy and to set ambitious targets in terms of reducing CO2 emissions. 
In this sense, circular approaches decouple economic activity from the consumption of 
materials and energy by building closed cycles in which waste is minimized or even elimi-
nated, and in which resources are reused, including carbon. They do this by using resources 
efficiently, prioritizing renewable inputs, maximizing the effective life of a product, and 
capturing and reusing what was previously considered waste. Obviously, not all actors in 
the energy sector have the opportunity to aim for full circularity. But sticking to circular 
thinking as the core approach will lead to powerful new insights and levers for efficiency 
and costing. The increasing use of renewable energy and energy storage can bring new 
perspectives for a sustainable approach (Figure 1.3) [18].

1.3.1 Energy Generation

Industries with operational models centered on the extraction and use of fossil fuels are 
inherently linear and hard to be compatible with the idea of a sustainable circular econ-
omy. However, companies in these industries are able to incorporate cyclic elements into 
their operations and, in some cases, have adopted technological advances to reduce the 
impact of fossil fuel use. For example, several initiatives are underway to explore the poten-
tial for reusing oil fields and offshore assets after drilling operations cease. One of the most 
common initiatives is the reuse of platforms to support offshore wind projects [19]. In the 
Mediterranean, a system of turbines is being developed that could be used to turn decom-
missioned oil platforms into islands of renewable energy [20]. Further, there are different 
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projects intending to use discontinued offshore oil and gas fields to store CO2 permanently. 
It is estimated to store approximately 3.5 million tons of CO2 per year by 2030 [21]. In this 
regard, other initiatives are experimenting with ways to capture greenhouse gases that 
would otherwise be released into the atmosphere from factories and power plants. These 
gases are being used for enhanced oil recovery, injecting these gases into aging oil fields in 
an attempt to pump out the remaining supply [21, 22].

On the other hand, different organizations are focusing on technologies to generate 
energy based on gas with low carbon emissions. To do this, natural gas is burned with pure 
oxygen instead of air to generate electricity without emitting CO2. This process also avoids 
generating nitrogen oxides, the main air and health pollutant emitted by gas plants [23]. 
Early developments point to a 20% increase in power output compared to a conventional 
plant using the same amount of fuel [24].

Circularity provides a strategic and effective way to identify opportunities for both cost 
savings and value forming. In some cases, switching to renewable energy as an input is the 
first step. As technologies advance, the adoption of zero- emission energy is becoming more 
widespread. This shift to renewable energy is a key driver of the circular economy, and a 
growing number of organizations are seeking to minimize prices, increase sustainability, 
and create long- term strategic costs through the shift. Several aspects are driving renewable 
energy adoption, and the economic dimension is also becoming less of a barrier not only in 
the power generation sector but also for end users [25]. Examples of organizations continu-
ing to move toward renewable energy in order to achieve a sustainable approach span con-
tinents and sectors: in the mining industry, which has generally relied on natural gas or 
diesel to power its operations, significant investments in solar energy and battery technol-
ogy have been announced for ore extraction operations. The integration of photovoltaic 
solar energy combined with large- scale battery storage will eventually meet 25–30% of sta-
tionary energy needs from solar generation [26, 27]. More ambitious plans aim to achieve 
100% energy from renewable sources by mid- 2020s  [28]. Similarly, many refineries and 
chemical plants are moving to solar power to satisfy the energy demand [29, 30].

Although the change to solar energy and batteries is one of the key steps to achieve 
sustainable energy production in all dimensions, without a commitment to better 

Recyclability

StorageGeneration

Sustainable energy

Carbon footprint

Element abundancy/material accessibility

CO2

Figure 1.3 Sustainable energy insights for energy generation and storage.
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recycling, the adoption of renewable energy will come with ever- increasing material 
footprints. Solar panel and battery technology present challenges and opportunities. In 
2016, the International Renewable Energy Agency (IRENA) estimated that there was 
around 250 000 tons of solar panel waste on the planet. The IRENA study shows that many 
technical obstacles need to be overcome before closed circularity for solar panels is feasi-
ble. But the raw materials already have the opportunity to be recycled at a rate of 65–70% 
in weight [31].

According to the International Energy Agency, the energy obtained from wind renewa-
ble sources in 2020 is responsible for around 1500 TWh of the total world energy produc-
tion and it is estimated that in 2030 this production reaches 8000 TWh. This technology 
increased significantly over the last few years contributing to the reduction of carbon emis-
sions. The lifetime of a wind turbine is around 25 years reaching in some cases 35 years. 
Nevertheless, this increase leads to higher consumption of wind turbines that require a 
huge number of different components. To prevent these components from going to land-
fills, it is urgent to develop new components capable of being incorporated into the circular 
economy. The circular economy for this system is focused on recycling, upcycling, extend-
ing life cycles, and a combination of new and fewer materials. To overcome these obstacles, 
some initiatives have been started as increasing funding for resources and development 
(R&D) and incentives to use recycled composite materials [25].

1.3.2 Energy Storage

In the case of battery technologies, the increasing use of battery technology is at the fore-
front of renewable energy storage and transportation decarbonisation strategies. But bat-
tery production itself has a significant carbon footprint. The CO2 footprint from electric 
vehicle fabrication, for example, is higher than for an internal combustion engine vehicle 
fabrication. Nevertheless, the lower direct/indirect emissions during the usage of the elec-
tric vehicle result in a lower overall CO2 footprint [32]. Battery circular economic chain 
should be considered in the context of the end market and assessed against industry bene-
fits for power generation and transportation.

The World Economic Forum and the Global Battery Alliance emphasize the value of 
such cross- sector coupling. However, they also recognize broader concerns about the 
battery cost chain (economic dimension). For example, the production of basic raw 
materials for batteries has been linked to hazardous working conditions, child labor, 
poverty, and other problems related to social and environmental sustainability dimen-
sions [33]. To overcome these obstacles, the European Union, for example, will propose 
by 2023 a new regulation to update the regulation of 2006. This new regulation 
will  restrict not only battery producers but also companies that produce electric 
 vehicles (EVs).

The main battery system used in EVs is lithium- ion batteries, mainly due to the relatively 
high- energy density and the high diversity of power/energy ratios. This system is complex 
and by each battery component (electrodes, separator, electrolyte, current collector, and 
others) there exists a large number of different materials that can be used [34]. Once that, 
the recycling process of this system experiences many difficulties. Different techniques 
(metallurgical processes, including pyrometallurgy and hydrometallurgy) have been 
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developed and improved to recycle these materials. The use of eutectic solvents to extract 
active materials from the cathodes, the use of natural materials, and the use of biodegrad-
able precursors and solvents to allow their reutilization are examples of the different 
approaches used to increase the life cycle of these systems and to reduce the environmental 
impact of materials, devices, and fabrication processes [35].

The cathode electrode is the main costly battery component and is mainly responsible 
for battery energy density. Cathode- active materials such as lithium nickel cobalt alu-
minum oxides and lithium nickel manganese oxides are used in majority of EVs. To 
achieve the sustainability of lithium- ion batteries, one of the possible routes is the use of 
more sustainable materials with less toxicity (cobalt- free) as lithium iron phosphate. 
Furthermore, research has been focusing on the development of other systems, such as 
sodium, sulfur, and others, to develop batteries without lithium to overcome the problem 
associated with lithium extraction  [36]. Together with direct recycling, different 
approaches, such as second- use applications, can avoid battery accumulation in landfills. 
Second- use application is based on giving another use to a battery that no longer has the 
needed capacity in the application that requires less capacity. This approach will not only 
prolong the life of spent batteries but also avoid the extraction, synthesis, purification, 
and modification of materials to fabricate a new battery, increasing the sustainability of 
battery systems [37].

Hydrogen (H2) is the most exciting example of a circular economy across industries, a 
clean fuel with no direct emissions of harmful pollutants or greenhouse gases. However, 
the industrial demand for hydrogen is currently almost completely covered by fossil fuels 
and is therefore one of the most important causes of CO2 emissions. The perspective of a 
hydrogen- powered future is based on the production of hydrogen from low- carbon energy 
sources such as renewable generation (green hydrogen) or from natural gas (blue 
hydrogen) [38].

Hydrogen could play an important role in a sector- coupled circular economy, offering a 
solution to decarbonize a wide range of sectors, including transport, heating, chemicals 
and iron and steel, and production/transformation [39]. Hydrogen and its derivatives such 
as synthetic fuels or chemicals offer an opportunity to replace fossil hydrocarbons, which 
can reduce emissions [39]. In this scope, electricity and hydrogen are complementary and 
both will be needed to achieve climate neutrality and contribute to climate protection and 
sustainability. Since hydrogen can be generated by capturing excess production from solar 
and wind power, it is also a leading contender for a storage solution for renewable energy 
generation.

1.4  Conclusions and Outlook

Energy sustainability approaches and circular economy are nowadays topics with increas-
ing relevance since energy consumption increases year after year. Thus, it is essential to be 
aware in which way this growing energy consumption will impact the ecological footprint. 
The transition to clean energy generation/storage and urgent financial/environmental con-
siderations are taking place toward a sustainable energy system to guarantee the future 
quality of life.
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Environmental sustainability is the responsibility to preserve natural resources and 
protect global ecosystems to support health and well- being, now and in the future. Life 
cycle assessment is a commonly used tool for evaluating the environmental impact. The 
less damage is caused to the environment, the more positively this criterion is fulfilled. 
Opportunities and challenges of the different energy technologies must be faced and 
explored. Some energy technologies, such as photovoltaic, have the possibility of recycling 
up to 95% of their materials; however, challenges such as the presence of hazardous sub-
stances including cadmium, arsenic, lead, and antimony should be overcome. In wind tur-
bine technology, 90% of components could be recycled, although the huge size makes 
transportation costs prohibitive for long- distance hauls. Energy storage systems have the 
opportunity for all metals from a battery to be recycled. Nevertheless, increasing the eco-
nomic profitability and economic efficiency of the recycling process can be challenging, 
due to fluctuating material values.

Raw materials recovery is essential, although recovering these materials and reintroduc-
ing them into production cycles present some challenges. The first is the processing obsta-
cles due to the use of composite materials, the presence of hazardous substances, and low 
concentrations of valuable/scarce elements. Furthermore, the devices and systems are 
typically not designed to facilitate end- of- life/recyclability aspects. Nowadays, market 
 conditions do not properly price using virgin materials vs. recycled ones, associated with 
logistical issues due to the remote locations, size, and safety requirements of energy infra-
structure. The inclusion of materials with high recycling characteristics and less harmful to 
nature must be the way to overcome such obstacles. The standardization of devices, materi-
als, and processing will simplify the later stages of recycling allowing the interconnection 
of raw materials to different applications.

Efforts to overcome these barriers are being implemented by different governments/
authorities in different countries of the world. Sustainability is ruled by three main dimen-
sions: economic, social, and environmental. These three dimensions are strongly inter-
linked and equally interdependent. It is important to keep the balance between these 
dimensions in order to maintain, for example, economic growth without compromising 
the natural environment, resources, and community health. Life cycle costing, social life 
cycle assessment, and life cycle assessment are necessary tools for a better assessment of 
these dimensions.
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