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Chemists have long been motivated to create atomically precise nanoclusters, not only for 
addressing some fundamental issues that were not possible to tackle with imprecise nanoparti-
cles but also to provide new opportunities for applications such as catalysis, optics, and biomedi-
cine. Given the breadth of the book, De-en and I decided to invite a number of experts who are 
working on various types of atomically precise nanoclusters. We thank all the experts for their 
warm support of the book and timely completion of the chapters. Due to space limitations, we 
must apologize to some colleagues for missing their excellent work that could not be included in 
this book.

This book comprises 16 chapters. Chapter 1 provides an introduction to atomically precise nano-
chemistry. Chapters 2 to 10 cover atomically precise metal nanoclusters, such as Au, Ag, Cu, Ni, 
Rh, and the doped/alloyed nanoclusters, as well as the electrocatalytic application in CO2 reduc-
tion and water splitting. Endohedral metallofullerenes, graphene nanoribbons, Zintl clusters, and 
Ti-oxo nanoclusters are discussed in Chapters 11 to 14, respectively. Finally, Chapters 15 and 16 
are devoted to the assembly of nanoclusters (such as Au, Ag, and Cu), including the crystalline 
assembly and the use of nanoclusters as nodes for constructing special types of metal-organic 
frameworks, as well as the sensing and other applications. The atomic-level control in the synthe-
sis, the new types of structures, and the physical/chemical properties of nanoclusters are illus-
trated in various chapters. This book contains not only experimental contributions but also 
theoretical insights into the atomic and electronic structures, as well as the catalytic mechanisms. 
We expect this book to be suitable for graduate and undergraduate students, researchers, and 
industry practitioners.

Overall, the concept of atomic precision is expected to have a major impact on future nanosci-
ence research and other areas. We hope that atomically precise nanochemistry will serve as a hub 
for the unification of various research areas in which precision materials are being created and 
studied. In future research, exquisite nanochemistry will surely bring exciting opportunities in 
both fundamental research and practical applications. Progress in various types of atomically pre-
cise nanoclusters and the hybridization of two or more types of nanoclusters, as well as the assem-
bly of nanoclusters into meso- and macroscopic functional materials, will lead to more exciting 
frontiers.

Rongchao Jin and De-en Jiang
October 2022

Preface
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1.1  Why Atomically Precise Nanochemistry?

Since the beginning of the twenty-first century, nanoscience has made significant progress [1–8], 
especially in the creation of a variety of nanostructures with size and shape control and the discov-
ery of new phenomena at the nanoscale. The rapid progress of nanoscience heavily relies on the 
synthetic breakthroughs  [1–7, 9]. In terms of chemical synthesis, Mother Nature is indeed the 
master, evidenced by, for example, the creation of giant molecules such as DNA and proteins from 
atomic building blocks, and even the buildup of complex photosynthesis machinery, all being at 
the level of atomic precision. While there is still a long way to go for chemists to be on par with 
Mother Nature, we expect that nanochemistry will make giant leaps in the near future toward 
controlling nanostructures with atomic precision [10].

Beside the nanoscience field, the pursuit of atomic precision is also of critical importance in 
other areas (Scheme  1.1), including inorganic cluster chemistry, gas phase cluster science and 
solid-state materials science, as well as supramolecular chemistry. In moving toward larger sizes 
and building up complex architectures (Figure 1.1), precise control over size and structure will 
certainly become more challenging, yet highly exciting and rewarding [11].

1.1.1  Motivations from Nanoscience Research

Over the past two decades, significant advances have been made in controlling the size, shape, 
crystallinity, and composition of many types of nanoparticles, including metal nanoparticles (e.g. 
Au, Ag, Pt, Pd, Rh), semiconductor nanocrystals (e.g. CdSe, InP), and magnetic nanoparticles (e.g. 
Fe, Co, Ni), all with high monodispersity (e.g. size distributions of 5–10%). In addition, several 
shape-controlled nanostructures have been successfully developed, [1–9] such as the nanorods/
nanowires (1D) and nanoprisms (2D). Research on the anisotropic nanostructures (both 1D and 
2D) has significantly expanded the fundamental understanding of the new physicochemical prop-
erties of nanostructures enabled by shape control. Based on the new properties observed, a wide 
range of applications, such as sensing, catalysis, optics, and electronics, have been designed. New 
frontiers keep emerging, which has greatly pushed the frontier of nanoscience research.

Despite the impressive progress in nanoscience, some issues still exist. Below we briefly discuss 
a few issues that hamper nanoscience research from going deeper. By pursuing atomic precision, 
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Figure 1.1  Examples of giant structures of nanoclusters and molecular architectures determined by X-ray 
crystallography. Source: Reprinted with permission from [11]. © 2021 American Chemical Society.

those issues can be overcome or at least alleviated, which will enable nanoscience research to 
reach a new level.

First of all, the polydispersity of nanoparticles (NPs) has long been an issue in nanoscience 
research. The synthesis of NPs tends to produce particles with a polydispersity (more or less). 
When the polydispersity is controlled to be better than 15% (e.g. 10 ± 1.5 nm), such NPs are typi-
cally called monodisperse. Although highly monodisperse NPs (e.g. polydispersity down to 5%) 
have also been made in some cases (Figure 1.2a/b), these NPs are still not of the same size at the 
atomic scale. In other words, no two NPs are the same! Therefore, a major dream of nanochemists 
has long been to synthesize truly uniform NPs (i.e. atomically precise NPs). This dream has now 

Solid state
2D materials, edge control,

defects engineering

Nanoscience
Size/shape control,
plasmon, exciton,

superparamagnetismAtomically precise
nanochemistry

1 Å 1 nm 10 nm 100 nm

Gas phase
cluster science

Metals, nonmetals,
molecule-clusters

Inorganic chemistry
cluster research
Metals, metal-oxo,

Zintl chemistry

Supramolecular
chemistry

Metallo-organic,
Organic

Scheme 1.1  Atomically precise nanochemistry as a “hub” for nanoscience, inorganic cluster chemistry, gas 
phase cluster science, and other areas.
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been partially realized in the case of ultrasmall gold NPs of 1–3 nm in size (Figure 1.2c/d) and sil-
ver as well [10]. Such atomically precise NPs are often termed as nanoclusters (NCs) in order to 
differentiate them from the regular NPs. The success in obtaining atomically precise NCs is criti-
cally important, because they can serve as models for nanochemists to gain fundamental under-
standing of some important issues that were previously not feasible to tackle, such as the 
nanoparticle isomerism, the origin of surface plasmon resonance (SPR), and chemical bonding 
evolution with size [10].

Second, the surface of NPs often remains poorly controlled in the synthesis and thus poorly 
understood. Questions on the precise composition of the surface adsorbates (i.e. stabilizers) and 
how the stabilizers are adsorbed on the particle surface are generally not known for most nanopar-
ticle samples. While transmission electron microscopy (TEM) and various spectroscopy techniques 
are powerful in characterizing NPs, they often cannot reveal the true composition and bonding 
structure of the surface. For solution phase NPs, the surface includes the organic stabilizers and 
the interface to the inorganic core. This organic–inorganic interface (Figure 1.3a) is unfortunately 
very tough to study, [12, 13] because TEM is ineffective in imaging the particle surface (Figure 1.3b) 
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Figure 1.2  Comparison between regular nanoparticles and atomically precise nanoclusters. (a) Monodisperse 
nanoparticles (average: ~5 nm, standard deviation: ~5%) imaged by transmission electron microscopy; 
(b) Typical size distribution (e.g. 5 ± 0.3 nm diameter); (c) Atomically precise Au25(SC2H4Ph)18 nanoclusters 
(1 nm metal core diameter, −C2H4Ph groups are omitted for clarity) assembled in a single crystal; (d) Mass 
spectrometry characterization of Au25(SC2H4Ph)18. Source: Reprinted with permission from [12]. © 2014 
Springer.
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due to insufficient electron scattering by organics (e.g. light atoms of S, C, N, O, and H). While 
scanning probe microscopy [14] can readily reveal the surface molecules via van der Waals forces 
or tunneling currents, unfortunately it is incapable of showing the underlying interface between 
the inorganic core and surface ligands. In molecular science, many spectroscopic tools have been 
developed and are very powerful for analyzing molecules, such as nuclear magnetic resonance 
(NMR), infrared (IR), and Raman scattering, but when they are used for NPs, the polydispersity 
and heterogeneity of regular NPs make it very difficult (or unreliable) to correlate the NMR/IR/
Raman signals with imprecise NPs. Thus, well-defined NPs are critically needed for fundamental 
research, especially in order to understand the surface composition and structure. By revealing the 
interfacial bonding between the stabilizers and the underlying inorganic core through X-ray crys-
tallography (XRC) (Figure  1.3c), many fundamental questions could be addressed, such as the 
nature of active sites in nanocatalysis, charge transfer and catalytic mechanisms, photolumines-
cence blinking, surface magnetism, self-assembled monolayer (SAM) structure, and nanoparticle 
assembly mechanisms [10, 13].

Third, conventional NPs often possess various defects in the interior and/or on the surface, 
which are highly detrimental to many physical and chemical properties, including the stability of 
NPs, photoluminescence, and charge transport. How to eliminate those defects? Is it possible to 
create perfect NPs? These questions are of paramount importance in nanoscience research. Thus, 
new chemistry should be developed to attain atomically precise NPs. Even more exciting is to 
develop capabilities of tailoring or engineering the NP surface for specific applications, e.g. cataly-
sis and biomedicine. These tasks call for the atomically precise NCs.

Fourth, the mechanisms for shape-controlled synthesis of nanoparticles are still not well under-
stood, such as the nucleation and growth mechanisms. For example, small nanoprisms (<10 nm) 
were observed as nuclei in the photo- or plasmon-induced transformation of spherical Ag NPs to 
nanoprisms, [1, 9] but thus far it is not yet clear how the transformation occurs during the nuclea-
tion stage [15, 16], nor how the nuclei subsequently grow to larger nanoprisms (e.g. atom by atom 
in the classical mechanism, particle edge-to-edge fusion  [9], or other unknown processes). 
Considering the important roles of stabilizers, facet-selective binding of stabilizers (or ligands) is 
often invoked to explain the formation of nonspherical (=anisotropic) nanostructures, but many 
details are still unknown yet, including how the ligands are bonded to the surface atoms on specific 
facets such as {111} and {100} of nanoparticles, and what the bonding geometry is (e.g. terminal vs. 
bridging bonds). To understand the mechanism for shape control and relevant issues, atomic-level 
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Figure 1.3  Thiolate-protected gold nanoparticles. (a) Cartoon, (b) High resolution TEM image (ligands 
invisible), (c) X-ray structure of atomically precise Au246(SPh-p-CH3)80 (metal core diameter: 2.2 nm) with 
both metal atoms and surface ligands visible. Source: Adapted with permission from [10, 13]. © 2016 
American Chemical Society and American Association for the Advancement of Science.
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information for both the nucleation and growth processes is critically needed, in which atomically 
precise NCs may provide useful hints.

Last but not least, the applications of NPs such as nanocatalysis and nanomedicine require the 
precise knowledge of the total structure of the NP, not just the core size/shape from TEM analysis. 
In nanocatalysis, the adsorption of reactant(s) occurs on the surface; thus, without knowing the 
surface composition and structure, it would not be possible to understand the catalytic mechanism 
and provide the design principles for efficient catalysts [17]. The same is true in nanomedicine [8]. 
Upon the nanoparticles (e.g. carrying DNA or drug compounds) being injected into an animal or 
human body, these nanoparticles first experience interactions with proteins in blood, glutathione 
in cells, and other types of biomolecules. Knowing the surface of nanoparticles will be critically 
important and can lead to a fundamental understanding of the biodistribution and pharmacoki-
netics [18, 19]; hence, precision medicine can be designed.

Beside the research efforts toward atomically precise metal NCs, it is worth noting that the pur-
suit of atomic precision in semiconductor quantum dot is also emerging [20–22]. In quantum dots, 
the strong quantum confinement makes the properties extremely sensitive to size variation, thus, 
precise control over quantum dot size and structural uniformity is very pressing. Efforts toward 
such goals are underway [22, 23]. In the case of magnetic NPs, the surface disorder often results in 
electron spin randomization (so-called spin canting), hence, a lower magnetization than the bulk 
value, but in certain cases an enhanced magnetization was observed [24, 25]. To unravel the mys-
teries, a precise understanding of the surface atomic structure should be first obtained [26].

To address all the above important issues and many other fundamental ones in nanoscience, 
atomically well-defined NPs are critically needed. Nanoscientists are thus strongly motivated to 
develop atomically precise nanochemistry.

1.1.2  Motivations from Inorganic Chemistry Research

The cluster state is also of wide interest in the inorganic chemistry field. Understanding the chemi-
cal bonding pattern in the cluster state and the pattern evolution with increasing size has long been 
a central task. Since the early twentieth century, research in inorganic chemistry has led to the 
production of metal clusters (typically in ligand-protected form) and also boron clusters, Zintl clus-
ters, and metal-oxo nanoclusters. There is strong interest in pushing up the size of such clusters.

Boron cluster research was pioneered by Stock in the 1910s [27] and has significantly expanded 
the concept of chemical bonding [28]. In contrast to classical covalent bonds in which two electrons 
are shared by two atoms or centers (denoted “2c-2e,” so-called Lewis pair [29]), multicenter bonding 
such as 3c-2e [30] was introduced for boron clusters. In addition, the concept of three-dimensional 
(3D) aromaticity was also put forth [31, 32], which is in contrast with the 2D case, i.e. Hückel aro-
maticity. Such aromaticity rules have been widely applied in later research in different areas.

The Zintl cluster research was initiated by Zintl in the 1930s [33], such as As7
3− and Sb7

3− in 
liquid ammonia. A striking feature is that Zintl clusters are bare (without the need of ligand pro-
tection in solution phase) [34]. Larger sizes are such as [As@Ni12@As20]3−, [35] [Au8Pb33]6−, and 
[Au12Pb44]8− [36]. Understanding the electronic structure of Zintl clusters and the size evolution is 
of particular interest [34, 37]. Several theories, such as the Zintl-Klemm concept [38], were devel-
oped in early work. The Wade-Mingos electron counting rules from the polyhedral borane clusters 
were later introduced into the Zintl cluster field. The concepts of aromaticity and multicenter 
delocalized bonding [32, 39], as well as the superatom electronic picture, [37d, 40] have all been 
applied to Zintl clusters.

Another line of inorganic cluster chemistry involves the metal-oxo chemistry or polyoxometa-
late clusters (POM), which also features atomic precision [41]. The POMs are closely relevant to 
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the corresponding metal oxide in terms of composition and structure, [42] thus, atomically precise 
POMs can serve as molecular or nanoscale models for metal oxides, such as Ti-oxo NCs for mod-
eling TiO2 and Ce-oxo for CeO2. Using the Ti-oxo cluster (TOC) system as an example, the inor-
ganic Ti─O core is coordinated by organic or inorganic ligands. In early work, a hydrolysis product 
of titanium tetraethoxide was identified by XRC to be [Ti7O4(OEt)20] in 1967  [43]. Since then, 
many TOCs have been reported, such as Ti42, Ti44, and Ti52 [44–46]. Their structures can be con-
trolled, such as spherical cages, rings or wheels, and many types of dense structures [41]. In addi-
tion to monometallic TOCs, there are also bimetallic ones with doped ions being main group ions, 
transition metal ions, and lanthanide ions [41]. The incorporation of Ag clusters into TOCs is quite 
appealing, such as the Ag14@Ti16-oxo nanocluster [47].

Finally, metal coordination-based supramolecular chemistry has also moved toward the 
nanoscale by creating ever-larger nanostructures, such as wheels/rings, cages, and polyhedrons, as 
well as tubular architectures [11]. The construction of large and exquisite molecular architectures 
calls for new development of nanochemistry [48].

1.1.3  Motivations from Gas Phase Cluster Research

The field of gas phase cluster science has moved from small sizes (several to a dozen atoms in 
earlier research) to larger sizes in the current efforts [49]. Since the 1960s, intense research on gas 
phase clusters has been carried out, including inert-gas-element clusters (e.g. xenon clusters, Xen), 
metal clusters (e.g. Nan clusters), carbon clusters (Cn), water clusters ([H2O]n), and many other 
types [50]. The Xen cluster research led to an important insight into the structural stability of clus-
ters, i.e. the formation of icosahedral packing structures, such as the one-shelled Xe13, two-shelled 
Xe55, and three-shelled Xe147 [51]. These are called the geometric magic numbers, and the atomic 
shell closing endows high stability to the clusters.

In the 1980s, research on gas phase Nan clusters led to another important concept, that is, the elec-
tron shell closing of 1S 1P 2S 1D . . . , with notable sizes of Na8, Na34, Na58, and Na92 (so-called super-
atoms because of the atomic-like orbitals in such clusters) [52]. Much work has also been done on gas 
phase gold clusters,  [53, 54] and theoretical computations on the 2D to 3D structure transition 
(Figure 1.4) [55, 56]. To investigate the evolution of the superatom electronic shell picture, larger 
sized NCs should be pursued. As the size boundary moves up, the cluster science indeed merges with 
nanoscience. Preparation of clusters in gas phase with hundreds of atoms per core has been pursued 
in recent years, [49] although major effort is still required in the pursuit of atomic precision.

Carbon clusters (or fullerenes) are one of the significant areas in gas phase cluster research [57, 
58]. Fullerenes are typically produced using the electric arc discharge or thermal chemical vapor 
deposition (CVD) method. From the initial discovery of C60 in 1985, a variety of sizes have been 
reported, with smaller ones such as C20, C24, C28, C32, C36 and larger ones such as C70, C80, C82, C108 
and even up to C540 [59]. The size-dependent structure, electronic, and optical properties of Cn are 
under active investigation, and the cage structure of Cn clusters is particularly appealing for encap-
sulating atoms, molecules, and clusters of few-atom in size, forming endohedral clusters [60]. New 
additions to the nanocarbon family also include the atomically precise graphene nanoribbons 
(GNR) [61] and some other forms.

1.1.4  Motivations from Other Areas

The concept of atomic precision is also critically important in solid-state materials. A variety of 
solid-state materials are being intensively pursued in the field of materials science, such as the low 
dimensional materials (2D van der Waals materials, stacked 2D materials, etc.) and quantum 
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materials. Precise control over the edge and topology is of vital importance for controlling the func-
tionality, and heteroatom doping (e.g. doped WS2) also calls for atomic precision strategies [62].

In the semiconductor industry, silicon chips have moved toward the few-nm regime, in which 
precise control of the film quality and interface has become a major issue in order to prevent elec-
trical leak in the few-nm transistors [63]. This calls for atomically precise fabrication strategies, 
which is vital in advancing toward the 1-nm transistor technology.

1.2  Types of Nanoclusters Covered in This Book

Intense efforts in the past years have led to success in synthesizing Au, Ag, Cu, Pt, Pd, Rh, Al, Fe, 
Co, and Ni nanoclusters, as well as alloys. The obtained atomically precise nanoclusters can serve 
as new models or platforms for solving many issues of structure and bonding evolution, and thus 
enable significant progress in nanoscience research.

This book is intended to provide an overview of the progress in atomically precise nanochemis-
try with a focus on inorganic nanostructures, including metals (e.g. Au, Ag, Cu, Ni, Rh), Zintl 
clusters, Ti-oxo nanoclusters, and carbon clusters, as well as catalytic application and assembly of 
NCs into functional materials. On a note, other types (e.g. Pdn, [64] Ptn, [65] Aln [66] and cerium-
oxo NCs [42], metallo-rings and wheels [11], supramolecular cages/polyhedrons/capsules [11, 48], 
and DNA-templated Aun and Agn NCs [67, 68]) are not covered due to the limitations of the book. 
Semiconductor NCs [20–23] are also not covered.

Among the chapters, atomically precise metal NCs (Au, Ag, Cu, Ni, Rh) and their catalytic appli-
cations are discussed in Chapters 2–10. Some other types of NCs, including endohedral metallof-
ullerenes (EMF), GNRs, Zintl clusters, and Ti-oxo nanoclusters, are presented in Chapters 11 to 14. 
Finally, Chapters 15 and 16 are devoted to the assembly of metal NCs (Au, Ag, Cu), including their 
incorporation into metal organic frameworks (MOFs) toward the fabrication of assembled func-
tional materials.

Au+
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Figure 1.4  Computed structures of bare cationic Aun
+ clusters and 2D to 3D structural transition. 

Source: Reprinted with permission from [55]. © 2019 Royal Society of Chemistry.
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1.2.1  Atomically Precise Metal Nanoclusters (Au, Ag, Cu, Ni, Rh)

In recent years, atomically precise metal NCs have been intensely pursued. Such NCs may be 
divided into three types:

i)  Coinage metals, including Au, Ag, Cu, and alloys, which are primarily motivated by the elegant 
optical properties of such elements in the form of NCs (c.f. their larger counterparts – plas-
monic NPs in the 3–100 nm range exhibiting distinct SPRs in the visible and near-infrared 
wavelength range),

ii)  Platinum group metals, including Pd, Pt, Rh, and alloys, which are mainly motivated by their 
excellent catalytic properties, and

iii)  Magnetic metals, such as Fe, Co, Ni, and alloys, which are primarily motivated by the size-
dependent magnetism from the cluster state to the bulk metals.

Among the types of atomically precise metal NCs protected by various types of ligands (e.g. 
phosphines [69, 70], thiolates [71, 72], alkynyls [73], carbenes [74], halides [75], and Stibine [76]), 
the gold-thiolate (Au-SR) system is perhaps the most extensively studied one (Figure 1.5). Its larger 
counterparts (i.e. plasmonic Au NPs of 5–100 nm) have been widely studied in the past decades 
and explored in numerous applications. The success in atomically precise gold-thiolate NCs (tens 
to hundreds of gold atoms per core) will help explain the regular NPs in terms of the latter’s surface 
structure, assembly, and catalytic mechanism, as well as many other fundamental aspects [10, 77].

In this book, Chapter 2 by Xie’s group summarizes the progress in total synthesis of gold NCs, 
including the control over size, structure, composition and ligand engineering, and Chapter 3 by 
Wu’s group reviews the advances in the synthesis, characterization, and application of gold NCs 
with a focus on the categorization of structural series. The structures of metal NCs constitute the 
basis for understanding the functionality and stability of NCs. A theoretical perspective on the 
structure evolution and structural design of Aun(SR)m NCs is provided by Xu and coworkers (see 
Chapter 4). Among the applications of Au NCs, catalysis (e.g. electrocatalytic water splitting and 
CO2 reduction) is summarized in Chapter 5 by Lee’s group, and theoretical simulations on the 
electrocatalysis mechanisms are given in Chapter 6 by Tang’s and Jiang’s groups.

While a large body of research focuses on gold NCs, there has also been substantial progress in 
Ag NCs (reviewed in Chapter 7 by Zhu’s group), Cu NCs (Chapter 8 by Bakr’s group), Ni NCs 
(Chapter 9 by Hayton’s group), and Rh and its alloy NCs (Chapter 10 by Femoni’s group). Some 
selected crystal structures of these metal NCs are shown in Figure 1.6.

Au25

Au25(SR)18 Au38(SR)24 Au144(SR)60

Au279(SR)84
Metallic

(Plasmon excitation)

Nonmetallic
(Molecular-like single
electron excitation)

Au246(SR)80

...... ......Au38 Au144 Au246 Au279 Au333

1.0 nm 1.2 nm 1.7 nm 2.2 nm 2.2 nm

+33 Au atoms

2.3 nm

e

h

Figure 1.5  Atomically precise gold nanoclusters with the transition from nonmetallic Au246 to metallic 
Au279. Source: Reprinted with permission from [77]. © 2021 The Authors (Jin and Higaki).
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The types of metal NCs that are discussed in Chapters 2–10 contain a certain number of delocal-
ized valence electrons of metal atoms, such as 2e, 8e, 18e, 20e, 34e, 40e, 58e, 70e, and 92e. These 
so-called electronic magic numbers are closely relevant to the stability and properties of the NCs. 
Unlike the zero valent Au, Ag, Pt, Pd, and Rh NCs – which can even be in negative (e-rich) states 
for Rh atoms [78], Cu NCs tend to be in Cu(I) state or have low numbers of core valence electrons, 
such as 2e in the NCs of [Cu25H22(PPh3)12]+  [79], [Cu13{S2CNnBu2}6(CCPh)4]+  [80], 
Cu14(C2B10H10S2)6(CH3CN)8  [81], and [Cu61(StBu)26S6Cl6H14]+  [82]. However, upon introducing 
hetereometal dopants, the valence electron number could be raised, such as the 10e 
[Pt2Cu34(PET)22Cl4]2− [83a] and the 67e [Cu43Al12](Cp*)12 [83b].

Historically, chemists have long been interested in counting the valence electrons, such as 
the organic aromaticity rule of 4n + 2 (π electrons) put forth by Hückel in 1931, and the Wade-
Mingos electron counting rules for boron and metal clusters [38, 39] developed in the 1970s, the 
superatom electron counts [52] in the 1980s, and so on. More discussions on the counting of clus-
ter valence electrons are provided in Section 1.3.2.

On the other hand, there are also many Au(I), Ag(I), and Cu(I) NCs that have no free valence 
electrons, such as the anion-templated Cu(I) and Ag(I) NCs. While these systems are not the focus 
of this book, some Cu(I) and Ag(I) NCs are discussed in Chapter  8 and  16, respectively. In 
Chapter 8, Dong et al. provides a very systematic summary of the syntheses of Cu(I) and Cu(0) 
NCs, whereas Chapter 16 by Wang and Zang focuses on the assembly of Ag(I) NCs for framework 
materials, and Chapter 15 by Mandal’s and Sun’s groups summarizes the assembly of Au and Ag 
NCs into 3D and 2D crystals.

[Ag44(SR)30]4– [Cu25H22(PPh3)12]+

[Ni30S16(PEt3)11]0

(R omitted)

[Rh33(CO)47]5–

(CO omitted)

Ni30 coreshell

S

P

Figure 1.6  Examples of atomically precise Ag, Cu, Rh, and Ni nanoclusters with metal─metal bonding. 
Source: Adapted from Chapters 7–10.
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1.2.2  Endohedral Fullerenes and Graphene Nanoribbons

Nanocarbon has many types, including the fullerenes (Cn), EMFs, carbon nanotubes, graphene 
quantum dots, and nanoribbons. Some of them are in atomically precise forms, such as fullerenes 
and endohedral fullerenes, as well as certain GNRs.

Since the discovery of C60, carbon clusters have long been of major interest to chemists, physi-
cists, and materials scientists owing to the unique cage structure, superconductivity, and other 
unprecedented functionalities  [57–60]. In this book, Chapter  11 is devoted to the endohedral 
fullerenes (Figure 1.7). Chen’s group has summarized recent progress in EMFs with a monomer, 
dimer, and even cluster enclosed in the carbon cage, forming metallofullerenes and clusterfuller-
enes, and the new properties are discussed, such as optical absorption, electrochemical, and mag-
netic properties, as well as the chemical reactivity. Charge transfer from the enclosed metal atom 
to the fullerene cage may result in different isomeric fullerene structures. In the case of two metal 
atoms enclosed, metal─metal interactions (including bonding and non-bonding) lead to interest-
ing phenomena. The inclusion of more atoms gives rise to clusterfullerenes, such as the enclosing 
of metal nitride (e.g. Sc3N), oxide (Dy2O), sulfide (Sc2S), carbide (M2C2, where M = metal), and 
carbonitride (Sc3CN) clusters. The configuration of the enclosed few-atom cluster may be rigid 
(e.g. M3N) or flexible (e.g. M2C2), and the enclosed cluster may also transfer a certain number of 
valence electrons to the fullerene cage.

Fullerenes and doped ones exhibit rich optical absorption peaks in the visible to near-infrared 
(NIR) range. The different metal-cage interaction and electron transfers greatly affect the energy 
distribution of molecular orbitals of endohedral fullerenes and thus their optical absorption spec-
tra. There are also rich electrochemical properties of endohedral fullerenes, and both the first oxi-
dation and first reduction potentials can be largely varied by the metal atoms in the cage.

In addition to the zero-dimensional (0D) Cn clusters with spherical or spheroidal shape, atomi-
cally precise 2D GNRs are also of major interest (Figure 1.8). Chapter 12 by Yamada and Hayashi 
summarizes some recent progress in the on-surface synthesis of GNRs and bandgap engineering 
toward transistor applications.

1.2.3  Zintl Clusters

Zintl cluster research constitutes an important branch in the field of inorganic chemistry. Previous 
work focused on the main group elements such as Ge, Pb, and Sb. Recent efforts have also investi-
gated transition metals (Figure 1.9), for example, Dehnen’s group carried out a series of work on 
endohedral Zintl clusters such as [Th@Bi12]4−, [Co@Sn6Sb6]3−, and double-metal centered [Co2@
Sn5Sb7]3− [34]. Sun’s group recently obtained large sized [Au8Pb33]6− and [Au12Pb44]8− with gold 
kernels and lead shells  [36]. Chapter  13 by Sun and coworkers have summarized some recent 

C60 cage La2@lh(7)–C80 Gd3N@C2(22010)–C78 Sc3CN@lh(7)–C80

Figure 1.7  Structures of C60 and some endohedral fullerenes (the letter colors code the elements). 
Source: Adapted from Chapter 11.


