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Preface 

Nowadays, the engineering vibration control technology has been applied widely 
with the rapid development of China’s industry and great progress in science and 
technology. This technology has played an important role in the vibration control of 
large power equipment, ultra-precision equipment, and building structures. More-
over, this is a key support technology in the fields of machinery, electronics, 
electricity, metallurgy, weapons, and aviation. 

Improper vibration control will negatively affect the normal operation and service 
life of the equipment, the normal measurement of instruments and meters, the health 
of staff and residents nearby, and even the service life and safety of nearby industrial 
buildings. 

With the continuous improvement of equipment, the vibration load, the frequency 
range, and the demand for low-frequency micro-vibration control of the equipment 
increased. However, traditional passive vibration isolation cannot fully adapt to the 
increased working frequency band. This is due to the fact that the damping and 
stiffness characteristics are not adjustable once the vibration isolation parameters 
are determined. 

Active vibration control has the advantages of large output, good control effect, 
and the ability to continuously adjust the control output according to the change of 
excitation. Notably, the design and parameter optimization of the control system has 
an important impact on the control effect. The emergence of smart materials and smart 
dampers has promoted the rapid development of semi-active control technology, such 
as magnetorheological (MR) and electrorheological (ER). The control algorithm and 
the target design based on active control effect are important research concerns. 

This book focuses on the system and parameter optimization of vibration isolation, 
absorption, active and semi-active control of engineering vibration, as well as the 
optimal arrangement of sensors. The research in this book is an attempt to develop 
the advanced technology of engineering vibration control and, hopefully, plays a 
certain guiding role for practical engineering.

v



vi Preface

We expect that the researchers and practitioners can explore engineering vibra-
tion control technology and discipline development from different perspectives and 
viewpoints. 
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Chapter 1 
Introduction 

Abstract In this chapter, the background, purpose, and significance of the studies 
presented in this book are carried out, and the importance of vibration control for 
two types of industrial equipment, i.e., power equipment and sensitive equipment 
is indicated. Besides, single-stage and double-stage isolation system with passive, 
active and semi-active control strategies are studied by reviewing lots of literature, 
and some advanced vibration control techniques and artificial intelligence methods 
are studied, such as magnetorheological damper, dynamic vibration absorber, particle 
swarm optimization etc. 

1.1 Background, Purpose, and Significance 

With the rapid development of modern industrial engineering, vibration control tech-
nology plays a crucial role in engineering construction. For instance, if the vibration 
risks are not adequately eliminated, they will affect the equipment’s regular operation 
and service life, the standard measurement of instruments and meters, the physical 
health of workers and nearby residents, and even the safety of the nearby industrial 
buildings. 

The equipment commonly used in industrial engineering can be divided into power 
equipment and vibration-sensitive equipment. The power equipment includes large-
scale slewing, reciprocating, impact, and random vibration devices. These equipment 
have played an essential role in the national economy and defense construction. 
However, the vibration generated during their use causes damage to the equipment 
itself and harms the operators, industrial buildings, and the surrounding environment 
(Fig. 1.1).

On the other hand, vibration-sensitive equipment includes high-precision 
microscopy, optical interference detection, biochemical analyzers, precision 
grinding, and processing machine tools. These equipment are distributed in astro-
nomical optics, military engineering, rapid detection, nanotechnology, laser devices, 
ultra-thin metals, grating scribing, and other fields. During their use, deviations and 
incorrect results are caused by minimal environmental disturbances (Fig. 1.2).
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(a) Steam turbine (b) Rotary compressor (c) Water pump 

(d) Reciprocating compressor  (e) Forging hammer (f) Textile machinery 

(g) Shaking table (h) Centrifuge 

Fig. 1.1 Typical modern power equipment

There is still a particular gap between China’s vibration control technology and the 
advanced international level, which restricts the rapid and high-quality development 
of China’s industry to a certain extent. The painful lesson of the ‘ZTE incident’ is 
still remembered. The media has made sharp judgments about this event, ‘Powerful 
nations still need to be hard on their own, and wars without smoke will eventu-
ally require scientific and technological researchers to develop high-end core tech-
nologies… today’s core technology has been blocked by foreign swords … ZTE’s 
tragedy will be staged if we still do not recognize the support of advanced tech-
nology …’. In fact, high-quality chips are closely related to micro-vibration control 
technologies, which are crucial links made from the cultivation of crystals. If the 
environmental vibration exceeds the standard, crystal damage is typically caused, 
significantly reducing the chip’s quality. This is the epitome of the critical role of 
vibration protection technologies in modern industrial engineering. 

Effective vibration isolation and control measures for power equipment can reduce 
its vibrations and decrease their adverse impact on the surrounding environment. For
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(a) Electron microscopy (b) Optical scanning (c) Grating Scribing 

(d) Probe (e) IC manufacturing (f) Precision machine tools 

Fig. 1.2 Typical modern sensitive equipment

vibration-sensitive equipment, vibration suppression can effectively lower the impact 
of ambient vibration on the equipment and ensure the regular use of the equipment. 

Passive isolation is simple, easily implemented, and widely used system in vibra-
tion control engineering. However, its parameters are fixed, and it cannot actively 
adjust to changes in external interference once the system is designed (such as 
changes in frequency and excitation form). As a result, active control systems are typi-
cally considered. In such devices, the response of the controlled object is obtained 
in real-time and sent to the active controller. Thereafter, the instructions are sent 
simultaneously to drive the actuator by which active control force is generated to 
counteract severe vibrations in real-time. Hence, its control effect can be adjusted 
autonomously according to the changes in external interference. 

In recent years, scholars have investigated system improvement, vibration isola-
tion parameters optimization, and advanced algorithms development for hybrid 
passive isolation and active control systems. However, there is still extra room 
for theoretical and applied studies focusing on advanced control, especially those 
aiming to improve the effectiveness of active control technology. Besides, there 
are still gaps in the implementation and integration of such systems in actual engi-
neering applications. Currently, the finite element method (FEM) is considered as a 
vital technique in modern engineering vibration control. A key issue herein is to 
improve the computational accuracy of engineering vibration control and reliably 
approximate the theoretical calculation as much as possible. If the theoretical anal-
ysis and numerical calculation results significantly differ, it is difficult for research 
and development personnel and engineers to choose reliable results. These prob-
lems cause critical issues in using passive and active control systems. The current 
research shows that most of the problems are based on simplified calculations using
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MATLAB/SIMULINK and LABVIEW. Thus, the control object’s actual characteris-
tics cannot be considered. As a result, improving the way to perform detailed passive 
and active control calculations in the finite element environment is an urgent research 
direction. 

Indeed, passive control system optimization is an effective way to improve the 
control effect and performance. Among the currently available techniques, system 
decoupling is a vital link that must be considered in engineering vibration control 
design. In this system, the response of the control object under coupled and decoupled 
conditions varies considerably. The most obvious disadvantage of the coupled system 
is restraining translation and torsion, which significantly causes adverse effects. 

For micro-vibration control, the vibration source hazards often have low frequen-
cies. Therefore, designing a vibration isolation system with a low natural frequency 
is necessary. A low frequency for a steel spring damper with quasi-linear stiffness 
results in substantial deformation, and the actual engineering application is a chal-
lenging issue. In addition, once the system design is completed, the natural frequency 
changes with the change in the load mass. On the other hand, introducing air springs 
into the micro-vibration control has gradually overcome the problems involved in 
low-frequency design and large static deformation. Alternatively, these issues can 
be overcome by ensuring a constant chamber’s effective height. A dual-chamber air 
spring is typically added with a specific additional air chamber volume for a single 
chamber. The upper and lower air chambers are usually connected through orifices, 
which effectively address the load-dependent natural frequency changes. Accord-
ingly, the air spring floating system is suitable for medium and large loads. In contrast, 
a quasi-zero stiffness system can be considered for low-frequency micro-vibration 
control of small loads, which is a more forward-looking research direction. 

1.2 Literature Research and Review 

Figure 1.3a and b describe passive vibration isolation for power and sensitive equip-
ment, which are two different single-stage vibration isolation systems. This passive 
isolation strategy is an early researched and applied method that has a simple structure 
and convenient design [1–4]. However, single-stage systems are often not ideal in 
the frequency domain, and two-stage systems are required [5]. Figure 1.4 shows the 
corresponding model. The dynamic characteristics of the two-stage vibration isola-
tion system based on the minimum mean method have been previously analyzed 
[6]. Wei et al. [5] proposed a hybrid method for parameter optimization design of a 
two-stage vibration isolation system based on a genetic algorithm (GA) [7] using  the  
principle of maximum entropy optimization. Farshidianfar et al. [8] concluded that 
calculating the vibration isolation of equipment using a two-stage vibration isolation 
system is necessary and effective.

The above passive vibration isolation system does not consider external energy 
input and does not rely on other automatic control systems. Once the system is 
designed, its structural parameters and damping and stiffness characteristics are
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Fig. 1.3 Uncontrolled 
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Fig. 1.4 Uncontrolled 
vibration isolation systems of 
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fixed. Besides, it cannot fully adapt to a wider operating frequency band. Certain 
limitations exist in passive control systems, such as not being conducive to vibra-
tion isolation design under low-frequency excitation and often failing to reach the 
expected vibration isolation effect. It cannot adaptively adjust to external interfer-
ence, such as changes in amplitude, frequency, or excitation [9–12]. At this time, 
active control with energy input must be considered. Figure 1.5 depicts the active 
control for power and vibration-sensitive equipment with external controllers. This 
model was proposed by Farshidianfar [8] in 2012. Modern control methods, including 
proportion-integral-differential (PID) control [13], linear quadratic optimal control 
(such as the linear quadratic regulator, LQR [14], linear quadratic gauss, and LQG 
[15]), and H2/H∞ [16] control. The above control methods require establishing accu-
rate computational models (such as transfer function or state space models). However, 
this method has some limitations when there is uncertainty in the mass, stiffness, or 
damping of the vibration system or when the system has strong nonlinearity [17]. For 
this reason, many scholars have carried out research on intelligent control methods, 
such as fuzzy logic control (FLC) [18], neural network control (NNC) [19], and 
fuzzy neural network control (FNNC) [20]. The above control methods have been 
widely used in vibration control fields such as vehicle vibration reduction, structural 
earthquake resistance, and structural wind resistance. Taghirad [21] carried out active 
control on the vehicle vibration reduction system based on the LQR/LQG control 
method. Kar et al. [22] conducted active control for thin plate structures using the 
H∞ control method and developed a feedback controller to stabilize the control 
system. Pourzeynali et al. [23] studied the performance of the FLC control method
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Fig. 1.5 Active control systems of two types of equipment 

as an active control of a high-rise structure subjected to wind vibration. Neverthe-
less, these methods are rarely used for power and vibration-sensitive equipment in the 
active control field. Moreover, the literature still lacks research that forms a complete 
active control system for both types of equipment. Therefore, this method is mainly 
applied to the active control of typical equipment and is significant for engineering 
needs. 

In the active control strategy, the actuator output is crucial to achieving a 
good control effect. However, it still has some disadvantages, such as complicated 
sensor/actuator system design, troublesome vibration data collection and processing 
approaches, large control energy consumption, and adverse economic effects. In addi-
tion, active control systems often have a time lag phenomenon. When the time lag is 
large, it may reduce the vibration control effect and diverges the system response [17, 
24, 25]. For this reason, scholars have proposed a method between uncontrolled vibra-
tion isolation and active control known as semi-active control. This method requires 
only a small amount of energy to maintain the regular operation of the relevant elec-
tronic and electrical components. In these systems, the external power provides direct 
control, and the need for devices that induce the control forces and energy to support 
active control is eliminated [26]. From the international researchers’ perspective, 
semi-active control mainly includes semi-active variable stiffness control and semi-
active variable damping control. The semi-active variable stiffness control performs 
the calculations according to the preset control law and output control instructions 
and sends them to the mechanical device to finally apply the control strategy to the 
controlled object, as shown in Fig. 1.6 [27, 28]. On the other hand, the semi-active 
variable damping control is generally based on a hydraulic damper or a viscous fluid 
damper and a servo to form a damper with an adjustable fluid flow. It can continuously 
change the damping force and control a wide range of exciting vibration capabilities, 
as shown in Fig. 1.7 [29–31].
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Fig. 1.6 Semi-active 
variable stiffness control 
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Fig. 1.7 Semi-active 
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Recently, the traditional semi-active control technology has been greatly improved 
and promoted with the advancement of smart materials and dampers. Electro-
rheological damper (ERD) is a new damper type that uses electro-rheological fluid 
(ERF) smart materials. As a result, its damping viscosity can change with the applied 
electric field strength. When lacking an electric field, the ER fluid flows freely. Once 
the applied electric field reaches a certain value, the ER fluid instantly gets into a gel 
state, with the response changing in milliseconds and reversible [32, 33]. Wang et al. 
[34] utilized the ERD device in building structures. Furthermore, Choi [35] applied 
the ERD system to study the semi-active control of fixed beam structures. Shortly 
after the invention of ERD, scientists discovered the magnetorheological fluid (MRF) 
and invented the magnetorheological damper (MRD). Compared to the ERF, MRF 
offers significant advantages in driving the ERF voltage substantially, up to several 
thousand volts, while MRF achieves a few volts to tens of volts [17]. Additionally, 
the MRF shear strength is much greater than ERF. Therefore, the volume of MRF 
in the damper is generally 100–1000 times smaller than ERF. Besides, the MRF is 
not sensitive to impurities in the body, and the temperature adaptation range is wider 
than the ERF. Therefore, in recent years, many scholars have utilized the MRD in 
semi-active control tasks. Yao et al. [36] applied MRD to semi-active control of the 
vehicle vibration reduction system and analyzed it with the Bouc-Wen model. Dyke 
et al. [37] established an MRD semi-active control system for structural seismic 
control based on sliding mode control. However, the current application of MRD in 
the semi-active control of power and sensitive equipment is scarce, which requires 
intensive research and exploration.
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A dynamic vibration absorber (DVA) is a mass-spring-damping mechanism 
attached to the primary vibration system [38, 39]. In practical engineering appli-
cations, the passive vibration absorber exerts a better energy dissipation effect when 
the primary vibration system’s vibration frequency remains unchanged. Due to the 
complex operating conditions of mechanical equipment and the changeable operating 
environment, it is not easy to meet this requirement in practical applications [40, 41]. 
In order to simulate the behavior of vibration absorbers, many scholars have improved 
traditional devices by adjusting and optimizing their essential parameters. With the 
introduction of new theories, technologies, and materials, some new research direc-
tions have emerged in vibration absorption, mainly including active vibration absorp-
tion technology, adaptive vibration absorption technology, and nonlinear vibration 
absorption technology [42–44]. An active vibration absorber adopts active interven-
tion to reduce the demand on the primary vibration system, and its interior mainly 
includes components such as sensors, controllers, and actuators. Theoretically, the 
amplitude of the primary vibration system can be zero when the actuator force on the 
primary vibration system is equal to and opposite to the excitation force it receives. 
With the development of optimal control algorithms, studies on active vibration 
absorbers have dramatically progressed. Due to the lag between the feedback and 
actuator links, it is almost impossible to completely offset the force generated by the 
actuator and the exciting force in an ideal state. The primary vibration system may 
be unstable, especially for complex vibration systems. Therefore, active dynamic 
vibration absorber is mainly used in theoretical analysis, numerical simulation, and 
laboratory research stages, while it has relatively few actual engineering applications 
(Fig. 1.8). 

Industrial equipment and civil structures are inseparable. Taking into account the 
vibration of equipment and structures as a composite system has important practical 
significance Yang et al. [45] studied the composite vibration system of structure 
and equipment under seismic excitation, Igusa et al. [46] modeled the composite 
vibration system of equipment and structure as a two-degree-of-freedom system to

Fig. 1.8 Mechanical model 
of the dynamic absorber 



1.2 Literature Research and Review 9

perform a seismic control investigation. Xu et al. [47] assessed the vibration control 
effect of precision equipment attached to frame structure under seismic vibration. 
Ismail et al. [48] proposed a new vibration isolator to study the disturbance of equip-
ment in the structure under seismic load. Murnal et al. [49] introduced a variable 
frequency pendulum vibration isolator to study the damping effect of equipment in 
structures under seismic loads. Currently, the literature lacks extensive research on 
the engineering vibration of structures caused by power equipment. Besides, seismic 
input shaking intensity is primarily considered in the vibration input, whereas other 
interference forms affecting sensitive equipment and vibration control methods are 
rarely taken into account. Generally, the equipment and structure are considered a 
two-degree-of-freedom system for calculation. Therefore, research on the composite 
system of equipment and building structures has great practical significance for the 
vibration control of modern industrial engineering. 

High-tech equipment used in producing semiconductors and optical microscopes 
is very expensive. In order to ensure the high quality of ultra-precision products, 
high-tech equipment used to manufacture these products requires a normal working 
environment with minimal vibration intensities. Accordingly, the top priority herein 
is to find an effective way to ensure that the functions of high-tech equipment are not 
affected by the micro-vibration of the building structure. The main sources of micro-
vibration that affect the normal operation of high-tech equipment are ground motion 
caused by traffic, ground vibration caused by machinery, and direct interference 
[50]. Previously, many researchers have studied the measurement and prediction of 
ground motion caused by traffic and vibration caused by machinery [50–52]. The 
main frequency range of building structure floor vibration caused by machinery 
mainly depends on the machinery’s rotation speed and the characteristics of the 
beams and slabs in the building. 

Power equipment placed upstairs in structure is inevitable for modern indus-
trial and social development. Power equipment station rooms, air conditioners, 
range hoods, and power pipes cause excessive building vibration, severely reduce 
the comfort of personnel, induce operational failure in the building’s precision 
equipment, and even cause structural damage (Fig. 1.9).

Sensor deployment is widely used in modern industrial engineering structures. 
The main concept herein is to arrange a certain number of sensors in a limited 
two-dimensional plane or three-dimensional space structure to adequately cover 
the entire monitored area. This problem in engineering is called optimal sensors 
deployment (OSD). The OSD technique is widely used in large civil engineering 
structures’ health monitoring and data collection [53–58]. There are many types of 
sensor deployment strategies, including modal kinetic energy (MKE) [59], MinMAC 
[60], QR decomposition [61], and probabilistic sensing models [62]. For a structure 
in which the equipment is installed in industrial engineering, there are two types 
of situations in which sensors are arranged on planar and three-dimensional space 
structures. Solving the OSD problems of these two conditions is of great significance 
for modern industrial engineering. 

This book mainly focuses on passive vibration isolation and optimized active 
and semi-active control systems for power and precision equipment. In this regard,
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Fig. 1.9 Vibration and 
isolation for building 
structure with equipment

(a) A building with sensitive equipment 

(b) A building with power equipment 
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Fig. 1.9 (continued)

Sensitive equipment 

Power equipment 

(c) Schematic diagram of vibration and isolation 
model for building with equipment 
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magnetorheological semi-active control based on tracking the active control effect, 
active control and semi-active control of coupled building equipment vibration 
system, and fine active control using finite element analysis, decoupling passive 
and active control, quasi-zero stiffness passive and active control, passive and active 
dynamic vibration absorption for buildings and equipment, optimal sensor deploy-
ment on 2D planner structure and in special 3D structure will be discussed. Within 
this series of studies, particle swarm optimization and multi-objective particle swarm 
optimization technology will play an essential role in the optimization strategy. 
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Chapter 2 
Particle Swarm Optimization 

Abstract In this chapter, a new artificial intelligence optimization tool, a detailed 
introduction for particle swarm optimization (PSO) is presented here. The basic 
structure and the main characteristics of PSO algorithm and the multi-objective 
PSO (MOPSO) algorithm is described and elaborated, and some standard numerical 
examples for PSO and MOPSO are tested. 

Natural systems, such as flocks of birds and schools of fish, often have some impres-
sive, collision-free, synchronized interactions. This behavior is based on the inherent 
reaction of everyone in the group, although the reason is quite complicated from a 
macro perspective. For instance, by keeping an appropriate distance between each 
bird in the flock and its neighbors, the flock’s migration behavior can be simulated 
accurately. This distance depends on the bird’s size and behavior. On the other hand, 
when a school of fish swims freely, the individuals maintain a large mutual distance, 
whereas when there is a predator, the school of fish will gather into a very close 
group. 

A similar phenomenon also exists in physical systems. A typical example is 
particle aggregation due to Brownian motion or fluid shear force. Human beings 
also have homogenous behavior characteristics, especially in forming social organi-
zation hierarchies and beliefs. However, unlike physical systems, people can hold the 
same idea or viewpoint without disagreement. These simplified aggregation behav-
iors in natural, physical, and human social systems enable researchers to conduct 
more in-depth experiments and simulation studies, thereby laying a foundation for 
developing swarm intelligence. Although the material structures of these systems 
are different, they have common properties with the following five basic swarm 
intelligence principles: 

(1) Distance: the ability to perform space and time calculations. 
(2) Quality: the ability to respond to environmental quality factors. 
(3) Diverse reactions: the ability to make various reactions. 
(4) Stability: the ability to maintain stable behavior under slight environmental 

changes. 
(5) Adaptability: the ability to change behavior under the decision of external 

factors.
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Furthermore, sharing social information between individuals in the system 
provides evolutionary advantages. Based on the studies mentioned above, in 1995, 
J. Kennedy and R. C. Eberhan officially published an article titled Particle swarm 
optimization at the IEEE International Neural Network Academic Conference, which 
marked the birth of the PSO algorithm. Since then, this algorithm has been extensively 
used, promoted, and generalized in the literature [1–7]. 

The research on vibration control of industrial engineering equipment involves 
many disciplines, such as civil engineering, machinery, automation, and computer 
engineering. Simple and effective optimization tools are significant for solving such 
complex problems. Traditional gradient-based optimization [8] requires continu-
ously calculating sensitivity factors and eigenvectors during the iteration process, 
which greatly increases the computational cost, reduces the convergence speed, and 
makes determining the optimal solution challenging [9]. The proposal of GA can 
effectively solve this issue. However, when there are situations where the target is a 
highly recognized optimization object, the parameters to be optimized have a high 
intercorrelation. Besides, the GA optimization ability is insufficient when the param-
eter’s dimension is large. Eberhart and Kennedy [10] proposed a new swarm intelli-
gence optimization algorithm, the particle swarm optimization (PSO) algorithm, in 
1995 to overcome these shortcomings. The main idea herein is to find the optimal 
solution (particle) based on the interparticles’ cooperation and competition. This 
algorithm has the advantages of simplicity, easy implementation, fast convergence, 
and few adjustable parameters. As a result, it has been widely used for handling 
optimization tasks in the engineering field [11, 12]. Coello et al. [13] proposed a 
multi-objective particle swarm optimization algorithm (MOPSO), whose main idea 
is to determine the particle flight directly through the Pareto optimal solution set and 
obtain the previously found non-domination in the global knowledge base vector to 
guide other particles in flying. Generally, PSO and MOPSO can deal with single-
objective and multi-objective optimization problems, respectively. Their intersection 
and cooperation constitute a new chapter in modern engineering optimization [14]. 

The PSO algorithm starts by initializing a group of particles without volume 
and mass, where each particle is considered a potential solution to the optimization 
problem. Thereafter, a pre-defined fitness function is used to determine the particles’ 
quality. In general, all particles move in the problem’s search space, and the speed 
variable limits the particles’ direction and distance. Usually, the particle seeks the 
current optimal position in each generation, where each particle follows the individual 
and neighbor optimal position. The particle swarm optimization algorithm is a new 
intelligent optimization algorithm that comes from the simple social simulation of 
birds and fish schools. Therefore, particle swarm optimization algorithms can be used. 
Simulating this interactive process provides a new way to solve decision-making 
issues in complex environments. 

The PSO is a random optimization method that can be considered an artificial 
intelligence method. As mentioned above, this algorithm is inspired by the social 
behavior of animals and insects, such as bird flocks and fish schools. The PSO 
generally employs a swarm of multiple particles, each with its position and velocity. 
All particles share information with each other, and efficient searching is obtained


